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Abstract 
 

This paper makes a simple presentation of strategy games emphasizing their application to 

management in general. The language used is very straightforward and mathematical symbols are 

avoided. Mathematical reasoning is presented descriptively. The dominant perspective is critical in that 

game theory has promised so much but to a certain extent has failed to fulfil its promises, mainly in real 

world applications. However, recent developments envisage a brighter future for game theory in both 

from a practical and theoretical aspect. 
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1. Introduction 

Defined in their broadest generality, the games can abundantly be found in real life situations. 

International politics, the economy, family life, election campaigns and many other situations are cases in 

which a player seeks a strategy that results so as to obtain a certain goal in opposition to other players 

who are also trying to optimize their perspective. The final result depends on the set of strategies adopted 

by all participants. 

We may say that a game is a situation in which two or more participants, the players, confront 

each other in order to achieve certain goals which sometimes may not be achieved simultaneously. Thus, 

a game is a description of strategies that include restrictions on the actions that players can take and on 

the players’ interests in not specifying what actions the players should take. In a game each player’s 

interests are confronted, forcing each one to develop action strategies to maximize gains or minimize 

losses. 

As games are disputed between competitors where the result of the decisions of a player’s 

decision depends on the actions of other players, apart from knowledge of the dispute, it is important to 

knowing the competitor. That is, to know how competitors may choose their strategies, their action 

strategy, what their interests are, what their objectives are. It is important to have information not only 

for the player himself, but mainly regarding the information held by the competitor. 

Game theory is a discipline that seeks to understand phenomena that are observed when 

interacting decisions are taken. The basic premise of this theory is the rationality of decisions, i.e. it starts 



2 

 

from the principle that decision makers are rational and act strategically, taking into account their 

knowledge or expectations about the behaviour of other decision makers. 

Despite the fact that theoretical ideas of the game are not entirely mathematical, game theory 

uses mathematics to express its ideas formally because it is thus easier to define concepts rigorously, 

creating independence of mathematical interests, checking the consistency of ideas and exploring the 

implications of the results. Consequently, the concepts and results are accurate, interposed with 

motivations and interpretations of concepts. 

 

2. Minimax Theorem  

In 1985 the Babylonian Talmud – a compilation of ancient laws and traditions which formed the 

basis for the Jewish religion and civil and criminal law for the first five centuries BCE was recognized as 

having anticipated modern game theory. Nevertheless, it was in the 1940s that it emerged with most work 

directed at a special class of games: zero-sum games. These are games in which each player gets exactly 

what the other loses, regardless of the possible strategy.  

Von Neumann presented one of the greatest results for the constant-sum games – games where 

sum of the gain and loss of players is a constant (not necessarily zero) and can always be reduced to zero-

sum games. He showed rigorously that there is always a rational course of action in two-player games, as 

long as their interests are completely opposed. Von Neumann singularly and unequivocally answered the 

question, “how can I maximize my payoffs in zero-sum games with two players?” 

 

2.1. SUMUS versus SUNEC 

To illustrate this result consider a duopoly example based on R. A. McCain of two companies that 

sell bottled juices. To facilitate the study let us call these companies SUMUS and SUNEC. Each company 

has a fixed cost of 5,000 monetary units (m u) regardless of the number of bottles sold. Both companies 

compete for the same market and have to choose between selling each bottle for the price of 1 or 2 m u. 

The assumptions of the problem are as follows:   

• for the price of 2 u m per bottle, 5 000 bottles can be sold with a return of 10 000 m u; 

• for the price of 1 u m per bottle, 10 000 bottles can be sold with a return of 10 000 m u;  

• if both companies place the bottles on the market for the same price, sales will be equally divided; 

• if one company places the higher price, the company with the lower price sells the entire amount, 

whereas the company which places the higher price does not sell anything; 

• the payoffs are the profits after deducting fixed costs. 
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Of course, when making decisions, companies have diametrically opposed interests. What is good for 

SUMUS is bad for SUNEC and vice versa. Clearly, it follows that both companies will take decisions that 

may be classified as risk-averse, i.e., decisions that renounce some possible gains to avoid incurring 

unnecessary losses. 

To get an overview of the situation, consider the payoff matrix that defines the normal form of the 

game: 

 
SUNEC 

1 m u 2 m u 

SUMUS 

1 m u (0,0) (5 000,-5 000) 

2 m u (-5 000, 5 000) (0,0) 
 

Figure 2.1. The “SUMUS versus SUNEC” game –normal form 

 
Interpretation of the payoff matrix is as follows: the rows of the matrix represent the SUMUS’s 

options and the columns represent SUNEC’s options. Each ordered pair represents the earnings of each 

company depending on the chosen strategies. The value on the left is the gain for SUMUS, and the one 

on the right is the gain for SUNEC. Because it is a zero-sum game, SUMUS’s earnings are symmetrical with 

regards to SUNEC’s. 

Let us begin by analysing the result from SUMUS’s point of view, assuming that despite being able 

to reasonably predict the payoff matrix, neither company knows the strategy their competitor will adopt. 

Unaware of SUNEC’s plans, SUMUS may proceed as follows: 

• Determine the lowest payoff they can receive in each of their strategies – the minimum of each 

row of the payoff matrix;  

• Choose the strategy that has the highest minimum - choose the line of the payoff matrix. 

By doing so, SUMUS can ensure that, whatever its competitor’s decision, they will not get the worst 

possible outcome, avoiding the less favourable results (lower minimum lines). Likewise, the company will 

also never achieve the best possible outcome as they ignored the best results on purpose. Applying this 

procedure to Figure 2.1, SUMUS obtains: 

 

 SUNEC 

1 m u 2 m u 

SUMUS 
1 m u 0 5 000 min: 0 

maximin: 0 
2 m u -5 000 0 min: -5 000 

 

 

Figure 2.2. The “SUMUS versus SUNEC ” game – Maxmin strategy 
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Examining the game’s results from SUNEC’s point of view, adopting the same criteria, the company 

will seek to maximize the set of minimums in the columns of their payoff matrix, obtaining: 

 

 SUNEC 

1 m u 2 m u 

SUMUS 
1 m u 0 -5 000 

2 m u 5 000 0 

 min: 0 min: -5 000 

maximin: 0 
 

Figure 2.3. The “SUMUS versus SUNEC ” game – Maxmin strategy 

 
Meanwhile, given the concept of zero-sum game, the choice of the maximum of the minimums of 

the columns of the payoff matrix, SUNEC must generate the same strategy which gives the minimum of 

the maximum in the columns of SUMUS’s payoff matrix. Let us consider the following figure: 

 

 SUNEC 

1 m u 2 m u 

SUMUS 
1 m u 0 5 000 

2 m u -5 000 0 

 max: 0 max: 5 000 

minimax: 0 
 

Figure 2.4. The “SUMUS versus SUNEC ” game – Minimax strategy 

 
It follows that if SUNEC tries to determine the minimum set of maximums – minimax – from 

SUMUS’s payoff matrix, they will select the same strategy when trying to find the maximum of the 

minimums – maximin – from the respective payoff matrix. Such strategies, in which the maximum of the 

minimums of the lines is equal to the minimum of the maximums of the columns is called the equilibrium 

point or saddle point of the game, because by choosing these strategies, both companies assure 

themselves a minimum gain regardless of what the opponent does. Thus, no company will feel motivated 

to leave its equilibrium strategy unilaterally. Furthermore, no company will have cause to regret their 

decision as soon as they know their opponent’s choice, because they both know that, given the opposing 

company’s choice they would do worse if they took another decision. In other words, the equilibrium 

solution is stable in the sense that each company may announce its choice before the opponent, assured 

that the opponent cannot use such information to achieve a higher gain. 
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1.1.  ROCK-PAPER-SCISSORS  

All of the strategies considered in the previous game were completely deterministic. That is, 

strategies that establish everything a player should know. Any strategy that is completely deterministic is 

called pure strategy. An equilibrium where both players use a pure strategy is an equilibrium in pure 

strategies. However, there are situations in which the equilibrium considers that players use strategies 

that are not completely deterministic. Any strategy that is not completely deterministic said to be mixed 

strategy. An equilibrium in which at least one player operates a mixed strategy is said to be an equilibrium 

in mixed strategies. When players use mixed strategies, they act randomly. The advantage of using mixed 

strategies is to include uncertainty in the opponent; that is, when player play with mixed strategies they 

are no longer predictable. Although the goal of a mixed strategy is to keep the opponent in the dark 

through unpredictability, it does not imply at all a totally random pattern of moves. In a situation where 

players use mixed strategies, each of them may choose a strategy randomly in each round. Thus, the 

opponent cannot predict which strategy the player will adopt. Each player’s problem will then be to adjust 

these probabilities optimally. 

Mathematically a mixed strategy is a probability distribution over pure strategies. It is through this 

concept that a game which does not have equilibrium points in pure strategies can be solved, because if 

any exist they are the game’s solution. 

To illustrate this, consider the ROCK-PAPER-SCISSORS game. This two-player game, Maximum and 

Minimum, is played as follows: each player simultaneously makes a gesture representing each of the three 

objects (rock, paper, scissors). If both players choose the same object, they neither win nor lose; 

otherwise, victory is achieved according to the following rules: scissors cut paper, paper wraps stone, 

stone breaks scissors. The payoff is +1 for a win and -1 for a loss. Figure 2.5 represents the normal form 

of this classic two-player game: 
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Each player has three pure strategies, Scissors (T) or Paper (P) or Rock (D). Let us take (T,T). 

Minimum has an incentive to play Rock (D) and, thus, turn a defeat into a victory. The same occurs in each 

of the nine combinations of pure strategies, where none of the combinations of pure strategies is an 

equilibrium point. The “scissors-paper-rock” game cannot be solved using pure strategies. This game’s 

solution necessarily involves mixed strategies.  

Let us consider p1 the probability that Maximum choose scissors, p2 the probability of choosing 

paper and p3, the probability of choosing rock. Similarly, let us suppose q1 is the probability of Minimum 

choosing scissors, q2, the probability of choosing paper and q3, the probability of choosing rock. Now let 

us consider Maximum’s payoffs. Assuming Maximum uses pure strategy Scissors and Minimum uses a 

mixed strategy q=(q1,q2,q3). As Minimum uses a mixed strategy, Maximum anticipates an expected payoff 

E(T,q)=q1x0+q2x1+q3x(-1). 

When Minimum chooses Paper Maximum wins; when chooses Minimum Rock, Maximum loses, 

and when Minimum chooses Scissors neither player wins. Let us suppose now that Maximum chooses the 

pure strategy Paper. As Minimum plays a mixed strategy, Maximum anticipates an expected payoff 

E(P,q)=q1x(-1)+q2x0+q3x1. 

When Minimum chooses Scissors, Maximum loses; when Minimum chooses Rock, Maximum wins, 

and when Minimum chooses paper the players tie. Let us suppose now that Maximum chooses the pure 

strategy Rock. As Minimum uses a mixed strategy, Maximum anticipates an expected payoff 

E(D,q)=q1x1+q2x(-1)+q3x0. 

When Minimum chooses Paper, Maximum loses; when Minimum chooses Scissors, Maximum 

wins, and when Minimum chooses Rock, the players tie 

From balancing the various expected payoffs number, we get 

E(T,q)= E(P,q)= E(D,q) that is q1x0+q2x1+q3x(-1)= q1x(-1)+q2x0+q3x1= q1x1+q2x(-1)+q3x0 

 

 
Minimum 

Maximum 
Scissors Paper Rock 

Scissors ( )0,0  ( )1,1−  ( )1,1−  

Paper ( )1,1−  ( )0,0  ( )1,1−  

Rock ( )1,1−  ( )1,1−  ( )0,0  

 
Figure 2.5. The “Rock-paper-scissors” game –normal representation 



7 

 

Because mixed strategy is a probability we have q1+q2+q3=1.  Solving the system consisting of these 

equations we obtain q*
1=q*

2=q*
3=⅓, the value for the Minimum mixed strategy equilibrium. Given the 

symmetry of the game, the same strategy is an equilibrium for Maximum. In equilibrium each player 

obtains an expected value of ⅓. 

With a simple calculation it is easy to check that if one player maintains equal probabilities for their 

strategy and the other player changes his set of probabilities, the latter cannot improve his payoff average. 

We conclude that the strategy of combining equal probability is an equilibrium point for the game. In this 

situation both players can inform their opponent their chosen strategy without incurring any harm. 

 

If a game has a saddle point, the players should not deviate from the strategies that lead to this 

equilibrium as the pair of strategies such that each player maximizes their respective minimum is the 

game’s solution. When there is no saddle point, being rational players, considering the use of mixed 

strategies we can use the same criteria to ensure a set of probabilities for each player leading to the same 

average result, which will be the best payoff each player could get. 

This powerful result that von Neumann demonstrated is known as: 

 

Minimax Theorem: Any two-player zero-sum game has a mixed strategy for each player, such that 

the expected gain for both has the same value when players use these strategies. This value is the 

best gain each player can expect to get, so that such mixed strategies are the optimal strategies 

for the players. 

 

Thus, for two people in a zero-sum game it is rational for each player to choose the strategy that 

maximizes the minimum payoff, and the pair of strategies and payoffs such that each player maximizes 

the minimum. This is the respective game’s solution. 

 

Despite attempts by von Neumann and Morgenstern to “extend” this powerful result, that von 

Neumann demonstrated, to non-constant-sum games with multiple participants, it is only valid for zero-

sum games for two players. The greatest difficulty for non-constant sum games with multiple participants 

led to the fact that of the various solutions presented, none had been accepted mathematically as a 

solution for non-constant sum games. 

 

2. Nash Theorem 
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The Minimax theorem says what the “rational” solution for two-player zero-sum games is, but it is 

no solution for games where there is no saddle point. In such cases there will not be a strategy for any of 

the players that cannot be exploited by an opponent who obtains advance knowledge of what he wishes 

to do. However, since there is always the possibility of the adversary receiving information about our 

intentions, how should a rational player proceed under such circumstances? This is the central question 

supporting all of the mathematical theory of games.  

 

Let us consider another example of price competition based on W. Nutter. Two companies, VILEC 

and HIPEREL sell “parts” for the price of 1 m u, 2 m u and 3 m u for “parts”". It is assumed that:       

• the payoffs are the profits, after all fixed costs are subtracted;  

• the company practising lower prices have more customers; 

• the company practising lower will prices obtain more profits, with limits, than the company 

practising the highest price. 

The following figure represents the payoff matrix associated with this example:  

 VILEC 

1 m u 2 m u 3 m u 

 

HIPEREL 

1 m u 0; 0 50; -10 40; -20 

2 m u -10; 50 20; 20 90; 10 

3 m u -20; 40 10; 90 50; 50 
 

Figure 3.1. The “VILEC versus HIPEREL” game –normal representation 

 
From the figure we can see this game is not a zero-sum game. Profits may be 100 m u, 40 m u, 20 

m u or 0 m u, depending on the strategy chosen by each company. For this reason the maximin theorem 

does not apply. 

Analysing the payoff matrix from the point of view of the HIPEREL company, they can act as 

follows: if VILEC chooses a price of 3 m u, the best price HIPERELEC is 2 m u but at this price for HIPEREL, 

1 m u will be the best price for VILEC. 

Examining the strategy regarding the choice of price of 3 m u for each company, it appears that 

each can benefit from reducing their price as long as the competitor sticks to their strategy. 

 

Now considering the strategy corresponding to the price of 3 m um for HIPEREL and 2 m u for 

VILEC, similar reasoning to that above can be made; VILEC can benefit from reducing its price to 1 m u. 

Following this analysis all strategies are eliminated, except the pair in which both companies set the price 
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at 1 m u, i.e., the pair of strategies corresponding to the lowest price is such that neither company can 

improve its payoff through a unilateral change of its strategy.  

This example is based on a generalization of the Minimax theorem for the case of non-zero-sum 

games involving two or more players in direct competition – non-cooperative games. John Nash showed 

the theorem that generalizes the Minimax theorem: 

 

Nash Theorem: Any non-cooperative game of n players, in which each player has a finite number 

of pure strategies, has at least one set of equilibrium strategies. 

 

This theorem shows that there can be multiple equilibrium strategies adding great difficulty to 

what we consider to be rational behaviour. On the other hand, despite being non-cooperative games, the 

theorem shows that players gain more if they agree to cooperate  

 

3. Prisoner's Dilemma 

The frontier between pure and applied game theory is vague; some developments in pure theory 

were motivated by applications. Such is the case of the example that A. W. Tucker presented at a 

conference addressed to psychologists at Stanford University (1950) with the aim of illustrating the 

difficulty of analysing non-cooperative games. 

In these games it is not possible for players to plan strategies together. They are games that 

emphasize the rationality required when two individuals are in a position where a decision of one depends 

on the decision of the other. 

 

Let us consider the following example: two supposed criminals, Joe and Tony are imprisoned. The 

problem for the police is, assuming that both are involved and in the absence of evidence, the need for a 

confession. The prisoners are in individual and distant cells with no communication between them. Each 

receives an explanation of the rules of the case: 

•   If neither of them chooses to confess both will be charged with a misdemeanour that involves a 

symbolic penalty of only one month in prison.  

• If both confess to taking part in the crime, then they will both be sentenced to six months in prison. 

• Finally, if one confesses and the other does not, then whoever confesses will be released 

immediately, and the other will be sentenced to the maximum sentence under the law: nine 

months in prison (six months for the crime plus three more for obstructing justice). 
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The strategies in this case are: to confess or not to confess. The payoffs are the sentences. We can express 

this example using the following payoff matrix: 

 

The matrix reads as follows: each prisoner chooses one of two strategies. Joe chooses a line while 

Tony chooses a column. Both numbers in each cell express each prisoner’s sentence and correspond to 

the pair of strategies chosen by them.  

The number on the left corresponds to the payoff of the prisoner who chooses lines – Joe, while 

the number on the right corresponds to the payoff of the prisoner who chooses columns – Tony. Thus, 

reading the first column in descending order, if neither confesses, each is sentenced to a sentence of 1 

month, but if Joe confesses and Tony does not, Joe goes free, while Tony is sentenced to 9 months. 

Which will be the “rational” strategies so that each of the criminals minimizes the time he will 

spend in prison? Two things can happen: Joe confesses or does not confess. Now, if Joe confesses, we 

have: 

 

If Joes does not confess, we get: 

 

 

 

Tony 

Does not confess  

Does not confess   

   

 

Figure - Prisoner's dilemma –normal representation 

 

 

Joe confesses  

Tony does not confess Tony is sentenced to 9 months in prison 

Tony confesses Tony is sentenced to 6 months in prison 

 

Figure 4.2- Prisoner's dilemma – Joe confesses 
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Observing the previous two tables we find that, in both cases, it is better for Tony to confess. 

Reversing Joe and Tony’s roles, it will also be better for Joe to confess. The result of the game will be one 

in which both prisoners confess to the crime, both prisoners’ rationality makes them choose the strategy 

of confessing the crime. 

This is due to the fact that both criminals are facing dominant equilibrium strategy; regardless of 

the combinations of strategies that each of criminals does, the best choice is always “to confess” and thus 

called a dominant strategy. Since both players “play” the dominant strategy, they “fall” into the dominant 

strategy equilibrium. 

 

The Prisoners’ Dilemma game is a two player game that is based on the conflict between individual 

and collective rationality. According to individual rationality, the prisoner gets a higher payoff by 

denouncing the other. If both prisoners sacrifice themselves through silence, they get a better payoff. So, 

to ensure the best payoff, prisoners are base their decisions on common interests. In this game, players 

do not communicate with each other and play only once. Since these are changed assumptions, it is most 

likely that the outcome of the game will also change.  

 

 

4.  Conclusion 

 
Even when Tucker thought up the Prisoners' Dilemma, game theory was already a recognized 

science. We can say that those responsible for this recognition were John von Neumann and Oskar 

Morgenstern with the publication of the book "Theory of Games and Economic Behaviour" (1944). John 

Nash (Nobel prize 1994), was also a pioneer in this science by having formalized clearly the types of games 

and their possibility for equilibrium. Later Nash’s results were successively extended to more complex 

cases, with crucial steps in this process taken by Reinhard Selten and John Harsanyi (Nobel prize 1994). 

 

 

Joe does not 

confess 

Tony does not confess Tony is sentenced to 1 month in prison 

Tony confesses Tony goes free 

 

Figure 4.3- Prisoner's dilemma – Joe does not confess 
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Today game theory is well advanced, enabling vast and interesting results to be obtained in 

classifying, formalizing and solving day-to-day conflicts in all areas and in all situations involving strategic 

interaction. 

However, because the assumptions impose constraints which guide the actions of the players 

involved, and do not observe their personalities, there is still much to do. With no intention of discrediting 

the techniques and analyses studied, of course, its limitations are mentioned in order to allow the reader 

to gain a clear awareness of the limitations of the analytical methods studied, because without that “we 

may become their slaves rather than their masters”. 
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