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Abstract. Task graph parallelism has emerged as an important tool
to efficiently execute large machine learning workloads on GPUs. Users
describe a GPU workload in a task dependency graph rather than aggre-
gated GPU operations and dependencies, allowing the runtime to run
whole-graph scheduling optimization to significantly improve the perfor-
mance. While the new CUDA graph execution model has demonstrated
significant success on this front, the counterpart for SYCL, a general-
purpose heterogeneous programming model using standard C++, re-
mains nascent. Unlike CUDA graph, the SYCL runtime leverages out-of-
order queues to implicitly create a task execution graph induced by data
dependencies. For explicit task dependencies, users are responsible for
creating SYCL events and synchronizing them at a non-negligible cost.
Furthermore, there is no specialized graph execution model that allows
users to offload a task graph directly onto a SYCL device in a similar way
to CUDA graph. This paper conducts an experimental study of SYCL’s
default task graph parallelism by comparing it with CUDA graph on
large-scale machine learning workloads in the recent HPEC Graph Chal-
lenge. Our result highlights the need for a new SYCL graph execution
model in the standard.

1 Introduction

Modern GPUs are fast and, in many scenarios, the time taken by each GPU
operation (e.g., kernel or memory copy) is now measured in microseconds. The
overheads associated with the submission of each operation to the GPU, also
at the microsecond scale, are becoming significant and can dominate the per-
formance of a GPU algorithm. For instance, inferencing a large neural network
launches many dependent kernels on partitioned data and models. If each of
these operations is launched to the GPU separately and repetitively, the over-
heads can combine to form a significant overall degradation to performance.

To overcome the overheads of kernel calls, CUDA has recently introduced
a new graph programming model, namely CUDA graph [10], that allows users
to describe a large GPU workload in a single task graph and offload the task
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graph directly onto a GPU using a single CPU call. This new execution model
opens several exciting opportunities for further accelerating the performance of
large-scale machine learning workloads that compose thousands of GPU oper-
ations (i.g., kernels and memory copies). For instance, the recent research at
2021 Nvidia GTC has shown over 3× performance improvement in TensorFlow
by replacing stream-based execution with CUDA graph [23]. In the same line,
our research of CUDA graph has achieved 2× speed-up over existing stream-
based solutions in completing the inference workloads of large sparse deep neu-
ral networks (DNN) that compose more than 46K GPU operations and 69K
dependencies [21].

In addition to CUDA, SYCL [8] has emerged as a promising alternative
to GPU programming using completely standard C++. As more ML systems
start leveraging SYCL to design their back-ends (e.g., Intel oneAPI [7]), en-
abling direct task graph parallelism on a SYCL device is a high priority for effi-
ciently executing large-scale machine learning workloads that define thousands
of GPU operations and dependencies. The default SYCL runtime counts on an
out-of-order queue to dynamically construct a task execution graph for submit-
ted kernels described in command group function objects. Task dependencies are
implicitly inferred from data dependencies extracted from accessor objects. In
a unified shared memory (USM) [5,12] environment where accessors are not re-
quired, users must explicitly construct dependencies between submitted tasks
and synchronize their events. This organization adds burdens to developers and
can be error-prone because of tedious event management.

Consequently, this paper introduces a high-level programming interface called
syclFlow [11] to express task graph parallelism with SYCL. We leverage the out-
of-order property of the SYCL queue to design a simple and efficient scheduling
algorithm using topological sort. We compare the performance of syclFlow with
CUDA graph on a large-scale machine learning workload from the HPEC Sparse
DNN Inference Challenge [6]. The largest DNN model spans 1920 layers each of
65536 neurons and composes over 46K GPU operations to complete the inference
loop. Under the same kernel algorithm, SYCL can be up to 5× slower than
CUDA graph as a result of execution overheads (e.g., submission calls, event
synchronizations). The experiment results highlight the need for a new SYCL
graph execution model that allows explicit task graph parallelism on a SYCL
device.

2 The Proposed SYCL Task Graph Programming Model

Our SYCL task graph programming model, syclFlow, enables users to describe
workloads in a task dependency graph. Once a task graph is given, we schedule
and submit dependent tasks to the SYCL runtime using out-of-order queue and
event synchronization.
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Fig. 1: An example of GPU task graph. There are one kernel, denoted in a red
circle, and four memory copies, denoted in blue circles.

2.1 Task Graph Construction in syclFlow

syclFlow allows users to construct a task dependency graph using standard
C++17 and SYCL20 based on USM. Figure 1 illustrates a GPU task graph
of five tasks (one kernel, kernel, two host-to-device memory copies, h2d x and
h2d y, and two device-to-host memory copies, d2h x, and d2h y) and four de-
pendencies. Listing 1.1 implements Figure 1 using the proposed syclFlow pro-
gramming model. We create a syclFlow object (sf), use parallel for and copy

to construct five task graph nodes, and relate the dependencies between nodes
using precede and succeed. The code explains itself, inspired by our Taskflow
project [18].

Listing 1.1: Example code of Figure 1 using syclFlow.

syclFlow sf;
syclTask h2d x = sf.copy(dx, hx, size);
syclTask h2d y = sf.copy(dy, hy, size);
syclTask kernel = sf.parallel for(dx, dy);
syclTask d2h x = sf.copy(hx, dx, size);
syclTask d2h y = sf.copy(hy, dy, size);
kernel.succeed(h2d x, h2d y);
kernel.precede(d2h x, d2h y);

2.2 Task Graph Scheduling in syclFlow

Since syclFlow uses SYCL’s out-of-order queue in which the SYCL runtime may
not schedule tasks in the same order of their submissions, we have to schedule
a user’s task dependency graph before submitting tasks to SYCL. Algorithm 1
presents our scheduler. In Line 1, we apply topological sort algorithm to sort a
user’s task dependency graph and get the sorted graph in T. In Lines 2-4, we
submit each task to the queue and get an event back. In Line 5, we synchronize
the whole execution by queue.wait. This scheduling is the notable overhead
that syclFlow has on top of SYCL. Please refer to Section 3 for detailed runtime
breakdown. Algorithm 2 briefs the submit function. In Line 1, we declare a
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command group function object for a task. In Lines 2-4, we use depends on to
specify the dependencies between the task and its dependents and encapsulate
the dependencies together with the task in the command group function object.
In Line 5, we return the command group function object as an event.

Algorithm 1: syclFlow’s scheduler

Input: G: syclFlow task dependency graph defined by users
Input: queue: a SYCL queue associated with a SYCL device

1 T ← topological sort(G)
2 for task ∈ T do

3 task.event = queue.submit(task)
4 end

5 queue.wait()

Algorithm 2: queue.submit

Input: task: a user’s task
1 cgf ← create command group function object(task)
2 for p ∈ task.dependents do

3 cgf.depends on(p.event)
4 end

5 return event(cgf)

Listing 1.2: Example code of syclFlow::on to directly create a SYCL task.

syclFlow sf;
syclTask task = sf.on(
[=](sycl::handler& handler) {
handler.require(accessor);
handler.single task([=](){
data[0] = 1;
});
}

);

Figure 2 demonstrates how syclFlow offloads a task dependency graph to a
SYCL device and interacts with the SYCL runtime using an out-of-order queue
and the depends on method to schedule dependent tasks. The SYCL runtime
schedules the submitted command group function objects and implicitly con-
structs its task graph based on submitted events.

syclFlow also allows users to exploit the full functionality of SYCL using on

method to directly create a SYCL task from a command group object. Listing 1.2
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Fig. 2: syclFlow offloads a user-specified task dependency graph to a SYCL de-
vice. The SYCL runtime schedules command group function objects from out-
of-order queue and constructs a task graph based on submitted events. Every
arrow between two cgfs denotes a dependency using depends on method.

Fig. 3: Transformation of a user’s task dependency graph to CUDA graph.
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demonstrates the usage of on which takes a command group object to perform
a task assigning a constant value, 1, to the element in a data array.

It is worth noting that the CUDA graph execution model is very different
from the SYCL runtime, as shown in Figure 3. The CUDA runtime directly
transforms a given CUDA graph into an executable graph in no need of addi-
tional user-level scheduling. This organization also allows the CUDA runtime to
perform whole-graph optimization to significantly improve the performance. The
synchronization overhead is minimized because CUDA graph does not synchro-
nize tasks but the whole graph at once. That is, the synchronization overhead is
limited to the number of CUDA graph submissions rather than the size of the
graph.

3 Experimental Results

We demonstrate the significance of GPU task graph parallelism on large-scale
machine learning workloads. The goal of this experiment is to highlight the
need for a new SYCL graph execution model that does not require additional
scheduling at the user level. We base our experiment on IEEE HPEC Sparse
Deep Neural Network Inference Challenge [6]. The challenge is to speed up the
computation of inference on extremely large DNNs. Table 1 shows the statistics
of the benchmarks. We leverage the award-winning algorithm [21] to design
our SYCL kernels and task graph parallelism with syclFlow. Figure 4 shows a
partial task graph of our algorithm. We run the experiments on a Ubuntu Linux
20.04.2 LTS (Focal Fossa) x86 64-bit machine with Intel(R) Core(TM) i7-9700K
Processor at 3.6 GHz, one GeForce RTX 2080 GPU with 8 GB memory, and
32 GB RAM. All programs are compiled by using Nvidia CUDA nvcc 11.1 on a
host compiler of DPC++ clang [4] with C++17 standards.

!!!!!

Fig. 4: Schematic view of a partial task graph in the inference workload based
on our algorithm in [21]. A blue node represents a memory copy, and a red node
denotes a kernel. The entire task graph on the largest DNN composes 3K tasks
and 5K dependencies.

Performance comparison. Table 1 compares the elapsed runtime (in seconds)
between syclFlow and CUDA graph on executing 12 DNN models using one
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Table 1: Comparison of the total execution time between syclFlow and cuda-
Graph for completing 12 DNN models.

Model syclFlow cudaGraph

#Neurons #Layers #Tasks #Dependencies Size Time Time

120 246 364 0.55 s 0.47 s
1024 480 966 1444 1.25 GB 1.86 s 1.53 s

1920 3846 5764 6.98 s 5.79 s

120 246 364 1.96 s 1.48 s
4096 480 966 1444 5.40 GB 6.85 s 5.11 s

1920 3846 5764 26.32 s 19.66 s

120 246 364 8.94 s 4.36 s
16384 480 966 1444 22.70 GB 30.51 s 14.82 s

1920 3846 5764 146.82 s 57.23 s

120 246 364 80.08 s 17.29 s
65536 480 966 1444 94.70 GB 273.29 s 51.92 s

1920 3846 5764 > 600 s 162.20 s

GPU. The execution time of syclFlow is longer than CUDA graph across all
models. For example, in the DNN model of 4096 neurons and 1920 layers, it
takes 26.32 seconds for syclFlow to complete, whereas CUDA graph can finish
in 19.66 seconds. In addition, the gap between syclFlow and CUDA graph keeps
increasing as we enlarge the size of the DNN models. For instance, in the largest
model of 65536 neurons and 480 layers, syclFlow is more than 5× slower than
CUDA graph. Figure 5 visualizes the trend.

Synchronization overhead. Figure 6 lists the number of event synchroniza-
tions of syclFlow and CUDA graph on completing the inference of the DNN mod-
els with 1024 neurons. The default number of batch iterations in the inference
loop is 12 [21]. Since CUDA graph constructs the graph only once when users
submit a task dependency graph to the CUDA runtime, the number of event
synchronizations is equal to the number of submissions. However, syclFlow re-
quires frequent synchronizations between the user-level scheduler and the SYCL
runtime. The number of synchronized events grows as we increase the number
of layers in the DNN model, which in turn increases the size of the syclFlow
graph. Figure 7 details the runtime breakdown of syclFlow and CUDA graph.
We can easily see that in syclFlow event synchronizations consume 41%, which
is as much as the kernel activities. While in CUDA graph, synchronization only
costs 1.33%.
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Fig. 5: Comparison of execution time between syclFlow and CUDA graph on
different DNN models. The performance gap between syclFlow and CUDA graph
increases as we enlarge the DNN model sizes.

Need for a New SYCL Graph Model. While we can devise a way to program
and execute task graphs using the current SYCL standards (e.g., out-of-order
queue, event synchronizations), this experiment highlights a critical need for a
new SYCL graph execution model which allows us to directly offload task graph
parallelism onto a SYCL device. This is especially important for accelerating
large-scale machine learning workloads. Specifically, modern GPUs are very fast
and the overhead of kernel calls and user-level scheduling have become very
expensive in many machine learning task graphs that compose thousands of
dependent GPU operators. These task graphs normally do not change once the
neural network architecture is decided, and there is no need to repetitively offload
the same task graph using expensive host function calls and scheduling methods.
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Fig. 6: Comparison of the number of event synchronizations between syclFlow
and CUDA graph on DNN models with 1024 neurons. As the models increment,
the synchronization overhead keeps the same for CUDA graph, whereas syclFlow
suffers seriously from the overhead.

4 Related Work

Task graph-based programming models have received much attention over the
last few years. Taskflow [18] develops a simple and powerful task programming
model, which enables efficient implementations of heterogeneous decomposition
strategies and leverages both static and dynamic task graph constructions to in-
corporate computational patterns. PaRSEC [14] expresses applications as DAG
of tasks with labeled edges designating data dependencies. It provides a generic
framework for architecture-aware scheduling and management of micro-tasks
on distributed many-core heterogeneous architectures. Kokkos’s functional ap-
proaches [15] provide task graph constructions. It allows applications to achieve
performance portability on diverse many-core architectures. Legion [13] describes
a runtime system that dynamically extracts parallelism from Legion programs,
using a distributed, parallel scheduling algorithm that identifies both indepen-
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Fig. 7: Runtime breakdown of syclFlow (on the top, 1320.72 seconds in total)
and CUDA graph (on the bottom, 1097.44 seconds in total) on a model with 120
layers and 1024 neurons. Kernel refers to the kernel activities, memory includes
memory copy and memory set, cuEvent presents event-related APIs, cuStream
contains stream-related APIs, cudaGraph denotes all of the APIs associated with
cudaGraph, and cudaStream covers APIs about cudaStream.

dent tasks and nested parallelism. While these frameworks offer means to de-
scribe heterogeneous workloads in different forms of task graphs, they do not
target direct task graph parallelism on a GPU.

CUDA graph is one of the early programming models that allow users to pro-
gram task graph directly on a GPU. There are two ways to program a CUDA
graph, explicit graph construction and implicit stream capturing. Explicit CUDA
graph construction is often the most efficient, but it requires all the parameters
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known upfront, which is impossible for many high-performance third-party li-
braries, such as cuSparse [3], cuBLAS [2], and cuDNN [9]. The second option
is implicit graph construction, which captures a CUDA graph using existing
stream-based application programming interfaces (APIs). Implicit CUDA graph
construction is more flexible and general, allowing users to manually allocate and
control streams. However, it requires users to wrangle with concurrency details
through events and streams that are known difficult to program correctly. To
simplify CUDA graph programming, Lin and Huang propose a unified interface
coupled with an optimization method to program CUDA graph in both explicit
and implicit modes [22].

SYCL is a programming model that allows users to write C++ single-source
heterogeneous code. Users submit tasks to an out-of-order queue that is as-
sociated with a SYCL device (e.g., CPU, GPU, FPGA). The SYCL runtime
schedules tasks from the out-of-order queue and constructs their dependencies
based on user-specified events and/or data dependencies from buffer accessor ob-
jects. This type of task parallelism is different from CUDA graph, which takes
the whole graph to schedule and performs whole-graph optimization to reduce
overheads of synchronization and kernel calls.

5 Conclusion

In this paper, we have introduced syclFlow to enable efficient task graph pro-
gramming using standard C++ and SYCL. We have compared the performance
of syclFlow using the default task graph parallelism of the SYCL runtime with
the new CUDA graph programming model on large-scale machine learning work-
loads. The experiments have shown that offloading task graph parallelism di-
rectly on a GPU can have a significant impact on the performance. For example,
at the largest model of over 46K dependent GPU operations, CUDA graph can
outperform syclFlow more than 5× faster. This paper signals a need for a new
SYCL graph execution model that allows us to offload task graph parallelism
directly on a SYCL device. At the time of this writing, we are actively col-
laborating with Codeplay [1] to design a new SYCL Graph standard through
Khronos [8].

Our future work plans to design a source-code translation algorithm that
automatically translates a written syclFlow code into a CUDA graph equivalent.
We also plan to measure the performance difference between SYCL and CUDA
graph in large-scale simulation problems [16, 17, 19, 20].
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