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Abstract—The current uptake of electric vehicles (EVs) results
in new challenges for the electricity grid. Due to their relatively
high power and potentially synchronized demand, existing local
grid capacity might become inadequate in the near future. To
provide insight into this development, this work proposes an
approach to approximate the outage probability in low-voltage
(LV) grids due to EV charging. The introduced model can be used
as a tool to understand the impact of uncontrolled EV charging
in existing and new LV grids. A case study demonstrates this
approach with a grid of 40 households: at 35% EV penetration
rate the outage probability is approximately once every 50 days.

Index Terms—EV charging, grid congestion, grid planning,
home charging, power capacity

LIST OF SYMBOLS

pstart(t) Probability distribution of the charging session start time
N Number of EVs in the LV grid
n Expected number of EVs that charge on a given day
n̄ Number of EVs that charge simultaneously
x Charging regime number
z Charging regime power level
βx Fraction of EVs that charge according to regime x
ax Probability of charging an EV on a given day for regime x
rPz Charging power ratio for power level z
kzx Expected EVs that charge for regime x with power z
pzx(t) Probability of charging an EV for regime x with power z
snn̄ Probability that at least n̄ ∈ n charge simultaneously
Pbaseload(t) Base load power in LV grid [kW]
Plimit) Power limit in LV grid [kW]
c(t) Grid capacity in number of EVs
Pcharging Expected average charging power [kW]
poutage Outage probability for a given day

I. INTRODUCTION

In the current energy transition from fossil fuel to clean and
sustainable energy generation with e.g. solar and wind energy,
the transport and mobility sector plays a key role. Since EVs
allow the use of sustainable generated energy without (directly)
emitting carbon dioxide and other greenhouse gasses, they offer
more flexibility in energy source compared to fossil fuel based
cars. Within the European Union, the Netherlands is one of
the front-runners in EV adoption with a 25% market share
for EVs in newly sold passenger cars in 2020, only second to
Sweden with 32% [1].

This rapid increase of the EV penetration rate causes stress
on the electricity grid infrastructure: the power output of a
three-phase EV charger is comparable to the average power
load of roughly ten households. All passenger cars in the
Netherlands together drove around 110 billion kilometers on
Dutch roads in 2018 [2]. At an average EV energy consumption
of 17.5 kWh per 100 kilometers this results in around 19.3 TWh
of additional electrical energy demand. In contrast, the total
annual household electricity consumption in the Netherlands is
around 22.7 TWh in the year 2018 [3]. Currently used LV grids
which were designed years ago based on the then applicable
parameters [4] might be unprepared for the loads in the near
future. Research [5] shows that uncoordinated EV charging
may lead to overloading of grid components. The relatively
high peak power of only a few uncoordinated EV chargers
on top of the expected base load could result in overloading
existing LV grids. In a field test to investigate the impact of
future grid scenarios carried out in Lochem, the Netherlands
[6], researchers demonstrated this by introducing 20 EVs and
other appliances, (e.g. electric ovens) in an LV grid serving
80 households, which led to a short power interruption.

In the literature, EV charging data and behavior is widely
discussed. In [7], a data generator that uses parametric models
to generate synthetic samples of EV charging sessions based
on existing data sets is introduced, while in [8] a so-called trip
chain generation based on semi-randomized trips is applied.
The organization ElaadNL collects and publishes EV charging
data in the Netherlands [9]. This gives a reasonable insight in
the present-day charging behavior of EVs. The work in [10]
introduces a method that calculates the expected grid load of a
set of EVs based on group characterization of driving behavior,
but does not consider the actual probability that this set of
EVs causes an outage. However, if we consider a specific LV
grid, there is a probability that the charging behavior may be
relatively different to this general behavior. A small deviation
of the expected charging behavior may already cause an outage.
Also, a ’perfect storm’ in which a coincidence of factors that
yield a peak can occur. To analyze the impact of this, this
paper presents three main contributions:

• A model to calculate the probability that an EV charges
at a given time during a given day.



• A framework that approximates the probability that the
joint behavior of set of EVs causes an overloading in the
low-voltage part of the distribution grid based on its joint
energy demand and charging behavior.

• A case study that demonstrates the model in a typical
Dutch sub-urban residential area.

In Section II, we characterize EV charging patterns and
power demand of a set of EVs. Then, in Section III, we
describe the probability model and analyze the time-dependent
grid capacity that is available for EV charging. Finally, for each
moment we combine the charging demand and grid capacity to
calculate the probability that the EV charging demand exceeds
the available grid capacity and thus may cause an outage.
Section IV gives a case study within a neighborhood of 40
households. Lastly, Section V concludes the paper.

II. EV CHARGING DEMAND

To model the EV charging demand, we model the probability
that a single EV is in the state of charging in Section II-A. In
Section II-B we model the joint charging demand of a set of
EVs wherein not all EVs follow the same charging behavior.
Section II-C investigates the probability that a subset of these
EVs charge simultaneously.

A. EV charging probability

We consider each EV charging event in the system as an
independent event with a given probability distribution and call
this a ”charging session”. To this end, we introduce a probability
distribution for the start time of the charging sessions pstart(t)
at any time interval t based on historic data. We express the
fixed duration of charging sessions by the number of time
intervals, denoted by d. To calculate the probability that an
EV is charging in a time interval t, we use the probability that
a charging session has started and is still active. This leads to
the probability p(t) that an EV charges at time t, given that
an EV charges on a certain day with a duration d:

p(t) =

d−1∑
τ=0

pstart(t− τ). (1)

B. EV charging regimes

In the following we analyze the joint charging demand of a
set of N EVs wherein not all EVs follow the same charging
behavior. To achieve this, we model discretized charging
regimes based on the daily EV energy demand. Typically, not
every EV charges every day [11] and the charging frequency is
negatively correlated with the battery size [12]. We therefore
assume a negative correlation between the charging volume in
kWh and the charging frequency, i.e., if EVs do not charge
frequently they charge more energy when they do charge.
Furthermore, we assume that each individual EV follows one
of the given charging regimes: either the EV charges every day
a certain amount of energy, every two days twice that amount
of energy up to charging x times that amount of energy every
x days. We model the charging of each of the given EVs
according to one charging regime x only. For the EVs charging

according to regime x, we assume that the probability that
an EV charges on a given day is αx = 1

x . We furthermore
assume that the charging regimes are distributed according to
the fraction of EV users that show the behavior of that particular
charging regime. We denote this charging regime distribution
by βx. The probability of an outage depends significantly on the
charging power levels used by the EVs that charge. Therefore
we integrate power levels in the model for each power level
z ∈ Z using a charging power ratio rPz

that defines the fraction
of EVs that charge with a power level z. Note here that the
model can handle an arbitrary number of charging power levels,
but that we use the same charging power ratios throughout
the whole day. The expected number of EVs that charge on
a given day according to a given charging regime x ∈ X at
power level z ∈ Z is denoted by kzx and given by:

kzx = ⌊N × βx × αx × rPz
⌉, (2)

for all x ∈ X and for all z ∈ Z. Based on this, the expected
total number of EVs that charge on a given day is the sum of
all kzx, denoted by n. As for the following derivations n needs
to be an integer and n needs to be equal to the sum of kzx, we
already round kzx to the nearest integer in (2).

n =
∑
x∈X

∑
z∈Z

kzx. (3)

For each charging regime, the EV charging probability pzx(t)
is calculated using (1) with the corresponding values for the
given regime.

C. Simultaneously charging EVs

To estimate the expected number of simultaneously charging
EVs in a time interval t, we consider charging sessions as
independent events with a probability given by the EV charging
probability distribution for the different charging regimes pzx(t).
Based on this, the probability that exactly n̄ out of the set
of n EVs charge simultaneously in a time interval follows a
binomial distribution. We assume that the EVs are distributed
based on the expected numbers used in (2). This leads to the
following approximation:

snn̄(t) =

n∑
n̂=n̄

(
n

n̂

) ∏
x∈X

∏
z∈Z

(
pzx(t)

)(n̂ kz
x
n )(

1−pzx(t)
)((n−n̂)

kz
x
n

)
.

(4)
This applies for all x ∈ X and for all z ∈ Z, where snn̄(t)
approximates the probability that at least n̄ out of n EVs
charge. Note that every charging regime x has its own given EV
charging probability distribution pzx(t), with kzx charging EVs
following that given distribution. Since we use time dependent
probabilities pzx(t), we find the probability of simultaneously
charging at least n̄ EVs for every time interval t.

III. MODEL DESCRIPTION

A. Grid capacity

In the model, the available grid capacity for EV charging is
given by the capacity limit of the feeder cable Plimit minus



the base load power Pbaseload which is already present in the
feeder. We aim to express the available grid capacity by the
number of EVs that can simultaneously charge, so we divide
the grid capacity in kW by the expected average charging
power Pcharging. We denote the number of EVs that can charge
simultaneously by the grid capacity c:

c(t) =

⌊
Plimit(t)− Pbaseload(t)

Pcharging

⌋
. (5)

The expected average charging power Pcharging is based on
the ratio between the different power levels, defined by the
power ratio rPz

:

Pcharging = P1 · rP1
+ P2 · rP2

· · ·+ Pu · rPu
. (6)

B. Outage probability

In any time interval t, any set with at least n̄ EVs might
charge simultaneously. When n̄(t) exceeds the total capacity
c(t) in any time interval t, overloading occurs. Overloading
grid components in an LV grid for a relatively short time
does not directly lead to critical failure, as is shown in [6],
therefore it is important to choose the length of intervals t
sufficiently long. However, overloading grid components more
frequently, even for shorter time spans, increases the wear of
those components and thus increases the probability of a critical
failure. Therefore, whenever such an overloading occurs in the
model, we assume this causes a critical failure in the power
grid infrastructure and thus results in a power interruption, a
so-called outage. We are interested in the probability that such
an outage occurs. For an outage in a time period t we need to
know that there has not been such an outage in the previous
time periods. Otherwise the system would not have ’reached’
time period t. This means that in our model we assume that
an outage can happen only once a day and that an overloaded
grid is restored before the beginning of a new day. This means
we only need to determine the probability of the first outage.
This depends on the available capacity c(t) thus we can use
(4) to determine the probability that an outage happens, which
is snc(t)+1(t). The probability that an outage does not happen is(
1− snc(t)+1(t)

)
. The probability that the number of charging

EVs exceeds the available capacity c(t) (causing an outage)
in any time interval t during a full day we denote by poutage:

poutage =
∑
t∈T

(
t−1∏
t=0

(1− snc(t)+1(t))

)
snc(t)+1(t). (7)

Note that the model relies on the assumption that the
distribution of charging regimes in the set of EVs charging on a
day n is the same as in the set of EVs charging simultaneously
n̄. Also, the model does not consider special events that
might change the charging behavior, such as major sport
events. Usually, the combined capacity of the multiple LV
feeders connected to one transformer exceeds the capacity of
the transformer itself, thus an overloading of the transformer
might occur prior to overloading an individual feeder cable.
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Fig. 1: The base load pattern of the residential area and the maximum
power limit of the corresponding feeder.
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Fig. 2: Available capacity c(t) for charging EVs.

Furthermore, an overload in one single phase may have a higher
probability due to unbalance in grid loading, as is shown in
[6]. These factors all may result in an underestimation of the
expected outages in the model.

IV. CASE STUDY

To demonstrate the model, we use a case study for a
residential area with 40 households. Section IV-A presents
the set-up, Section IV-B presents the general results and in
Section IV-C discusses a parameter sweep over two variables.

A. Set-up

We assume that all home and public charging stations in the
residential area are connected to the same feeder and also follow
the same plug-in time probability distribution. Fig. 1 shows in
black Pbaseload, the base load pattern of the residential area.
This base load is simulated with DEMKit [13] for a variety of
household types. The power limit of the corresponding feeder,
Plimit = 65 kW, is shown in red in Fig. 1. This value is based
on local variables such as the LV cable specifications and
transformer capacity. We assume that the area between the
limit and the base load is available for charging EVs.

For this case study, we consider three different scenarios: 1)
all EVs charge at z = 3.7 kW, 2) all EVs charge at z = 11
kW and 3) a 50/50 ratio of both charging power levels. The
available capacity c(t) for EV charging for each of the three
scenarios is shown in Fig. 2. We choose to use five charging
regimes. The plug-in time probability distribution pstart is
a combination of private and public charging plug-in time
probability distributions with 15-minute intervals imported
from the ElaadNL open database [9] and is shown in Fig. 3.
The charging regimes are based on an average driving distance
of 38 km per day, the average driving distance of a Dutch
passenger car [2]. The EV efficiency is set at 0.175 kWh per
km. This results in an energy demand per EV per day, which
together with the charging power results in a charging session
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Fig. 3: The plug-in time probability distribution [9].

duration expressed by d. The combination of pstart and d
results in the EV charging probability pzx(t) for every charging
regime x and charging power level z. Five charging regimes
at two power levels (3.7 and 11 kW) yield effectively ten EV
charging regimes, as shown in Fig. 4. The charging regime
distribution βx is set at 0.55 for x = 1, 0.15 for x = 2 and
0.10 for x = 3, 4 and 5.

B. Result

Fig. 5 shows the results for the case study. For every possible
EV penetration rate, the outage probability and the expected
days between outages are shown for the three scenarios. This
indicates that a higher charging power increases the probability
of an outage: a shorter charging time does not make up for
the higher power level in terms of the outage risk. There is a
difference between 3.7 and 11 kW charging: with only 3.7 kW
charging, the outage probability is once every 500 days at 50%
penetration rate. However, the probability of an outage using
only 11 kW charging is already much larger at only 17.5%
EV penetration rate: once every 50 days. We also studied the
case wherein there is a 50/50 split between 3.7 and 11 kW
charging, for which we obtained the probability of an outage
every 50 days at approximately 35% EV penetration rate.

C. Parameter sweeps

For the 50/50 scenario, we perform a parameter sweep over
the mean driving distance, which was previously set at 38
km per day. Fig. 6 shows the sweep from 10 to 80 km with
steps of 10 km. A larger driving distance results in longer
charging time and thus the probability of an outage increases.
Fig. 6 at around 30% EV penetration rate shows a cut-off
point from which the probability of an outage starts to rise due
to the influence of longer charging sessions caused by larger
driving distances. This shows that the daily EV energy demand
significantly influences the results. Fig. 7 shows the results for
another parameter sweep over the LV feeder limit of 40 to 85
kW in steps of 5 kW. The results show that a relatively small
increase in feeder power limit extends the number of vehicles
that can charge on this LV feeder without creating outages.

V. CONCLUSION

This paper presented a model that approximates the prob-
ability of simultaneously charging sets of EVs based on EV
charging session information such as energy demand and plug-
in time. The probability for a single EV to charge is used
to characterize the joint behavior of a set of EVs, e.g., in a
residential area. With this information, we approximate the
probability that certain numbers of EVs charge simultaneously

at a given time, possibly exceeding the available capacity
and thus causing an outage on an LV feeder. The multiple
charging regime modeling method that is introduced combines
a plug-in time distribution, discretized energy demands and
discretized charging power levels in a single model to calculate
the probability of an outage due to EV charging in various
scenarios. The case study shows that reducing the charging
power in general significantly reduces the risk on outages at
higher EV penetration rates. The parameter sweep over the LV
feeder limit in the case study shows that a slight increase of the
LV feeder limit reduces the probability of outages significantly.

Future work involves three-phase load flow modeling to cre-
ate the opportunity to look at phase-balancing of EV chargers.
This issue together with several mentioned assumptions might
make the presented model too optimistic in terms of expected
outages at different EV penetration rates: in practice, outages
could happen earlier than is presented here.
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Fig. 4: The EV charging probability distributions pzx for the charging power levels z = 3.7 (a) and z = 11 kW (b) for the five different
charging regimes x.
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Fig. 5: Case study results for the probability of an outage (a) and expected number of days before an outage happens (b) against EV
penetration rate.
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Fig. 6: The probability of an outage (a) and expected number of days before an outage happens (b) against EV penetration rate for a parameter
sweep over the mean driving distance in km.
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Fig. 7: The probability of an outage (a) and expected number of days before an outage happens (b) against EV penetration rate for a parameter
sweep over the LV feeder limit in kW.
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