F EasyChair Preprint
 № 8200

Imaginary Cycles of Permutations for Genus $\mathrm{g}=3$ in Complex Geometries

Deep Bhattacharjee integrated with the rest of EasyChair.

Imaginary cycles of permutations for genus $g=3$ in complex geometries

Deep Bhattacharjee *

May 20, 2022

Abstract

Considering a semi-state configurations taking genus $g=3$ for any complex geometries generalized over $(+1)$ and (-1) structures with the fibers $\mathcal{F}^{\times} \exists \times=\infty \forall \mathcal{F} \cong \oplus^{k}$ where $k=\amalg_{\ell=\infty}\left(g_{1}^{\mathcal{T}^{\times}}, g_{2}^{\mathcal{F}^{\times}}, g_{3}^{\mathcal{T}^{\times}}\right)^{\ell} / \sim$ defined through classes $\left[\mathcal{O}_{0}\right]$. Imaginary cycles being observed in middle genus for both left and right chirality over the vibrations of unidirectional-cycles enumerating over those fibers.

Key words: Complex structures; string theory.
Mathematical subject classification: 14-XX, 57-XX, 83Exx
*Email - itsdeep@live.com

Methods

Analyzing the vibrations of a single string is difficult to account for in course of making this paper, thus a bundled strings considering as a fiber is depicted throughout this work. Configurations set up is of three geometric curvatures, viz. Euclidean for $\Omega=0$, elliptic for $\Omega=+1$, hyperbolic for $\Omega=-1$. A state being considered for $\Omega=+1,-1$ topologies as is common in every hypercomplex and hyperbolic complex structures which in due proceedings in this paper - where a genus $g=3$ being incorporated in Ring \oplus^{k} being configured through fibers \mathcal{F}^{\times}as,

$$
\mathcal{F}^{\times} \exists \times=\infty, \forall \mathcal{F} \cong \oplus^{k} \text { where } k=\coprod_{\ell=\infty}\left(g_{1}^{\mathcal{F}^{\times}}, g_{2}^{\mathcal{F}^{\times}}, g_{3}^{\mathcal{F}^{\times}}\right)^{\ell} / \sim
$$

Here ℓ is being taken over towards infinity with each k being closed through equivalence after the disjoint union occurring through the each states being analyzed here. Considering the topologies as σ_{C-Y} being generalized over $\Omega=+1,-1$ a circuit and a reverse circuit is established via Σ_{0} passing from d_{1} to d_{2} and reverse as,

$$
\begin{aligned}
& \Sigma_{0 \cong+1} \xrightarrow{d_{1}} \Sigma_{0 \cong 0} \xrightarrow{d_{2}} \cong \Sigma_{0} \cong-1 \\
& \forall+1 \rightarrow-1 \\
& \Sigma_{0 \cong-1} \stackrel{d_{2}}{\leftarrow} \Sigma_{0 \cong 0} \stackrel{d_{1}}{\leftarrow} \cong \Sigma_{0 \cong+1} \forall-1 \rightarrow+1
\end{aligned}
$$

The groups are set up that being eventually help in establishing the cyclic permutations through the aforesaid genus as,

Ψ^{-1}	$\overline{\Psi^{+1} \Psi^{-1}}$	Ψ^{+1}
$\Sigma_{0 \cong-1}$	$\Sigma_{0 \cong 0}$	$\Sigma_{0 \cong+1}$
$\Omega=-1$	σ_{C-Y}	$\Omega=+1$

The chirality over those structures considering those vibrations could be analyzed taking the fibers passing through the $g=3$ genus configurations as,

$$
\begin{array}{ccc}
\text { Left - Starting } & \text { Middle }- \text { Starting } & \text { Right }- \text { Starting } \\
\partial & \partial \bar{\partial}-\partial \bar{\partial}^{-1} & \bar{\partial} \\
\text { Permutation cycles } & \text { Defective Permutation cycles } & \text { Permutation cycles }
\end{array}
$$

Denoting each element as matrix over permutation cycles as,

$$
\begin{gathered}
\partial=\left(\begin{array}{lllll}
1 & 2 & 3 & \cdots & n \\
2 & 3 & 1 & \cdots & n
\end{array}\right)_{\forall g=3 \text { iterations }} \\
\bar{\partial}=\left(\begin{array}{lllll}
3 & 2 & 1 & \cdots & n \\
2 & 1 & 3 & \cdots & n
\end{array}\right)_{\forall g=3 \text { iterations }} \\
\partial \bar{\partial}=\left(\begin{array}{llll}
2 & 1 & \cdots & n \\
1 & 2 & \cdots & n
\end{array}\right)_{\forall g=3} \text { iterations } \\
\partial \bar{\partial}^{-1}=\left(\begin{array}{llll}
2 & 3 & \cdots & n \\
3 & 2 & \cdots & n
\end{array}\right)_{\forall g=3 \text { iterations }}
\end{gathered}
$$

Thus, the imaginary cycles of permutations could be established via,

$$
\partial \bar{\partial}-\partial \bar{\partial}^{-1} \equiv\left[\left(\begin{array}{llll}
2 & 1 & \cdots & n \\
1 & 2 & \cdots & n
\end{array}\right) \bigcap\left(\begin{array}{cccc}
2 & 3 & \cdots & n \\
3 & 2 & \cdots & n
\end{array}\right)\right]_{\forall g=3 \text { iterations }}
$$

Considering the $2^{\text {nd }}$ genus being incapable to go over a complete cycles, the best that could be said is their permutation is indeed imaginary.

Generalizing this permutation cycles for all $g=3$ on all geometries normed through the fibers taking up the Rings for complex structures incorporated through,

$$
\oplus^{k} \rightarrow\binom{\frac{\partial}{\partial}}{\partial \bar{\partial}-\partial \bar{\partial}^{-1}}_{\forall g=3 \text { iterations }} \quad \text { over all }\left[\begin{array}{c|c}
\Psi^{-1} & \Sigma_{0 \cong-1} \\
\Psi^{+1} \Psi^{-1} & \Sigma_{0 \cong 0} \\
\Psi^{+1} & \Sigma_{0 \cong+1}
\end{array}\right]
$$

References

Bhattacharjee, D. (2022). Establishing equivalence among hypercomplex structures via Kodaira embedding theorem for non-singular quintic 3 -fold having positively closed (1,1)-form Kähler potential $\boldsymbol{i}^{-1} \partial \partial^{*} \rho$. ResearchSquare. https://doi.org/10.21203/rs.3.rs-1635957/v1

Bhattacharjee, D. (2022). Rigorously Computed Enumerative Norms as Prescribed through Quantum Cohomological Connectivity over Gromov - Witten Invariants. TechRxiv. https://doi.org/10.36227/techrxiv.19524214.v1

Bhattacharjee, D. (2022). Atiyah - Hirzebruch Spectral Sequence on Reconciled Twisted K - Theory over S - Duality on Type - II Superstrings. Authorea. https://doi.org/10.22541/au.165212310.01626852/v1

Bhattacharjee, D., Amani, D., Behera, A. K., Sadhu, R., \& Das, S. (2022). Young Sheldon's Rough Book on Strings Decomplexifying Stuffs. Authorea. https://doi.org/10.22541/au.165057530.08903120/v1

Bhattacharjee, D. (2022c). Echoes from the Eleventh Dimensions Musings of Physics from Outer Space. Easychair Preprint. https://easychair.org/publications/preprint/msS2

