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ABSTRACT:  This numerical analysis considers a model of an elastic cylindrical bar 
impacted by rigid mass, which its accuracy is benchmarked by a closed-form solution 
developed for this impact process. The analytical solution provides theoretical background 
and understanding, however, practical problem is not always restricted to a simple one-
dimensional geometry and boundary conditions of a purely elastic material behaviour. Hence, 
the current work numerically simulates the impacted elastic bar, then explores parameters 
which are not considered in its theoretical model. A two-dimensional (2D) solid axisymmetric 
system is considered, in which rigid impactor is assigned with initial velocity corresponding 
to certain drop height and a 2D contact type is defined between interacting bodies. Both elastic 
and time-dependent viscoelastic material models are considered in this study. The simulation 
results reveal time intervals gradually increase in every sequential intervals, while relatively 
small discrepancies are recorded for peak load and pulse width outputs. The parameters of 
impactor's mass, drop height and structural stiffness are varied; showing how these parameters 
individually affect the resulting force response at end struck. The models then evaluate time-
dependent viscoelastic material model; showing stiffer response of the resulting force in 
comparison to models assigned with long-term elastic moduli. Derived elastic modulus-
output variable relations show comparable mathematical forms to corresponding equations 
formulated analytically. 

KEY WORDS:  Numerical method, Force at end struck, Parameter-output variable 
relations and Viscoelasticity. 

1. INTRODUCTION 
This numerical work simulates an impact problem based on [1], which involves a 

restrained elastic bar subjected to rigid mass as shown in Fig. 1. The simulation is undertaken 
using a finite element (FE) commercial package, LS-DYNA (smp d R7.1.1, LSTC, Livermore, 
California). The available analytical model is considered as the bar is treated as purely elastic, 
then it is extended to more complex time-dependent elastic behaviour. The study also evaluates 
relations between several parameters and corresponding output variables. 

2. PROBLEM DEFINITION 
Consider a stationary elastic cylinder with diameter, 2r, and length, l, subjected to impact 

due to an incoming rigid impactor at one end (called the end struck), while the other end is 
restrained as shown in Fig. 1. Numerical solutions are important as not all problems are elastic, have 
a simple one-dimensional geometry and boundary conditions as in theoretical model by [1,2]; 
consequently, closed-form solutions are not possible. The closed-form solutions, however, help in 
evaluating and benchmarking the accuracy of numerical methods, such as this attempted work. 
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Fig. 1. Axial impact problem [1] to be numerically modelled. 

Explicit code of LS-DYNA is utilised for this work, which uses explicit time integration 
based on central difference method (CDM) to obtain nodal displacements from their velocities 
and accelerations in every time step. The time step is calculated by the programme at every 
stage in simulation by dividing the smallest characteristic length with the continuum wave 
speed [3]; indicating the time required for wave speed to traverse the smallest element. 

3. NUMERICAL MODEL 
FE analysis requires four basic main inputs: the geometry with corresponding FE mesh; 

boundary conditions defined for the models; load application and the material behaviour of the 
models. This section discusses the definitions for each of these required inputs in the current 
study. 

3.1. Discretisation of axisymmetric system 
Impact mechanics involves more than one body in the collision [4], which implies the necessity 

of defining a minimum of two geometrical models. Planar symmetry of the cylindrical shape in the 
defined problem as shown in Fig. 2 is exploited. Two-dimensional (2D) solid models in LS-DYNA 
are based on integral difference scheme, which defines the geometries in global XY plane. In 
axisymmetric case, radial direction corresponds to X-axis, while the axis of symmetry lies on 
the Y-axis. LS-DYNA offers two options of axisymmetric elements, namely Petrov-Galerkin and 
Galerkin finite element approaches, generally referred as ‘area- weighted’ and ‘volume-weighted’ 
methods respectively. The former is designed suitably for situations where the developed pressures 
in the model constitute a large fraction of the elastic modulus, i.e. a hydrodynamic case [3]. 
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(a) Axisymmetric element (b) Dimensions and constraints 

Fig. 2. Finite element (FE) models. The box in (a) focuses on the region of interest. 

The volume-weighted Galerkin method is chosen in this work since there is no possibility of a 
hydrodynamic scenario arising in the problems being considered. The bar is discretised into 4-
noded axisymmetric 10 × 40 elements to provide almost square 2D elements, with similar 1:2 
diameter-to-length ratio (Fig. 2b). The rest of this primitive geometry are theoretically revolved 2π 
radians around the axis of symmetry to create a virtual cylindrical model of the bar as shown in Fig. 
2. 

Accordingly, the impactor is also assumed to have axisymmetric shape with arbitrary radius-
length dimension, while ensuring the impactor’s mass is 2.5 kg simulating the experimental drop 
test or around 26.6 g for a light-weight dropped hammer following [3]. Figure 2(a) shows the 
impactor as coarsely meshed in order to reduce the computational cost, while refinement is 
applied at the bottom elements which involve with contacting the end struck of the bar. This 
mesh refinement is required to ensure each slave node (on the impactor) are properly projected to 
its master segment (the bar struck). Node-collapsing method is applied to some three-noded 
elements in this region of refined mesh. 

3.2 Boundary conditions 
By the definition of axisymmetry in LS-DYNA, the global Y-axis represents the axis of 

symmetry, which for the problem considered automatically constrains the nodes on this axis in the 
global X-translation (radial). In addition, all bottom nodes are restrained in vertical direction as 
shown in Fig. 2(b) which is sufficient and consistent with the closed-form model in Fig. 1. 

3.3 Loading conditions: Contact and initial velocity 
Contact definition is required to establish interaction between the contacting surfaces of impactor 

and bar. The contact definition allows the incoming slave nodes of the impactor to recognise the 
top of the bar (which contains master segments). The mesh refinement size between the two 
contacting models is comparable. Standard penalty-based contact is employed for this purpose, 
which uses numerical springs to prevent penetration of each slave nodes through master segments 
as well as to transfer loads between contacting parts [3]. 

The 2D Automatic Surface to Surface contact type is employed which uses penalty forces to 
prevent penetration between external faces of 2D continuum elements. In addition, Force 
Transducer option is used in conjunction with the previous contact card to measure forces 
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generated by that contact definition. In the current axisymmetric model, the force output is per 
unit radian. Normal direction of both slave and master surfaces are determined automatically by 
the programme, in which the initial model set up already has orthogonal contact surfaces prior 
to the impact [3]. 

The hammer is assigned with corresponding initial velocity from drop height with only small gap 
is introduced between the models in order to avoid initial penetration leading to instability in the 
calculation of the contact forces [3]. The gap size is generally balanced between minimising initial 
computational cost (caused by a large gap) and avoiding initial penetration (due to gap being too 
small) between contacting solids. The best decision depends on the pre-calculation of the defined 
time step of the smallest element, the initial distance between the first expected contacting 
elements and the assigned nodal velocity. 

3.4 Material models 
The bar’s material is defined as elastic, which is similar to the closed-form solution in [1,2], or 

viscoelastic. The impactor is defined as rigid material which matches the problem definition and 
justifies the irregular mesh of the impactor near the impacted region. In addition, this material model 
is a cost effective option because its model does not store history variables due to its undeformed 
body restriction. 

Even though the rigid definition itself implies infinite stiffness, values of both Young’s modulus, 
and Poisson’s ratio need to be assigned to determine the bulk modulus for calculating the 
contact stiffness. In addition, the explicit time integration requires the mass density of the impactor 
in order to construct mass matrix in the CDM solution for the nodal displacements, even though 
the wave propagation is not calculated for the rigid material. 

4. COMPARISON WITH THE CLOSED-FORM SOLUTION 
The force response of a cylindrical FE model (10.6 mm diameter and 12 mm length) 

impacted by a light-weight 26.6-g hammer is first compared with the closed-form (CF) solution 
in terms of the resulting peak load and pulse width. The solid axisymmetric bar is converted to 
a one-dimensional model by assuming the Poisson’s ratio to be zero, i.e. there is no transverse 
response in the 2D solid element. The light hammer is chosen to increase the mass ratio, which 
in turn would result in only seven stress intervals in the pulse response, allowing easy 
comparison to be made. 

 
Fig. 3. Verifying force response from FE of zero Poisson’s ratio (𝜈𝜈 = 0) with the closed-

form solution [2]. The effect of a non-zero 𝜈𝜈 FE model is also shown. 



IIUM Engineering Journal, Vol. xx, No. x, 20xx Hamdani et al. 
https://doi.org/10.31436/iiumej.vxxixx.xxxx 

 
 

Fig. 3 compares the FE response (zero Poisson’s ratio) to that from the closed-form solution. It 
can be seen that there are seven force intervals in both FE and closed-form responses, which they 
are similar in the form of bell-like shape. The sharp peak-and-trough of vertical shape in every 
interval due to the instantaneous rise of force by CF solution [1,2] is not recreated by the numerical 
simulation, nonetheless it is still fairly visible. 

It is apparent that the closed-form solution returns consistent time interval, following strictly 
the governing equation of interval time [1,2], whereas this time from FE solution gradually 
increases in every sequential interval. This discrepancy is explainable by understanding the ideal 
scenario in the closed-form solution in which the supposed deformation of bar is neglected in the 
analysis. On the other hand, the FE model experiences numerical damping which is a default setting 
for all contact options in the LS-DYNA [3] causing longer time for the travelling stress wave. Table 
1 shows comparison of the two main outputs under investigation, namely peak load (𝐹𝐹max) and pulse 
width (𝑡𝑡pulse) between the two solutions. The FE method records 11.43% lower peak load, while 
its pulse width is 6.72% larger in comparison to its benchmark results by the CF solution. 

Table 1: Comparing one-dimensional FE model (𝜈𝜈 = 0) with the closed-form solution 

Output variables Peak load [kN] Pulse width [msec] 
Models FE CF % diff. FE CF % diff. 
 0.341 0.385 -11.43 0.27 0.253 6.72 

The effect of Poisson’s ratio (ν = 0.33) is shown in Fig. 3, in which higher frequency 
distortion in its overall resulting pulse pattern is observed causing slightly unclear pattern of seven 
intervals. This happens perhaps due to the effect of wave bouncing from the sides. Nonetheless, 
the following peak load and pulse width values are not significantly affected, such that only 
1.5% and 2.2% differences with the one-dimensional FE model. It can be concluded that assigning 
a reasonable value of Poisson’s ratio does not drastically alter the response, in particular the output 
variables under interest, which are 𝐹𝐹max and 𝑡𝑡pulse. 

5. EFFECT OF DIFFERENT PARAMETERS ON THE RESULTING 
ELASTIC PULSE 

The effect of varying several parameters: mass of impactor; drop height; and structural stiffness; 
towards the resulting force at end struck by using numerical simulation is considered. This elastic 
study of axial impact on trabecular bone samples is based on report by [2]; some of the parameters 
are not varied, i.e. density: 𝜌𝜌 =  1.31 × 10−6 kg/mm3; bar’s length, 𝑙𝑙 =  21 mm; and 
Poisson’s ratio, 𝜈𝜈 =  0.33. The axisymmetric model is discretised using 10 × 40 elements in 
radial and axial directions respectively, which is almost 1:1 of bar’s diameter-to-length ratio or 
even slightly less for models with smaller radius. The analysed output is the summation of eleven 
(11) nodal forces histories of the nodes at the top of axisymmetric bar model, multiplied by 2π 
to obtain the total force acting on the surface of end struck. 

5.1 Impactor’s mass and drop height 
Two values of impactor’s mass are chosen, which are 1.807 and 2.5 kg, while the two drop 

heights are 100 and 200 mm, making up four (4) FE models for this analysis. The models have 
geometry of 10.6 mm of diameter and 21 mm of length, with elastic modulus is assigned to be 
531 MPa as reported by [5] and falls within ranges reported by many studies including [6-11] 
for trabecular bone. The drop height affects only the peak load, while pulse width is 
independent of this input parameter as shown in Fig. 4; this finding by numerical method is 
consistent with theoretical parametric analysis in [2]; it was also shown in the study the peak 
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load has direct proportionality to the square-root of drop height, h. As can be seen from Fig. 4 , 
this is satisfied by the numerical solution. The pulse width is also almost identical for impactors of 
the same mass dropped from different heights. Fig. 4 also shows that a higher drop height results 
in a fractionally smaller pulse width. 

 
Fig. 4. Effect of drop height, h and impactor’s mass, 𝑚𝑚impactor on the resulting force at end 

struck. 

A larger mass of the impactor leads to larger peak loads and also pulse width, which is consistent 
to the analysis of the closed-form solution in [2]. In addition, it is observed in Fig. 4 that with 
the increase in 𝑚𝑚impactor, the force responses appear to be almost similar initially, then the load 
for higher mass increases at a substantially higher rate and as expected comprises of larger number 
of stress intervals. 

5.2 Structural stiffness 
The structural stiffness of a simple column under compressive load is a function of its material 

(Young’s modulus) and dimensions (cross-sectional area and length). The pulse exhibits stiffer 
response when the combination of higher peak load and lower pulse width is obtained [2]. 

In this parametric study, 2.5 kg impactor is dropped from 100 mm height. The parametric study 
with respect to length was examined in the closed-form solution [2], therefore only elastic 
modulus and diameter (representing area) are varied in this analysis. Similar elastic modulus of 
531 MPa is chosen, with addition of arbitrary materially-stiffer models of 1 GPa. The diameters are 
either 10.6 mm [2] or 8.6 mm, in which a smaller area is expected to exhibit a less stiff behaviour. 
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Fig. 5. Effect of structural stiffness (elastic modulus, E and radius, R representing material 

and geometry components respectively) on the resulting force at end struck. 

The resulting force responses at the end struck are shown in Fig. 5 for four varying-stiffness 
models. The stiffest response is shown by the model with highest elastic modulus and cross-
sectional area, i.e E = 1 GPa, radius, R = 5.3 mm; followed by models with lower structural 
stiffness contributors. These demonstrate the influence of elastic modulus and cross-sectional 
diameter on the peak load and the pulse width. The peak load is seen to be directly proportional 
to the elastic modulus as would be expected [2]. The peak load is also directly proportional to 
the cross-sectional area. The effect on pulse width is simply the opposite to that for the peak 
load, i.e. pulse width decreases with increase in elastic modulus and radius. 

6. IMPACT RESPONSE OF MODELS WITH TIME-DEPENDENT 
MATERIAL BEHAVIOUR 

The effect of employing a time-dependent material model, viz. viscoelasticity (VE) is analysed 
in comparison to simple time-independent linear elastic model (abbreviated as TI-E) assigned to the 
impacted axisymmetric bar. In VE material model, the relaxation modulus can be defined using 
the Prony series [12] as 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸eqm + ∑ 𝐸𝐸𝑖𝑖𝑒𝑒
− 𝑡𝑡
𝜌𝜌𝑖𝑖𝑛𝑛

𝑖𝑖=1 , (1) 

where Eeqm is the equilibrium modulus and 𝐸𝐸𝑖𝑖 and 𝜌𝜌𝑖𝑖 are the relaxation strengths  and relaxation 
times respectively. A three-term Prony series (𝑛𝑛 =  3) was shown to adequately represent the 
relaxation modulus of trabecular bone with different volume fractions, BV/TV [13]. The values 
determined in this above cited study are used to consider the influence of time-dependent material 
properties on impact response. 
6.1 Implementing viscoelasticity in LS-DYNA 

In TI-E model, single value of elastic modulus, E is taken as 𝐸𝐸(∞) or 𝐸𝐸eqm from Eq. 1; a 
long- term modulus representing the material resistance value when the load stabilises hence 
treated as in statically-applied manner in equilibrium. On the other hand, the viscoelastic 
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material model in LS-DYNA, e.g. Mat076: General Viscoelastic requires elastic bulk modulus, 
K. Similar to the equilibrium modulus in TI-E, K in VE is defined as a long-term modulus. The 
Poisson’s ratio was defined as 0.33. In order to exhibit relaxation phase in the VE model, shear 
relaxation moduli, 𝐺𝐺𝑖𝑖and decay constants, 𝛽𝛽𝑖𝑖 for each term in Prony series are required. Hence, 
the general expression of the Prony series in LS-DYNA is 

𝑔𝑔(𝑡𝑡) = ∑ 𝐺𝐺𝑖𝑖𝑒𝑒−𝛽𝛽𝑖𝑖𝑡𝑡𝑛𝑛
𝑖𝑖=1 . (2) 

Comparing these two relaxation expressions in Eqs. (1-2), the relaxation strengths and times 
parameters in Eq. (1) provided by [13] need to be converted onto shear moduli and decay 
constants in Eq. (2) respectively. Shear moduli are obtained from E and ν assuming isotropic 
behaviour while the decay constants (βi) are simply inverse of the relaxation times (ρi) in which 
𝑖𝑖 =  1, 2, 3 for three terms of Prony series. In the case of three-term Prony series, the General 
Viscoelastic material model requires four input terms, in which the extra term is 𝐺𝐺eqm with 
zero decay constant, fully expressed as 

𝑔𝑔(𝑡𝑡) = 𝐺𝐺eqm + 𝐺𝐺1𝑒𝑒−𝛽𝛽1𝑡𝑡 + 𝐺𝐺2𝑒𝑒−𝛽𝛽2𝑡𝑡 + 𝐺𝐺3𝑒𝑒−𝛽𝛽3𝑡𝑡.  (3) 

Six (6) bone volume fraction models, i.e. BV/TV=19, 26, 33, 39, 42 and 43% are selectively 
chosen from [13] on the basis of signifying direct correlation between material’s stiffness and 
the reported BV/TV. The required input parameters are given in Table 2 by using moduli 
conversions into Eq. 3. All these conversions are applicable in this study assuming the material 
as having isotropic behaviour. 

Table 2: Parameters of time-independent elastic (TI-E) and viscoelastic (VE) material 
models; Units: modulus [MPa], decay constant [ksec-1] 

BV/TV [%] 
TI-E VE adopting Prony series 
𝑬𝑬𝒆𝒆𝒆𝒆𝒆𝒆 𝑲𝑲𝒆𝒆𝒆𝒆𝒆𝒆 𝑮𝑮𝒆𝒆𝒆𝒆𝒆𝒆 i 𝑮𝑮𝒊𝒊 𝜷𝜷𝒊𝒊 

0.19 
 

250.43 
 

417.38 
 

89.44 
1 5.34 684.93 
2 3.27 42.39 
3 5.90 3.75 

0.26 
 

317.18 
 

528.63 
 

113.28 
1 7.80 1111.11 
2 5.55 119.76 
3 6.61 8.22 

0.33 
 

498.53 
 

830.88 
 

178.05 
1 12.18 1086.96 
2 6.51 125.47 
3 6.83 10.24 

0.39 
 

545.65 
 

909.42 
 

194.88 
1 15.17 1351.35 
2 10.55 129.03 
3 11.99 6.76 

0.42 
 

572.05 
 

953.42 
 

204.30 
1 16.32 3030.30 
2 10.74 184.84 
3 10.66 9.10 

0.43 
 

904.68 
 

1507.80 
 

323.10 
1 24.34 1010.10 
2 12.40 109.53 
3 19.95 7.15 
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6.2 Force response 

The bar is discretised into 4-noded axisymmetric 10 × 40 solid elements impacted by a 2.5-kg 
rigid impactor. The length, l of the bar is 21 mm and its diameter, 2r is 10.6 mm. The impactor was 
assigned with axial velocity of 0.99 m/s, which is equivalent when it is dropped from 50 mm 
height. In order to terminate the simulation, the pulse duration is estimated [1,2] as 

𝑡𝑡pulse ≈
1
𝑟𝑟
�𝑚𝑚impactor𝜋𝜋𝜋𝜋

𝐸𝐸
,  (4) 

then the termination time was set to be slightly longer than the estimated pulse width in Eq. 4. 
Two main outputs are investigated from the resulting force response at the end struck of 

axisymmetric bar, namely the peak load as the highest magnitude of compressive load experienced 
by the end struck and the pulse width, which is the contact duration of the impact incidence. Fig. 6 
shows graphical elastic and viscoelastic responses of three different BV/TVs, clearly depicts that 
viscoelastic models have stiffer response than their TI-E counterparts. 

 
Fig. 6. Effect of varying time-independent and viscoelastic properties towards peak load and 

pulse width. 

The key numerical results for all models are tabulated in Table 3 with E(t) represents Eeqm 
and E(0) for TI-E and VE respectively. The modulus function E(t) represents well the 
contribution of BV/TV to bone sample’s stiffness for both material models. In addition, the 
stiffness of VE models, which is E(0) is consistently higher than TI-E (Eeqm). 

Table 3: Elastic modulus input of time-independent elastic (TI-E) and viscoelastic (VE) 
material properties with the corresponding peak load (𝐹𝐹max) and pulse width (𝑡𝑡pulse) 

BV/TV 
Model E(t) [MPa] Peak load [kN] Pulse width [msec] 

Value [kN] % diff. Value [kN] % diff. 

19% 
TI-E 250.4 1.7037  

6.53 
4.7549  

6.14 VE 291.1 1.8150 4.4629 

26% 
TI-E 317.2 1.9036  

7.31 
4.2455  

6.75 VE 373.1 2.0428 3.9591 
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33% 
TI-E 498.5 2.3580  

5.55 
3.4111  

5.57 VE 570.0 2.4889 3.2212 

39% 
TI-E 545.7 2.4641  

7.39 
3.2646  

7.16 VE 651.2 2.6461 3.0310 

42% 
TI-E 572.1 2.5223  

7.34 
3.1919  

6.71 VE 677.7 2.7074 2.9777 

43% 
TI-E 904.7 3.1434  

6.94 
2.5544  

6.67 VE 1063.4 3.3615 2.3839 

Based on peak load values in Table 3, the corresponding maximum compressive stresses at 
end struck fall in the range of 19.3 ≤ 𝜎𝜎max ≤38.1 MPa as simulated by FE method. As 
comparison, trabecular bone was reported to have yield strength of 17.45 ± 6.15 MPa and 5 −
20 MPa by [14] and [15], who used extensometer and split Hopkinson pressure bar 
respectively. Maximum compressive stresses from Table 3 recorded higher values than these 
reported strengths, nonetheless they were proven experimentally to be realistic in drop tests 
[2]. 

6.3 Modulus-to-output variable relations 
The parametric study in [2] points to the requirement of using linear direct best fit regression 

for relating √𝐸𝐸 to the peak load i.e. 𝐹𝐹max ∝ √𝐸𝐸. On the other hand, its effect on the pulse width 
is inversely proportional or negative power law i.e. 𝑡𝑡pulse ∝ 1 √𝐸𝐸⁄ . The mathematical relations 
obtained from this numerical analysis is shown in Fig. 7. 

  
(a) 𝐹𝐹max − √𝐸𝐸 direct proportionality (b) 𝑡𝑡pulse − √𝐸𝐸 inverse 

proportionality 
Fig. 7. Output variables relations with elastic modulus for varying material properties. 

The output variable-elastic modulus relations in Fig. 7 show very close resemblance to the 
mathematical relations derived from the closed-form solution provided by [2] i.e. similar 
regression models return almost identical constants. Hence, it can be concluded that the current 
FE models well replicate the theoretical solutions, hence they are benchmarked and could be 
used for more complex axial bar impact problems. 
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7. SUMMARY 
This numerical work replicates an axial bar subjected to rigid mass impactor problem as 

described in [1,2]. Sufficiently-refined volume-weighted Galerkin axisymmetric elements 
model is used which is available in LS-DYNA as a cost-effective geometrical model, while 
linear elastic and time-dependent viscoelastic material models were evaluated. The study is 
successfully validated by theoretical solutions by [2] in which comparable results were 
obtained when analysing: 1) the effect of Poisson’s ratio; 2) parametric study on impactor’s 
mass, drop height and structural stiffness; and 3) output variable relations (peak load and pulse 
width) with square-root of elastic modulus. Hence, the FE models developed in this study are 
successfully benchmarked and can be further developed for incorporating more complex inputs 
from axial bar impact problems. 
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