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Abstract—Estimates of the power level of a nuclear reactor
based on measurements from an independent monitoring sensor
system can help in the compliance verification of its declared
operations. We present a three-level fusion method to estimate
the power level of a nuclear reactor using features derived from
infrared, electromagnetic, and acoustic sensor measurements
collected in proximity to the reactor. Based on a simplified
analytical model of the secondary coolant system of the reactor,
we identify partial regression functions of the power level in
terms of the temperature difference between inlet and outlet of
coolant pipes, and the activity levels of four fans and four pumps,
which are estimated as features from the sensor measurements.
The power level estimator employs a combination of aggregate
and complementary fusion steps at three levels to incorporate the
multi-modal features in a structure that reflects the secondary
cooling system and its partial regression functions. Using the
measurements from a test campaign at an operational reactor,
we show that this estimator achieves 3.47% or lower root mean
square error under 5-fold cross validation. More generally, these
results illustrate a progressive reduction in estimation error as
additional modalities are appropriately incorporated, and that
the fuser outperforms single modality features and their sub-
combinations.

Index Terms—reactor facility, power level estimate, multi-
sensor fusion, three-level fuser

I. INTRODUCTION

Estimates of the operating power level of a nuclear reactor
using measurements from an independent monitoring system
of sensors can help to infer deviations from its declared
operations. We consider a simplified version of this problem
based on measurements from multiple sensors located outside
the secondary coolant system (consisting of pumps, fans, and
cooling towers) of the High Flux Isotope Reactor (HFIR) at
Oak Ridge National Laboratory (ORNL). The heat generated
in the reactor core is exchanged between the primary and
secondary coolant systems through a heat exchanger, and it is
then carried away and dissipated to the environment via four
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cooling towers. Working in concert, the four fans and four
pumps of the secondary coolant system control the coolant
flow and heat dissipation rate to maintain a set temperature of
the returned coolant water.

A collection of infrared, electromagnetic (EM), and acoustic
sensors located outside the reactor facility monitor the sec-
ondary coolant system. Their measurements reflect the coolant
system variables including the inlet and outlet temperatures
of the coolant, and the activity levels of pumps and fans.
Infrared imagery is processed to estimate the inlet and outlet
temperatures as well as the activity levels of the fans and
pumps. Additionally, the activity levels of two of the fans are
estimated from EM current clamps, and the combined activity
levels of four fans are estimated from acoustic measurements.
We address the problem by designing a power level estimator
using features derived from measurements collected under a
test campaign at HFIR with known power levels. We propose a
three-level estimator that employs a combination of aggregate
and complementary fusion steps at its levels to incorporate
the multi-modal features using a structure that reflects the
secondary cooling system and relationships between its system
variables expressed as partial regressions.

We utilize a simplified analytical model of the secondary
coolant system that relates the reactor power level to the
coolant’s inlet and outlet temperatures and flow rate. The
activity levels of the fans and pumps reflect these variables,
which in turn are related to each other via the underlying
system physics and design. Their relationships reflect the
coolant system structure as well as the sensor measurements
and features derived from them using complex codes. In
particular, the activities of pumps and fans together reflect the
power level in the aggregate, but they are complementary to
the difference between the outlet and inlet temperatures which
also reflects the power level. The infrared, EM, and acoustic
measurements provide complementary feature estimates of the
activities of pumps and fans in different ways. We introduce
a conceptualization diagram that captures various steps from
heat generation at the reactor to feature extraction from
sensor measurements. We formulate the reactor power level
estimation as a regression problem, and present a three-level
fuser that exploits the collective and complementary properties
of features.



Fig. 1: The power level ground truth during HFIR test cam-
paign.

We use measurements from a test campaign at HFIR un-
der the Multi-Informatics for Nuclear Operations Scenarios
(MINOS) venture. Using measurements collected at known
power-levels as training data, we demonstrate that a three-
level fuser achieves a Root Mean Square (RMS) error of
3.5% under 5-fold cross validation. In addition to fusing
features from multiple sensors, the power level estimate is
based on fusing four disparate estimators, particularly by
combining smooth Gaussian Process Regression (GPR) and
Support Vector Machine (SVM) estimates with non-smooth
Ensemble of Trees (EOT) and Regression Trees (RT) estimates
using a linear fuser (L-F).

We also present power-level estimates using individual
sensor modalities and sub-combinations, and the results show
a progressive reduction in error as additional modalities are
added to the fusion. For example, among single modalities,
errors of 16.5% and 5.1% are achieved by EM fan activ-
ity estimates and infrared temperature difference estimates,
respectively, and the combination of acoustic, EM, and two
infrared estimates (temperature difference and fans activity)
achieves 4.28% error. Overall, these results illustrate that when
appropriately combined, multi-modal fusers achieve perfor-
mances superior to individual or fewer modalities.

The organization of this paper is as follows. An overview
of the HFIR research reactor facility and its secondary coolant
system is described in Sections II-A and II-B, respectively. The
multi-modal sensors and their measurements are presented in
Section II-C. A simplified model of the coolant system and its
partial regressions are described in Section III, based on a con-
ceptualization diagram illustrated in Section III-B. Power-level
estimation is described in Section IV, including three-level
fuser in Section IV-A and estimators using single modalities in
Section IV-B. Then, a sequence of fusing individual modalities
that illustrates progressive reduction in error is presented in
Section IV-C. A summary of contributions and directions for
future work are described in Section V.

II. REACTOR FACILITY AND MEASUREMENTS TESTBED

To support the development of data analytics for nuclear
nonproliferation scenarios, the Department of Energy’s (DOE)
National Nuclear Security Administration (NNSA) has estab-
lished the MINOS testbed at ORNL. The testbed is comprised
of HFIR outfitted with additional sensors to collect measure-
ments from multiple modalities, including radiation, thermal

Fig. 2: Secondary coolant system of HFIR.

imagery, seismic, infrasound, electromagnetic, and biological
sampling at various distances and locations independent of
the main reactor control and monitoring instrumentation. In
this paper, we focus on the task of estimating HFIR power
level using sensor measurements collected primarily around
the reactor’s secondary coolant system during a test campaign.

A. High Flux Isotope Reactor

HFIR is a light water research reactor operating at 85
megawatts thermal (MWth), and is used in studies of ma-
terial irradiation and neutron activation [1], [2]. The typical
operating cycle consists of continuous full power operation
for around 20 days with start up and shutdown phases each
lasting for a few hours. Such operations create unbalanced
data sets for estimating intermediate power levels between 0%
and 100%, since a majority of the data corresponds to either
0% or 100% power level. To overcome this limitation, a test
campaign is designed at HFIR to last for a few hours during
which the reactor underwent non-standard power maneuvering
to create the training data at different power levels, as shown
in Figure 1. The reactor is powered to 10%, held for about
30 minutes, then powered down, and this operation is repeated
two more times. Then, the reactor is brought to full power with
several incremental stops at intermediate power levels for short
periods. Finally, after holding at full power for an hour, the
reactor is reduced to 0% power. This process provided a more
balanced data set, and the short duration helped to reduce the
variability from sensor drifts and/or periodic variations that
may occur over the full cycle or multiple cycles.

B. Secondary Coolant System

The heat generated from fission in the HFIR core is carried
away by the primary coolant loop and subsequently transferred
to the secondary coolant system through a heat exchanger, as
shown in Figure 2. The flow rate through the primary loop
is approximately 16,000 gpm [1]. The transferred heat is then
carried away by the secondary coolant system via the outlet
pipe and dissipated by the cooling towers, and the primary
coolant is returned to the core at a lower temperature via
the cool side. The secondary coolant system consists of four
pumps that circulate the water through four cooling towers.
Each tower has an induced draft counter-flow design with a fan
which dissipates the heat to the environment. The secondary



coolant system is designed and controlled to return the coolant
in the primary loop at 120 ◦F [1].

The design of the coolant system does not evenly distribute
the thermal load across the four pumps and fans. There are
several pump configurations which operate differently accord-
ing to the reactor state: Two pumps are designated as primary
and run continuously during reactor operations; the auxiliary
pump runs as needed during operations and serves as a backup
in case one of the primary pumps needs to be serviced during
operation; and a smaller shutdown and emergency cooling
pump runs mainly when the reactor is powered down or during
emergencies as the pump can be powered by an on site diesel
generator. Additionally, two of the fans are variable speed
drives whereas the other two operate at fixed speeds.

C. Multi-Modal Measurements and Features

The sensors used in this study measure a diverse set of
signals with varying sampling rates, sensor resolution, and
data storage requirements. These measurements are processed
to estimate the features including inlet and outlet coolant
temperatures and the activity levels of pumps and fans.

1) Infrared Sensors and Features Extracted: FLIR Ax8
thermal imaging sensors are used to monitor the outer surface
temperatures of components of the heat exchange system
including pipes and pumps. It features an 80 by 60 pixel
thermal sensor taking radiometric images at a 1/3-Hz sampling
rate. This image is then further masked to isolate specific
components within the field of view. The relative temperature
difference between various portions of the captured scene is
used as an indication of equipment activity. Certain tempera-
ture differences provide quantitative state information such as
the difference between pixels corresponding to the inlet and
outlet pipes (i.e. the hot and cold legs). Other differentials are
used as a qualitative indication of activity such as operation
of certain pumps and fans.

2) Acoustic Sensors: Three Inter Mountain Labs (IML)
Mode SS infrasound sensors in a triangular formation are used.
Their analog output is processed by VReftek digitizer (RT130,
Trimble) for A/D conversion at 200 samples per second [3].
The total amplitude of the acoustic signal is used as acoustic
feature of the aggregated fan activity by integrating the Fourier
spectra over 10 seconds time window.

3) Electromagnetic Current Clamps: A series of
Schweitzer 5A2000D60 split-core current transformers
are used with Pearson 411C current monitors to monitor
the electromagnetic signals from power-lines to the facility.
The system takes measurements at 200 kHz [4]. These
measurements are processed to generate activity level
estimates of two fans of the secondary coolant system.

III. CONCEPTUALIZATION DIAGRAM AND PARTIAL
REGRESSIONS

The features extracted from multi-modal sensor measure-
ments are used as inputs to a power-level estimation function,
which is identified using a simplified model of the thermal
hydraulics of the secondary coolant system, as described in
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Fig. 3: Variations of HFIR power level with respect to tem-
perature difference (left) and aggregated pump activity (right).

Section III-A. These estimated features are related to the
reactor power level via a sequence of steps from heat transfer
to measurements to feature extraction, which are captured
using a conceptualization diagram that leads to an underlying
regression formulation, as described next in Section III-B.

A. Simplified Analytical Model

The reactor operating power-level corresponds to the heat
transfer rate dQ

dt reflected in the coolant flow rate dm
dt and in

the difference between inlet and outlet coolant temperatures,
denoted by Ti and To, respectively. Under steady state heat
transfer conditions, ignoring the effects of the complex control
system and disregarding losses through the heat exchangers,
Newton’s law of cooling relates these quantities as follows

dQ

dt
= h

(
dm

dt
, c, L, T∞

)
A (To − Ti) ≈ B

dm

dt
(To − Ti),

(1)
where h is the heat transfer coefficient function that depends
on several quantities, including the coolant flow rate dm

dt , spe-
cific heat of the fluid c, characteristic length L, temperature of
the bulk liquid T∞, and others. Also, here A is the surface area
of heat transfer, and the outlet temperature To corresponds to
the hot side of coolant, namely, that leaves the heat exchanger,
and the inlet temperature Ti corresponds to the returned fluid
after being cooled by the complex of four cooling towers
and fans. The return temperature Ti is maintained at a fixed
level by the combined flow rate controlled by pumps and heat
dissipation at cooling towers controlled by fans. The reactor
typically operates at steady state with time-varying but stable
plant variables, including dm

dt , Ti and To. The heat transfer
parameters, including c, A and L, are fixed by the design and
construction depending on system features including type and
length of piping, water pressure, and coolant properties. Thus,
the bulk of heat transfer rate is reflected in dm

dt , and hence
Newton’s law of cooling in Equation (1) can be approximated
using a constant B (that reflects the plant’s design) and the
mass flow rate times the temperature difference.

In the simplified Equation (1), power level is linear in
the mass flow rate which is reflected in the activity levels
of the pumps and fans. These activity levels in turn are
captured by the corresponding multi-modal features extracted
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Fig. 4: Features extracted from measurements variously rep-
resent activities of pumps and fans.

from infrared, acoustic, and EM measurements. Overall, the
power level is monotonically related to the coolant flow rate,
since higher water flow in the cooling towers represents
higher heat transfer. Similarly, the power level is also overall
monotonically related to To−Ti since the return temperature Ti

is maintained at a fixed level and a higher power-level results
in higher To. However, this overall monotonic relationship
shown in Figure 3 is complicated by the significant variations
in To − Ti at each power level.

The pumps operate in a more complex way: two of them
come on at a certain power level and operate continuously,
while the other two operate as needed such that Ti is main-
tained at a fixed level. Thus, a monotonic relationship does not
hold between individual pump activity levels and the power
level; for example, as indicated in Figure 4a, the activity
level of pump 3 decreases as HFIR power level is ramped
up. The fans show increased activity levels with power level
as indicated via infrared features in Figure 4b, however only
higher levels of fans C and D are indicated by EM features in
Figure 4c. In summary, all pumps and fans operate in concert
to dissipate the heat, and hence their aggregated activity level
has an overall monotonic relationship with the flow rate, which

Fig. 5: Conceptual diagram illustrating the steps involved from
heat generation to feature extraction.

is exploited in the fuser design presented in Section IV-A.

B. Conceptualization Diagram

The physics of heat transfer and design of the secondary
coolant system determine the values of its variables. Addition-
ally, the corresponding extracted multi-modal features reflect
the artifacts of sensor measurements and estimator software.
The overall effect of various steps leading to feature estimates
can be visualized using a conceptualization diagram shown in
Figure 5 for a single feature. The solid line L(t) represents
the power level that corresponds to power generated at the
reactor core. The dotted line M(t) represents the “effective”
power level as measured by a sensor at its location, such
as To or activity level of pump or fan. The measurements
and features extracted from them may not necessarily exactly
match the qualitative or quantitative aspects of the power
level. In addition, the measurement and feature estimation
processes discretize the continuous plant variable at the sensor
sampling rate. Considering in total l discrete time instants
ti, i = 1, 2, . . . , l, sensor measurements are collected at these
instants and are used to estimate a feature F (ti), which is
related to L(t) for some t ≤ ti. The power level estimation
process can be viewed as “inverting” N estimated features
FAk

k (ti), k = 1, 2, . . . , N, to generate an estimate L̂(ti),
where Ak is the sensor modality. Under simplified steady
state conditions, we consider L̂(ti) to be an estimate of L(ti),
t ≤ ti. Thus, L̂(.) can be viewed as a regression function
representing the power level with N estimated features as the
independent variables. It is computed using a data set〈

(FA1
1 (tj), F

A2
2 (tj), . . . , F

AN

N (tj));L(tj)
〉
, j = 1, 2, ..., l

obtained using measurements collected under a test campaign
with known power levels L(tj), j = 1, 2, ..., l.



Fig. 6: Three-level fuser consists of complementary, aggregate and complementary fusion steps at level 1, 2, and 3, respectively.

C. Partial Regressions
The activity levels of four fans are represented by fA,

fB , fC , and fD, and the activities of the four pumps are
represented by p1, p2, p3, and p4. The acoustic activity
levels at three sensors are represented by a1, a2, and a3.
Let us consider the weighted averages of pump and fan
activities, respectively denoted by p̄ =

∑4
i=1 w

p
i pi and f̄ =∑

a=A,B,C,D wf
afa, as two different estimates of dm

dt . Then,
using L(t)−B dm

dt (To(t) − Ti(t)) = 0 as a simplified version
of Equation (1), we have an idealized law that relates the
feature variables to power level as

2L(t) −B
(
f̄(t) + p̄(t)

)
(To(t) − Ti(t)) = 0. (2)

This is a coarse approximation that captures the relationships
between the variables and the power level can also be viewed
in terms of partial regression functions. Specifically, using
Equation (2), the following partial regression functions of the
power level can be identified in terms of:
• inlet and outlet temperatures as L = RT (To, Ti) ;
• fan activity levels as L = RF (fA, fB , fC , fD) ; and
• pump activity levels as L = RP (p1, p2, p3, p4) .

Due to the inertial constraints of coolant fluid dynamics,
the rate of change of these variables is bounded, which in
turn implies that their mutual derivatives are bounded; this
condition in turn leads to the smoothness properties of their re-
gressions resulting in a bounded Lipschitz constant. At a more
fundamental level, this boundedness property satisfies one of
the requirements for the problem of power level regression to
be learnable and hence it is solvable using machine learning
methods [5]. This bound provides a sufficiency condition for
the existence of the generalization equations [5], [6] that
quantify how well machine learning methods perform on test
data, that is beyond the training set.
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Fig. 7: Power level increases overall with aggregate fan activity
infrared (right), acoustic (middle) and EM (right), which all
show significant variations.

The features estimated from sensor measurements map
to the power level in different ways via the corresponding
partial regressions determined from the data sets. The partial
regression L = RT (To, Ti) based infrared features reflected
in the left scatter plot in Figure 3 shows an overall increasing
trend with significant variations. Such an increasing trend is
not evident from the individual pump features p1, p2, p3,
p4, as shown in Figure 4a. However, the right scatter plot
in Figure 3 indicates an overall increasing partial regression
function L = RP (p1, p2, p3, p4) based on aggregate pump
activity captured via infrared sensor. The fan features, fA, fB ,
fC , fD, estimated from infrared measurements in Figure 4b
show even more fluctuation in the start up region. How-
ever, the left scatter plot of Figure 7 indicates an increasing
partial regression function L = RF (fA, fB , fC , fD) based
on aggregate infrared fan activity. Similarly, the middle and
right scatter plots of Figure 7 indicate overall increasing



TABLE I: List of sensor modalities, variables, and feature
estimates.

Modality Variable Feature
infrared inlet and outlet temperature T I

i , T
I
o

infrared individual pump activity pI1, p
I
2, p

I
3, p

I
4

acoustic aggregated fan activity fA
X , fA

Y , fA
Z

infrared individual fan activity fI
A, fI

B , fI
C , fI

D
EM individual fan activity fE

C , fE
D

partial regression functions L = RF (fA, fB , fC , fD) based
on aggregate acoustic fan activity and EM aggregate activity
of fans C and D, respectively. In these partial regression
functions, there are overall increasing trends between the
aggregated activity levels and the power level, but there are
also significant variations, which are somewhat smoothed by
the corresponding partial regressions. The fusion steps of a
three-level estimator further reduces them, leading to a more
pronounced monotonic behavior as will be described in the
next section.

IV. POWER-LEVEL ESTIMATION

Power level estimate is generated by fusing the multi-modal
features in a three-level hierarchy that reflects both the physical
structure of the coolant system and the partial regressions
described in the previous section. The estimator is presented
using measurements from the test campaign, which are also
used to compute its 5-fold cross validation error to assess its
performance. More generally, the test campaign measurements
are used to illustrate benefits of multi-modal fusion by com-
paring with single modality estimates (Section IV-B), and a
progressive improvement with additional modalities (Section
IV-C).

A. Multi-Modal Features and Three-level Fuser

The multi-modal features of the secondary coolant system
are used in complementary, aggregate, and complementary
fusion steps at the nodes in three-level hierarchy, as shown
in Figure 6. The relationships between the power level and
various feature estimates are used in identifying the fusion
steps at the nodes as follows:
(a) Level 3 Complementary Fusion: The temperature differ-

ence and aggregated activities of fans and pumps consti-
tute complementary estimates of the power level. These
estimates from level 2 are fused in a complementary
fusion step at level 3. They originate from different
sensor modality estimates and have different scales, and
are fused using non-linear regression and linear fusion
methods described later in detail.

(b) Level 2 Aggregate Fusion: Three aggregate fusion steps
are implemented at level 2 nodes using the activity
estimates of pumps and fans based on considerations
that reflect their sensor modalities and the coolant system
composition. The activity estimates of individual pumps
and fans are extracted from the regions of interest in
the infrared images. Infrared features for all pumps are
linearly fused in the left most level 2 node since they

TABLE II: Five-fold cross-validation RMS error of the esti-
mators and their fuser.

Method EOT GPR KM RT SVM L-F
RMS error 3.70 3.12 36.41 3.81 3.14 2.95
Percent of
peak power 4.36% 3.67% 42.84% 4.48% 3.70% 3.47%

are functionally similar and have the same scale. At the
middle level 2 node, infrared features for fans A and B are
linearly fused with multi-model estimates of fans C and D
from level 1 to obtain the total fan activity estimate based
on infrared and EM modalities. Measurements from each
of X, Y and Z acoustic sensors reflect the total activity
of all fans, and hence their features are linearly fused at
right most level 2 node in an aggregation fusion step,
since they are located in a close proximity to each other
and provide measurements at the same scale.

(c) Level 1 Complementary Fusion: Estimates of individual
fan activity levels are provided by both infrared and EM
features, but the latter only for fans C and D, and hence
they are linearly fused using weights chosen to account
for their different scales. Also, differences between the
outlet and inlet temperatures are computed at this level,
which constitute a complementary feature of power level
fused at level 3.

The features estimated using infrared, EM, acoustic, and
multi-modal measurements are denoted by superscripts of I ,
E, A and M , respectively, as indicated in Table I. A generic
fusion function RM

1−3 that represents the fusion of features at
all levels, and its version RM

3 that reflects the three-level fuser
are represented using the following expressions:

L = RM
1−3

(
pI1, p

I
2, p

I
3, p

I
4, T

I
i , T

I
o ,

f I
A, f

I
B , f

I
C , f

I
D, fE

C , fE
D ,

fA
X , fA

Y , fA
Z

)
= RM

3

(
4∑

i=1

wI
i p

I
i ,
[
T I
i − T I

o

]
,

∑
a=A,B

wI
af

I
a +

 ∑
b=C,D

(wI
bf

I
b + wE

b f
E
b )

 ,

∑
c=X,Y,Z

wA
c f

A
c

 .

The fusion function RM
3 (·) represents the complementary

fusion step at level 3, and its operands are the results of linear
fusion steps at levels 1 and 2.

We obtain an estimate R̂M
3 (.) of RM

3 (.) using the training
data from test campaign measurements using five regression
estimation methods, namely, EOT, KM, GPR, SVM and RT.
As shown in Table II, except KM, both smooth SVM and
GPR and non-smooth EOT and RT methods achieve 5-fold
cross-validation RMS error under 4.5%, and GPR achieves
the lowest error of 3.67%.
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Fig. 8: Power level estimates of GPR and L-F.
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(a) GPR regression
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(b) L-F regression

Fig. 9: Partial regressions of power level estimates with respect
to temperature difference Ti − To.

In principle, it is not possible to choose a single universally
best method based on a finite number of measurements [7];
this aspect is reflected in part by the closeness of RMS errors
in spite of varied nature of the methods, namely, smooth
and non-smooth estimates. Instead, we combine the individual
estimators using linear fusers (L-F), which results in a further
lowering of error to 3.47% while retaining their diversity. The
GPR and L-F power level estimates are shown in Figure 8
and their partial regressions with respect to the temperature
difference are shown in Figure 9. The fused L-F estimate can
be seen as more accurate during the first three 10% power level
regions, but the distinction is more subtle in their regressions.

Fig. 10: Error estimates of single and fewer modalities using
SVM method.

B. Single Modality Estimators Performance

Errors of single modalities and their sub-combinations
are summarized in Figure 10 using the SVM method. The
power level estimates based on temperature-difference fea-
tures, given by L = RI:T

3

(
T I
i − T I

o

)
, achieves 5.1% error

with the SVM method, which is the lowest error among
the single modalities. As indicated in Figure 9, there is a
significant variation in temperature differences at each power
level captured by the regression estimates. The estimate
based solely on infrared features of four pumps, given by
L = RI:P
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, has 29.6% error, which the highest

among single modalities. The estimate based on EM features
of fans C and D, given by L = RE
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has 16.5% error, and that based on infrared features of four
fans, given by L = RM−F
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error. The estimate based on acoustic features, given by
L = RA

3

(∑
c=X,Y,Z wA

c f
A
c

)
, has 12.2% error which is the

third highest among single modalities. Fusion of temperature
features with EM and infrared fan features, given by
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has 4.32% error, which is superior to single modalities but
still higher than 3.70% of SVM method and 3.47% of L-F
method.

C. Progressive Fusion: Performance

To illustrate the effects of fusion of multi-modal features
and regression methods, we consider a sequence wherein we
progressively add modalities using the SVM method, as shown
in Figure 11. We first consider infrared features of temperature
and four fans with 4.4% error, which improved over 5.1%
compared to the best single modality of the former (shown in
top left plot). Then, the addition of EM features of the fans



Fig. 11: Illustration of error reduction as different modalities are fused.

C and D leads to a further reduction of error to 4.32% (top
right plot). Further addition of acoustic features of the fans
reduces the error to 4.28%, which is even further reduced
to 3.70% by the 3-level fuser (bottom left plot). Among the
individual regression estimates, GPR achieved slightly lower
error of 3.67%. Furthermore, in addition to fusing different
sensor modality feature, the fusion of four regression methods
further reduced the error to 3.47%.

V. CONCLUSIONS

This paper is an initial step towards developing analytics for
inferring the power level of a nuclear reactor based on inde-
pendent sensor measurements of its secondary coolant system.
Using measurements from a test campaign of an operational
reactor, we estimate its power level with 3.47% error by fusing
the features derived from infrared, EM, and acoustic mea-
surements. The estimate from a three-level fuser utilizes the
temperature estimates of inlet and outlet of the coolant from
infrared images, and activity level estimates of the fans from
infrared, acoustic, and EM measurements. The fuser employs
a combination of aggregate and complementary fusion steps
at three levels to incorporate the multi-modal features in a
structure that reflects the secondary cooling system and its
partial regression functions. This estimate outperforms those
based on single modality features and their sub-combinations.
More generally, these results illustrate a progressive reduction
in estimation error as additional modalities are appropriately
incorporated.

It is of future interest to incorporate additional domain
specific aspects based on detailed analyses of the primary and
secondary coolant systems as well as other reactor subsystems.
The results of this paper are based on limited measurements
of a single start-up, and it would be important to extend
them to more datasets spanning multiple seasons and varied

weather conditions. Additional sensor modalities of interest
include effluents and radiation measurements collected at
the off-gas stack, seismic signals from a variety of sensors,
and acoustic signals from orthogonal instruments. Also, the
neutrino measurements collected at longer distances from
the reactor, and other types of radiation, such as gamma
and neutrons, measured in the proximity of reactor would
be interesting to consider. It would be of interest to obtain
generalization equations of estimators and fusers [8] that
provide confidence estimates for the error bounds for future
measurements including the ones from other reactors. Further,
it would be interesting to provide explanations based on
physics and engineering aspects of the reactor that contribute
to the power level estimates.
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