
EasyChair Preprint

№ 843

Recognition of Point Sets Objects in Indoor

Scenes

Ruizhen Gao, Xiaohui Li and Jingjun Zhang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 19, 2019

Recognition of Point Sets Objects in Indoor Scenes

Ruizhen Gao, Xiaohui Li, Jingjun Zhang

Hebei University of Engineering, Handan, 056000, China
{ruizhenemail,lxh829}@163.com

Abstract. With the wide application of 3D intelligent sensing technologies in
robotics and driverless driving field. Most researchers will transform point cloud
data to regular 3D voxel grids, collections of images, depth maps, etc. which
will inevitably lead to huge data processing problems. In this paper, we consid-
er the problem of recognizing objects in indoor senses. We first use Euclidean
distance clustering method to segment objects in indoor scenes. Then we use a
deep learning network structure to directly extract features of the point cloud data
to recognize the objects. Theoretically, this network structure shows strong per-
formance. In experiment, there is an accuracy rate of 89.7% on the test set, this
method is superior to current mainstream methods. Experiments show that the
proposed network structure can accurately identify objects in indoor scenes and
has strong robustness.

Keywords: Deep learning · 3D model recognition · Point cloud.

1 Introduction

Point cloud is a collection of points that express the spectral properties and spa-
tial distribution of an object surface under the same Euclidean spatial reference system.
Point cloud data include various information aspects such as time, position, distance, in-
tensity, azimuth, angle, etc. It is an important part of the geometric data structure. In this
paper, we use a network structure to directly process the point cloud data from objects
in indoor scenes, and extract point cloud features in order to recognize the objects.

Compared with other methods, most of the objects in point cloud scene model
in this paper have no repeated occlusion. Euclidean distance clustering segmentation
methods can be used to segment objects in complex scenes. The samples n points re-
quire as much original feature information as possible, so Monte Carlo method is used.
Using a deep learning network that directly process point cloud can greatly reduce the
amount of data calculation. Point cloud does not introduce quantization artifacts, which
can better maintain the natural invariance of data. Experiments show that the combina-
tion of clustering and deep learning networks can identify most objects in indoor scenes
with high accuracy and robustness.

The network structure improved in this paper is a systematic method, which direct-
ly uses n sample points from the point cloud data as the input to the network structure.
Normal calculations and extracted local or global features can be added to other dimen-
sions to classify and recognize the input point cloud data. In the basic setting each point
of the input is processed identically and independently, and is represented by just its
three coordinates (x, y, z).

In this paper, the indoor scene is visualized in Fig 1. Point cloud image of indoor
scene is visualized in Fig 2. Point cloud image after segmentation by Euclidean distance
clustering is visualized in Fig 3.

The key works of this paper are as follows:
•Use the Euclidean distance clustering segmentation method to divide multiple

objects in indoor scenes into clusters and perform unified data processing. The same
and independent processing of data by Monte Carlos sampling method, with zero mean
and normalization.

•Use a deep learning network architecture that directly consumes irregular point
sets to complete the recognition task.

•Provide an analysis for the accuracy of object recognition in the indoor scene us-
ing the improved network method and to evaluate the robustness of the network method.

Fig. 1. The indoor scene in this paper.

Fig. 2. Point cloud image of indoor scene.

Fig. 3. Point cloud image after segmentation by Euclidean distance clustering.

2 Related Work

3D data has multiple popular representations, leading to various approaches for
learning. There are three main methods for 3D object recognition, which are based on
3D voxel grid, collections of images and point cloud data. In addition to these methods,
there are some other methods such as spectral convolutional neural network (CNN),
feature-based deep neural network (DNN), etc.

Methods based on collections of images data, transform 3D multiple images into
a 2D convolutional network structure based on two-dimensional images, and then add
three-dimensional information to the two-dimensional network structure. [13] attempt
to render 3D point clouds or shapes as 2D images, combining multiple view informa-
tion from 3D shapes into a single and compact shape descriptor by providing a novel
CNN architecture. [20] uses a multi-view approach; more than 500,000 models of more
than 55 common categories in Shape-Net Core55 are used to train and evaluate multi-
ple algorithms. These methods are evaluated on several standard information retrieval
performance indicators.

Methods based on the 3D voxel grid data is to perform voxelization on the data, and
then use 3D convolution network for feature extraction and analysis. [18,15,10,16,13]
are some 3D convolutional neural network applied to voxel shapes. However, because
data sparsity and 3D convolution require huge computational costs, the data format of

3D voxel grid is limited by its resolution. FPNN [8] and Vote3D [17] propose different
methods for solving sparsity problems. However, their operations are still sparse and
therefore still a challenge for dealing with very large point cloud data.

Methods based on the point cloud data have two approaches: one way is trans-
forming the point cloud data to a 3D data form of the voxel grid (described above),
and another way is directly processing the point cloud data. The second approach has
been more accurate and enjoyed a more rapid development trend than other method-
s in the last three years. [12] believe that converting 3D data into voxel grid, depth
map or multi-view will lead to unnecessary huge problems of data. Therefore, they pro-
pose new network architecture PointNet[12] and PointNet++[14] that directly consumes
point cloud. [6] proposes a new deep learning architecture K-d-network that is designed
for 3D model recognition tasks and works with unstructured point clouds. [21] mainly
characterizes the permutation invariant function, which provides a series of functions
that can be run on the set. This function has applicability in a variety of locations. The
best effect is that researchers at Shandong University proposed PointCNN [7] to use the
convolution operator in convolutional networks. PointCNN uses χ transform to weight
the input features associated with points, which works very well in classification and
segmentation scene.

For spectral CNN [2,9,11], these measures are currently limited to meshes such as
organic objects. Feature-based DNN [3,4] converts 3D data into vectors by extracting
traditional shape features, then uses a fully connected network to classify shapes on
point cloud data.

3 Problem statement

The first problem: how to separate point cloud data from multiple objects. In the
indoor scene created in this paper, there are multiple objects, but they are all in the same
file. Split multiple objects into individual objects based on distance, texture, color, and
other information. The point cloud data is saved to a separate file. The point cloud data
of a single object is identified using a well-trained deep learning network.

The second problem: how to use deep learning on point sets. For the recognition of
point cloud objects in an indoor scene, the Euclidean distance is used to pre-segment the
point cloud from the scene point cloud. Sampling point cloud data after segmentation
using Monte Carlo method. The deep learning network used is to directly consume
the unordered point set as input. The point cloud is represented as a set of 3D points
{Pi|i = 1, · · ·, n}, where each pointPi is its (x, y, z) coordinate plus additional feature
channels such as color, normal. For the sake of simplicity and clarity, this paper uses
only the three coordinates (x, y, z) as input to the network.

4 Euclidean distance clustering segmentation and data
preprocessing

Euclidean distance clustering segmentation and data preprocessing are divided into
two parts. First, the working principle of Euclidean distance clustering segmentation

algorithm is introduced (Sec 4.1), The method has a better effect in an indoor scene with
less overlap. Second, the same and independent processing of data by Monte Carlos
sampling method, zero mean and normalization is introduced (Sec 4.2).

4.1 Euclidean distance clustering segmentation

The Euclidean distance clustering algorithm is essentially done by distinguishing
the distance between neighborhoods. Point cloud data can provide higher dimensional
information. More information can be obtained by extraction. In this paper, the Eu-
clidean distance between the neighborhoods is used as a criterion. The Euclidean dis-
tance in n-dimensional space is:

ρ =
√
(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2

=
√
Σ(xi − yi)2,

(1)

Since it is a three-dimensional space in this paper, the Euclidean distance is:

ρ =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 (2)

The specific implementation method is: Calculate the distance dij from each point
to the remaining points for all data points, calculate the density using the formula:
ρi =

∑
β(dij − dc), where β(x) is a sign function, β(x) = 1 when x < 0, and

β(x) = 0 when x >= 0. Find the maximum density point of ρi, whose Euclidean
distance is δi, and the data points with larger ρi and δi values as the cluster center
point. The appropriate threshold r is selected according to the data of the clustering
segmentation scene, and the most suitable threshold r is selected by setting different
threshold values, 1) find a cluster center point p1 in space, through k-dTree (a recursive
proximity search strategy) find the n points closest to it, judge the distance from the
n points to p1, put the points p2, p3... whose distance is less than the threshold r into
class A; 2) find a dot p2 in A\p1,repeat 1); 3), then A\p1p2 find a dot, repeat 1), find
p7, p8... all into A; 4), when A no longer has a new dot to join, the search is completed.
The result of the segmentation is shown in Fig 3.

4.2 Data processing

Since the number of points of the point cloud data of the divided single object
is different, the point cloud data needs to be sampled into a certain number of points
(n). The n points are zero mean and normalized. The data is converted into a uniform
format for input into the network. It is very difficult to find accurate answers for sam-
pling these points. In this paper, we use down sampling, uniform sampling, and Monte
Carlo sampling to compare the results of sampling the same object and the time re-
quired to complete the sampling. In Fig 4 can be clearly seen that uniform sampling
and Monte Carlo sampling can better maintain its external features. However, uniform
sampling takes more time and cost in the case of a larger amount of data. Considering
comprehensively, this paper uses Monte Carlo approximation to sample.

Fig. 4. Comparison of three sampling methods.

Monte Carlo thought is easy to sample and calculate similar results on point cloud
data. With the increase of sampling points, the closer the results are to the correct re-
sults, the better the sampling points can be matched with the original point distribution.
The theory, proof, and algorithm are implemented as follows:

Assuming the given an approximation of function h(x), the integral needs to be
calculated is: ∫ b

a

h(x)dx = s, (3)

for the mathematical derivation can’t directly find the solution, but avoid enumerating
all the x values on the interval (a, b), decompose h(x) into a function f(x) and a defi-
nition in (a, b) the product of the probability density function p, the entire integral can
be equivalently written as:

s =

∫ b

a

f(x)p(x)dx = Ep[f(x)], (4)

where p is a probability distribution about the random variable x, Ep is the expectation
of p. In this way, the original integral is equivalent to the mean of f(x) over the distribu-
tion of p. At this time, if we collect a large number of sample points x(1), x(2), · · ·, x(n)
a from the distribution p to approximate s, we obtain an empirical average:

ŝn =
1

n

n∑
i=1

f(x(i)), (5)

the mean is approximated by the collected samples:

s =

∫ b

a

h(x)dx = Ep[f(x)] ≈
1

n

n∑
i=1

f(x(i)) (6)

The following properties indicate the rationality of this approximation. It is also
easy to observe that ŝ this estimate is unbiased,

E[ŝn] =
1

n

n∑
i=1

E[f(x(i))] =
1

n

n∑
i=1

s = s, (7)

according to the Law of Large Numbers, if the sample x(i) is independently distributed,
its mean must converge to the expected value, that is:

lim
n→∞

ŝn = s, (8)

it is only necessary to satisfy the variance of each individual item V ar[f(x(i))] bound-
ed. In detail, we consider that the variance of ŝn when n increases, as long as V ar[f(x(i))] <
∞ is satisfied, the variance V ar[ŝn] will decrease and converge to 0:

V ar[ŝn] =
1

n2

n∑
i=1

V ar[f(x)] =
V ar[f(x)]

n
. (9)

Zero mean and normalization (which can get better experimental performance) is
a necessary step before training the neural network. Zero mean and regularization can
accelerate the convergence of weight parameters during training. Zero mean refers to
the use of data minus the mean of the data. Assuming the data sample is xi where
i = 1, 2, , n and the mean of the data samples is u, then the data zero mean is calculated
using the following formula:

x
′

i = (xi)− µ, i = 1, 2, 3, ..., n. (10)

To scale the original data, we use Min-Max scaling to convert the original data
linearization to [1, 1], as follows:

Xnorm =
X −Xmin

Xmax −Xmin
, (11)

where Xnorm is the normalized data, X is the original data, Xmax and Xmin are the
maximum and minimum values of the original data set, respectively.

5 Deep learning on point sets

Deep learning on point sets are divided into two parts. First, Sec 5.1 introduces
two main problems, solutions, proofs in the process of deep learning processing point
sets. Second, Sec 5.2 introduces the improved network structure for identifying objects.

5.1 Problems of point sets in Rn

The input point cloud data used in paper is a subset of points from the Euclidean
space. The following are two problems encountered in the processing of point cloud
data and the corresponding solutions.

•Unordered. Unlike pixel arrays in images or voxel arrays in volumetric grids,
point cloud is a set of points without specific order. In other words, when writing a set
of point cloud arrays in different orders, whether it is classification, semantic segmen-
tation, and scene segmentation, the same result must be output. In 2D images, the pixel
position of the point is relatively invariant, and there is no such problem of unordered
points. However, for point cloud data, there areN ! types of input arrangement of points,
it must be processed.

There are two ways to solve the problem of the unordered of input of point cloud
data; 1)sort input into a canonical order; 2)use a simple symmetric function to aggregate
the information for each point. Although the input point cloud data uses a regular order
like a simple solution, there is actually no stable ordering in high dimensional space.
This can be easily shown by contradiction. If there is such a sorting strategy, it defines
a bijection map between the high dimensional space and the one-dimensional real line.
It is not difficult to see that the sequence is required to be stable. The point perturbation
is equivalent to requiring the map to maintain spatial proximity when the dimension is
reduced. This is a task that cannot be realized under normal circumstances. Therefore,
sorting does not completely solve the sorting problem. This method refers to the Point-
Net classification network [12]. The solution in this paper is to approximate the general
function defined on the point set by applying a symmetric function:

f({x1, · · ·, xn}) = γ ◦ g((h(x1), · · ·, (h(xn))) (12)

where f 2R → R, h represents the feature extraction layer, g represents the symmet-
ric method using max-pooling, γ represents higher dimensional feature extraction. The
basic module used in this article is very simple: approximate h by a multi-layer per-
ceptron network, approximate f by a combination of a single variable function and a
max-pooling function. Through the collection of h, network can learn some f to capture
the different properties of the collection. That is, the final high-dimensional feature is
the corresponding maximum eigenvalue among the n points selected in each dimension.
g can be used to solve the problem of disorder of point cloud data.

Theorem 1. Suppose f is a continuous set function about Hausdorff distance dH , ∀ε >
0, ∃ a continuous function h and asymmetric function g(xi, ..., xn = γ ◦Max), such
that for any WεQ,

|f(W)− γ(max
xiεW
{h(xi)})| < ε, (13)

where x1, ..., xn is a complete list of any ordered elements in W , γ is a continuous
function. Max is a vector max operator that takes n vectors as input and returns
a new vector of the elements maximizing value of function g. Using the max-pooling
layer, after convolving operations on n points, the corresponding maximum value can
be obtained for each dimension. The problem of input disorder of point cloud data can
be solved.

Proof. let Q = {W : W ⊆ [0, 1]mand|W | = n}, f : Q → R is a continuous
set function on Q about Hausdorff distance dH , ∀ε > 0, ∃δ > 0, for any W , W

′
εQ, if

dH(W,W
′
) < δ, then |f(W)−f(W ′

)| < ε. This theorem says that f can be arbitrarily
approximated by network given enough neurons at the max-pooling layer.

•Invariance under transformations. As a geometric object, the learning representa-
tion of a point set should be invariant to some transformations. For a three-dimensional
data, when we perform operations such as rotation and translation, we should ensure
that the results are unchanged whether it is classified or segmented.

For the invariance of point cloud data after rotation or translation, a natural solution
is to align all input sets to the canonical space before feature extraction. Jaderberg et al.
[5] introduces the idea of spatial transformer to align 2D images by sampling and in-
terpolation, through a specially customized layer implemented on the GPU. This paper
uses the adjustment network proposed by Charles R. Qi et al. [12] to solve this problem,
and the effectiveness of this solution has been proved in the paper. By adjusting the net-
work prediction affine transformation matrix and applying the transformation directly to
the coordinates of the input points, the idea can be further extended to the consistency of
the feature space. However, the transformation matrix in the feature space has a higher
dimension than the spatial transformation matrix, which greatly increases the difficulty
of optimization. Therefore, it is necessary to add a regularization term to the soft-max
training loss to approximate the feature transformation matrix to the orthogonal matrix:

Lreg = ‖I −AAT ‖2F (14)

where A is the characteristic alignment matrix of the adjustment network. This orthog-
onal transformation does not lose the input information.

By adding the regularization term, the optimization solution becomes more stable.
The transformation matrix is approximated to the orthogonal matrix, which can greatly
reduce the parameters.

The schematic diagram of adjusting the network structure is shown in Fig 5.

Fig. 5. Adjust network structure diagram.

5.2 Network architecture

Because PointNet [12]s classification and segmentation network has achieved good
results, and is ability to extract features is very strong, it motivates our recognition re-
quirements for point cloud objects in indoor scenes. This article draws on the classi-
fication network of PointNet. The adjustment of the structure of this network in this

paper makes the network further enhance the feature extraction ability. The experimen-
tal results show that the improved network structure can not only improve the accuracy
of the network to identify a single point cloud model, but also improve the accuracy
of the same test data set. The improved network structure to perform point cloud data
recognition tasks for objects in door scenes, the network structure is shown in Fig 6.
By inputting the three-dimensional coordinates of the n points of the point cloud data.
The network is adjusted to avoid the invariance of rotation or translation. The feature
is extracted by the combination of two multi-layer perceptron and the adjustment net-
work. In addition, a multi-layer perceptron is further extracted from the feature. The
global feature of the output is obtained through the max-pooling layer. The output is
the score corresponding to each category of the object. Through this process, the point
cloud object recognition in the indoor scene is completed.

Fig. 6. Complete network structure diagram.

6 Experiment

Experiments are divided into two parts. First, Sec 6.1 provide detailed training
process. Second, Sec 6.2 analyze the experimental results and test the robustness of the
network.

6.1 Training process

This article uses the ModelNet40 [19] shape classification benchmark established
by Stanford University to train and test deep learning networks. This has a total of 40
categories (each with a corresponding number corresponding to it) CAD model (12311
total). The total CAD models are divided into training and test sets. We randomly select
8192 model files as the training set. We then divide these models into 4 files with, 64
group per file and 32 models per group. The remaining 2048 model files are used as test
sets. They were written in a file in the same way. During training we augment the point
cloud on-the-fly by randomly rotating the object along the up-axis and jitter the position
of each points by a Gaussian noise with zero mean and 0.02 standard deviation.

The device used to train the deep learning network is an Inter Core i7 − 5960X
processor, 16G ROM, GPU M4000, and running Ubuntu 18.04 and TensorFlow 1.7.0
[1] computers it costs 17 hours on this platform to complete the entire training process
after tens of thousands of iterations. The entire training process is recorded as shown in
Fig 7.

Fig. 7. The entire training process.

Because different results are obtained after the initial parameter setting of the same
network, the starting and ending values of some important parameters are recorded in
Table 1.

Table 1. The initial and end values of some parameters during the training process.

Initial value End value
accuracy 0 0.988

Cross entropy loss 1.9408 0.024
Learning rate 0.001 0.0000133

Decay rate 0.5 0.982

6.2 Results and analysis

After the training is completed, this paper will test the trained deep learning net-
work using the test set data. The average loss is 0.5014, the average accuracy is 0.897.
In Table 2, this paper compares this model with previous work. The model in this pa-
per has better performance in 3D input and can easily parallelized uses similar CPU.
Because it only contains full connected layers and max-pooling layers.

The task of this paper is to identify point cloud objects in indoor scenes. Table 3
below is an analysis of the accuracy of recognition objects that may appear in indoor
scenes.

Table 2. Comparisons of classification accuracy (%) on ModelNet40.

Method Input ModelNet40
FPNN [8] Volume 68.20%

3DShapeNets [19] Volume 77.30%
VoxNet [10] Volume 83.00%

Subvolume [13] Volume 86.00%
PointNet(vanilla) [12] Point Cloud 87.20%

PointNet [12] Point Cloud 89.20%
This paper Point Cloud 89.70%

Table 3. Results on the test set.

Bookshelf Lamp Chair Cup Plant Sofa
0.91 0.95 0.98 0.70 0.80 0.97

Wardrobe Guitar Keyboard Bottle Bowl Curtain
0.55 0.94 0.85 0.94 0.99 0.90
Door Laptop Person Piano Desk Bed
0.85 0.99 0.95 0.87 0.99 0.99

It can be seen from Table 3 that some objects with more obvious features have a
higher recognition rate and a lower accuracy for less obvious object features. Overall,
it is still possible to recognition objects in the indoor scenes. Some example of identifi-
cation is shown in Fig 8.

Fig. 8. Give examples of identifying the right objects and identifying the wrong objects. The
correctly identified object is the three objects on the left as shown. The object on the right as
shown is wrong recognition, the correct label should be the wardrobe, but the result of the network
is the table. The main reason is that there are similar external features. This is inevitable.

This paper test the robustness of the network by comparing the number of points
in the network to the accuracy of the network on the test set. The test results are shown
in Fig 9.

Fig. 9. Robustness Test. It can be observed that as the number of points in the input network
decreases, the accuracy of the network on the test set becomes lower and lower. As long as the
number of input points is greater than or equal to 64 points, the accuracy of the test set can be
maintained above 80%. It can be seen that the robustness of the network is still very good.

7 Conclusion

This paper proposes a new approach to recognize point sets objects in indoor
scenes by clustering and segmenting point cloud data in indoor scenes using on the
Euclidean distance clustering segmentation algorithm. It effectively solves the problem
of clustering and segmentation of multiple objects in complex scenes. Using a deep
learning network that directly processes point cloud greatly reduces the amount of da-
ta calculation. Point cloud does not introduce quantization artifacts, which can better
maintain the natural invariance of data. Experiments show that the combination of clus-
tering and deep learning networks can identify most objects in indoor scenes with high
accuracy and robustness. Since the network structure used in the paper only extracts
the global features and does not make good use of the local features, in the subsequent
work, we hope to improve the structure of the network and make good use of the local
features of the point cloud data. Further improve the accuracy of single target classifi-
cation and recognition in indoor scenes.

Acknowledgments. This research was supported by Natural Science Foundation
of Hebei Province of China (No. F2016402106, No. F2017402182) and Science and
technology research projects of Colleges and Universities in Hebei, China (No. ZD2018207).

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI.
pp. 265–283 (2016)

2. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected net-
works on graphs. arXiv preprint arXiv:1312.6203 (2013)

3. Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3d deep shape descriptor. In:
Proc. CVPR. pp. 2319–2328 (2015)

4. Guo, K., Zou, D., Chen, X.: 3d mesh labeling via deep convolutional neural networks. ACM
Transactions on Graphics (TOG) (1), 3 (2015)

5. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Ad-
vances in neural information processing systems. pp. 2017–2025 (2015)

6. Klokov, R., Lempitsky, V.: Escape from cells: Deep kd-networks for the recognition of 3d
point cloud models. In: ICCV. pp. 863–872. IEEE (2017)

7. Li, Y., Bu, R., Sun, M., Chen, B.: Pointcnn. arXiv preprint arXiv:1801.07791 (2018)
8. Li, Y., Pirk, S., Su, H., Qi, C.R., Guibas, L.J.: Fpnn: Field probing neural networks for 3d

data. In: Advances in Neural Information Processing Systems. pp. 307–315 (2016)
9. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural

networks on riemannian manifolds. In: Proceedings of the IEEE international conference on
computer vision workshops. pp. 37–45 (2015)

10. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time object
recognition. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Con-
ference on. pp. 922–928. IEEE (2015)

11. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep
learning on graphs and manifolds using mixture model cnns. In: Proc. CVPR. p. 3. No. 2
(2017)

12. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classifi-
cation and segmentation. In Proc. CVPR (2), 4 (2017)

13. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view
cnns for object classification on 3d data. In: Proc. CVPR. pp. 5648–5656 (2016)

14. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In: Advances in Natural Information Processing Systems. pp. 5099–
5108 (2017)

15. Riegler, G., Ulusoy, A.O., Geiger, A.: Octnet: Learning deep 3d representations at high res-
olutions. In: Proc. CVPR (2017)

16. Shao, T., Yang, Y., Weng, Y., Hou, Q., Zhou, K.: H-cnn: Spatial hashing based cnn for 3d
shape analysis. arXiv preprint arXiv:1803.11385 (2018)

17. Wang, D.Z., Posner, I.: Voting for voting in online point cloud object detection. In: Robotics:
Science and Systems. No. 3 (2015)

18. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-cnn: Octree-based convolutional neu-
ral networks for 3d shape analysis. ACM Transactions on Graphics (TOG) (4), 72 (2017)

19. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep
representation for volumetric shapes. In: Proc. CVPR. pp. 1912–1920 (2015)

20. Yi, L., Su, H., Guo, X., Guibas, L.J.: Syncspeccnn: Synchronized spectral cnn for 3d shape
segmentation. In: Proc. CVPR. pp. 6584–6592 (2017)

21. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep
sets. In: Advances in Neural Information Processing Systems. pp. 3391–3401 (2017)

