

Imaginary Cycles of Permutations for Genus g=3 in Complex Geometries

Deep Bhattacharjee

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

June 6, 2022

Imaginary cycles of permutations for genus g = 3 in complex geometries

Deep Bhattacharjee*

May 20, 2022

Abstract

Considering a semi-state configurations taking genus g = 3 for any complex geometries generalized over (+1) and (-1) structures with the fibers $\mathcal{F}^{\times} \exists \times = \infty \forall \mathcal{F} \cong \bigoplus^k$ where $k = \coprod_{\ell = \infty} (g_1^{\mathcal{T}^{\times}}, g_2^{\mathcal{T}^{\times}}, g_3^{\mathcal{T}^{\times}})^{\ell} / \sim$ defined through classes $[\mathcal{O}_0]$. Imaginary cycles being observed in *middle genus* for both left and right chirality over the vibrations of *unidirectional-cycles* enumerating over those fibers.

Key words: Complex structures; string theory.

Mathematical subject classification: 14-XX, 57-XX, 83Exx

*Email - itsdeep@live.com

Methods

Analyzing the vibrations of a single string is difficult to account for in course of making this paper, thus a bundled strings considering as a *fiber* is depicted throughout this work. Configurations set up is of three geometric curvatures, viz. Euclidean for $\Omega = 0$, elliptic for $\Omega = +1$, hyperbolic for $\Omega = -1$. A state being considered for $\Omega = +1, -1$ topologies as is common in every hypercomplex and hyperbolic complex structures which in due proceedings in this paper – where a genus g = 3 being incorporated in Ring \bigoplus^k being configured through fibers \mathcal{F}^{\times} as,

$$\mathcal{F}^{\times} \exists \times = \infty, \forall \mathcal{F} \cong \bigoplus^{k} where \ k = \coprod_{\ell = \infty} \left(g_{1}^{\mathcal{F}^{\times}}, g_{2}^{\mathcal{F}^{\times}}, g_{3}^{\mathcal{F}^{\times}} \right)^{\ell} / \sim$$

Here ℓ is being taken over towards infinity with each *k* being closed through equivalence after the disjoint union occurring through the each states being analyzed here. Considering the topologies as σ_{C-Y} being generalized over $\Omega = +1, -1$ a circuit and a reverse circuit is established via Σ_0 passing from d_1 to d_2 and reverse as,

$$\begin{split} \Sigma_{0 \cong +1} & \stackrel{d_1}{\to} \Sigma_{0 \cong 0} \stackrel{d_2}{\to} \cong \Sigma_{0 \cong -1} \; \forall +1 \longrightarrow -1 \\ \Sigma_{0 \cong -1} & \stackrel{d_2}{\leftarrow} \Sigma_{0 \cong 0} \stackrel{d_1}{\leftarrow} \cong \Sigma_{0 \cong +1} \; \forall -1 \longrightarrow +1 \end{split}$$

The groups are set up that being eventually help in establishing the cyclic permutations through the aforesaid genus as,

$$\begin{array}{ccc} \Psi^{-1} & \overline{\Psi^{+1}\Psi^{-1}} & \Psi^{+1} \\ \\ \hline \\ \overline{\Sigma_{0\cong -1}} & \Sigma_{0\cong 0} & \Sigma_{0\cong +1} \\ \Omega = -1 & \sigma_{C-Y} & \Omega = +1 \end{array}$$

The chirality over those structures considering those vibrations could be analyzed taking the fibers passing through the g = 3 genus configurations as,

Left – Starting	Middle — Starting	Right – Starting
д	$\partial \overline{\partial} - \partial \overline{\partial}^{-1}$	$\overline{\partial}$
Permutation cycles	Defective Permutation cycles	Permutation cycles

Denoting each element as matrix over permutation cycles as,

$$\partial = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 1 & \cdots & n \end{pmatrix}_{\forall g=3 \text{ iterations}}$$
$$\overline{\partial} = \begin{pmatrix} 3 & 2 & 1 & \cdots & n \\ 2 & 1 & 3 & \cdots & n \end{pmatrix}_{\forall g=3 \text{ iterations}}$$
$$\partial \overline{\partial} = \begin{pmatrix} 2 & 1 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}_{\forall g=3 \text{ iterations}}$$
$$\partial \overline{\partial}^{-1} = \begin{pmatrix} 2 & 3 & \cdots & n \\ 3 & 2 & \cdots & n \end{pmatrix}_{\forall g=3 \text{ iterations}}$$

Thus, the imaginary cycles of permutations could be established via,

 $\partial \,\overline{\partial} - \partial \,\overline{\partial}^{-1} \equiv \begin{bmatrix} \begin{pmatrix} 2 & 1 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix} \bigcap \begin{pmatrix} 2 & 3 & \cdots & n \\ 3 & 2 & \cdots & n \end{bmatrix}_{\forall g=3 \text{ iterations}}$

Considering the 2nd genus being incapable to go over a complete cycles, the best that could be said is their permutation is indeed imaginary.

Generalizing this permutation cycles for all g = 3 on all geometries normed through the fibers taking up the Rings for complex structures incorporated through,

$$\oplus^{k} \longrightarrow \begin{pmatrix} \frac{\partial}{\partial} \\ \partial \overline{\partial} - \partial \overline{\partial}^{-1} \end{pmatrix}_{\forall g=3 \text{ iterations}} \text{ over all } \begin{bmatrix} \Psi^{-1} \\ \overline{\Psi^{+1}\Psi^{-1}} \\ \Psi^{+1} \end{bmatrix} \begin{bmatrix} \Sigma_{0\cong -1} \\ \Sigma_{0\cong 0} \\ \Sigma_{0\cong +1} \end{bmatrix}$$

References

Bhattacharjee, D. (2022). Establishing equivalence among hypercomplex structures via Kodaira embedding theorem for non-singular quintic 3-fold having positively closed (1,1)-form Kähler potential *i*2⁻¹∂∂*ρ. *ResearchSquare*. https://doi.org/10.21203/rs.3.rs-1635957/v1

Bhattacharjee, D. (2022). Rigorously Computed Enumerative Norms as
Prescribed through Quantum Cohomological Connectivity over
Gromov – Witten Invariants. *TechRxiv*.

https://doi.org/10.36227/techrxiv.19524214.v1

Bhattacharjee, D. (2022). Atiyah – Hirzebruch Spectral Sequence on Reconciled Twisted K – Theory over S – Duality on Type – II Superstrings. *Authorea*.

https://doi.org/10.22541/au.165212310.01626852/v1

- Bhattacharjee, D., Amani, D., Behera, A. K., Sadhu, R., & Das, S.
 (2022). Young Sheldon's Rough Book on Strings –
 Decomplexifying Stuffs. *Authorea*.
 https://doi.org/10.22541/au.165057530.08903120/v1
- Bhattacharjee, D. (2022c). Echoes from the Eleventh Dimensions Musings of Physics from Outer Space. *Easychair Preprint*. https://easychair.org/publications/preprint/msS2