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Abstract 
In the optimization process of hydropower production, 

it is relevant to consider some information about the 

snowpack’s parameters. Today, several techniques and 

devices to measure density, height, and snow water 

equivalent (SWE) in a snowpack. This paper discusses 

the development of linear regression models based on 

voltage measurements collected in a field test of a new 

measuring device that uses a vertical arrangement of 

capacitive sensors, to predict density, height, and SWE 

in a snowpack. The data collected grouped into six data 

sets and analyzed using the software for multivariable 

analysis Unscrambler X. From the results, three models 

were selected, one for each parameter. The models have 

a good prediction performance within the collection of 

samples. However, the model data sets used in the 

process do not have good representativity for other 

sampling conditions. 

Keywords:     snow density, capacitive sensor, model 
development, least square method 

1 Introduction 

1.1 Background 

Hydropower is the main source of energy production in 

Norway (Ministry of Petroleum and Energy, 2019). Its 

production can be adjusted through the management of 

storage water in reservoirs (Ministry of Petroleum and 

Energy, 2019). Therefore, having an accurate inflow 

forecast for the reservoirs optimize the energy´s 

production. The inflow can vary drastically year to year, 

but it can be predicted through models that take in count 

the precipitations of the area. In Norway, approximately 

30% of the annual precipitations falls as snow 

(Norwegian Water Resources and Energy Directorate, 

2014). The snow precipitations behave as unpredictable 

buffers of water. Depending on their melting process, 

they represent less or more water inflow to the 

reservoirs. 

 
1 There were low precipitations of snow in Porsgrunn area. Its lowest 

temperatures were around -7ºC (Yr, 2020). 

The inflow contribution of the snow buffers can be 

predicted through models. These models are in constant 

revision, and one of their sources of improvement is the 

measurement of snowpack’s parameters (Norwegian 

Water Resources and Energy Directorate, 2014). There 

are several measuring techniques and devices, some of 

them reviewed in (Kinar & Pomeroy, 2015). The master 

project reported in (Bjerke, Murillo Abril, Jaganjac, & 

Pouladi, 2019) proposes to design a new measuring 

device based on a vertical arrangement of fixed 

geometry capacitance plates. This concept, later 

implemented on a prototype described in the master 

thesis (Murillo Abril, 2020), required a model to traduce 

the sensors’ measurements into the parameters of 

interest. These parameters are the snow density by 

layers, the total height of the snowpack, and its snow 

water equivalent (SWE).  

This project aims to develop and evaluate three 

different linear regression models, analyze them, and 

choose the most suitable to calculate each parameter 

based on the measurements of the prototype.  

1.2 Scope and methods 

The focus of this paper is the models to calculate the 

snow density, the height, and the snow water equivalent 

(SWE) of a snowpack based on the measurements´ 

values of the prototype, described in (Murillo Abril, 

2020). Due to the warm weather on the zone1 and 

mobility restrictions2, only one data set of samples was 

collected at the field test. From there, the samples were 

treated to derivate six data sets for the models´ 

development. 

The multivariate analysis software Unscrambler X 

10.3 is used to analyze the data sets. The program has 

different linear regressions techniques and generates 

some plots which give a better understanding of the 

performance of the models. Therefore, the models’ 

selection comes from the analysis of the program’s 

calibration and validation results. The chosen models 

are simple mathematical relations that can be 

2 The Norwegian government imposed high fines to people staying 

outside their municipality (Forbes, 2020), due to the public health 

emergency of international concern of Covid-19, declared on the 30th of 

January, 2020 (WHO, 2020). 



implemented in software, whether in the prototype´s 

controller or an external system. 

1.3 Outline of the paper 

Section 2 describes the relevant parts of the device used 

in the data collection process. Section 3 describes the 

data collection and their posterior treatment. Section 4 

shows the data sets’ analysis results, calibration, and 

validation of the models. The results are discussed in 

section 5, and some conclusions are drawn in Section 6. 

2 The device 

This section lists the device's features used for data 

collection during the development of the regression 

models. 

2.1 Concept of measurement 

The usage of a vertical arrangement of capacitors as a 

concept of measurement, discussed in (Bjerke, Murillo 

Abril, Jaganjac, & Pouladi, 2019), is based on the 

relation of the dielectric constant of the snow with its 

density and the fact that the snow does not accumulate 

with a uniform thickness (Swiss Federal Institute for 

Forest, Snow and Landscape Research WSL, n.d.). 

Figure 2.1 shows how the snow has different layers in a 

snowpack. It is possible to appreciate that the snow 

looks more compact in the lower layers than at the top. 

However, there are also intermediate layers more 

compacted than others on the bottom. 

 

Figure 2.1: Example of different layers on a snowpack. 

Figure 2.2 shows the sensing system implementing the 

concept of measuring mentioned earlier. The prototype 

uses a vertical arrangement of five capacitors installed 

in fixed distances. The sensor’s positions, decided in 

cooperation with the customer, intent to cover a range of 

1.20 meters of snow height with five sensors having a 

higher accuracy at the lowest layers. The prototype 

makes it possible to measure the density of up to five 

layers when the sensors are covered with snow. Because 

of the snow and air have different dielectric values 

(Evans, 1965), the prototype's sensors' values in contact 

with air are different from those covered in the snow. 

Consequently, the prototype is capable of sensing up to 
which height the sensors are covered. The SWE is a 

parameter related to the snow density and height 

(Brodzik, 2004). Consequently, it is assumed that as the 

system can recognize the density and height parameters, 

it can also collect different samples’ values in 

association with the SWE of the snowpack. 

 

Figure 2.2: Sensing system of five capacitors. 

2.2 The capacitive sensor 

The sensor installed in the prototype is the Capacitive 

Soil Moisture Sensor v1.2. This sensor is typically used 

in garden applications to sense the humidity in the 

ground. The sensor has integrated a conducive and 

ground plates in a conditioning circuit. Figure 2.3 

shows a picture of the installed sensor. The plates are 

covered by a corrosion-resistant material (How to 

Electronics, 2019), and act as capacitors of fixed 

geometry, varying their capacitance when surrounded 

by different mediums. The conditioning circuit uses a 

fixed frequency oscillator that feeds the plates with a 

square signal, and depending on its capacitance, the 

output signal’s voltage varies (How to Electronics, 

2019). For this prototype, the sensors are powered with 

5 Volts DC, and their outputs are connected to the 

analog inputs of the Arduino Nano V3.0.  

 

Figure 2.3: Capacitive sensor installed in the prototype 

(SwitchDoc, 2020). 

The Arduino Nano is a small and complete board based 

on a microcontroller (Arduino, 2008). The 

microcontroller has eight analog inputs with an analog-

digital converter (ADC) of 10 bits resolution (Cirscuits 

Today, 2020). The prototype uses the first five analog 

inputs to read the sensor’s signals from 0 to 5 volts with 

a change of 4.88mV. 

2.3 Construction and behavior 

The prototype , shown in Figure 2.4, uses drainpipes 

tubes and couplings to have a modular hollow structure. 

This structure allowed to place the sensors distanced, as 



shown in Figure 2.2. Inside the structure are the 

electronic circuits of the system, and the used material 

prevents the leaks of water when the device is covered 

by snow. On top of the sensors’ column is the Arduino 

board placed.  

 

Figure 2.4: Prototype with five sensors at different heights 

and controller board on the top. (Murillo Abril, 2020). 

Figure 2.5 shows the flow of information on the system. 

The sensor senses the environment and conditions the 

output analog signals, as explained in the previous 

section. The microcontroller receives the signals 

through the ADC, processes and sends them through the 

serial port, incorporated on the board. To control the 

information flow in the prototype, the microcontroller’s 

software has implemented an algorithm shown on the 

state diagram in Figure 2.6. The algorithm is designed 

to continuously read the system's sensors' values from 

the bottom to the top. 

 

Figure 2.5: Diagram of the information flow through the 

prototype. 

When the data collection process starts, the first state of 

the algorithm initializes a counter that identifies the 

sensor. It always begins from the lowest sensor first. In 

the next state, it reads the value of the sensor. Here a 

string variable is updated with the timestamp of the 

capture, the sensorID (sen+sensor number), and the 

captured value. The next state prints this variable in the 

serial port to be read in a serial monitor through a local 

connection. 

 

Figure 2.6: State diagram for the measuring process. 

3 Modelling data sets 

This section explains the collection and posterior 

treatment of the modeling data. 

3.1 Data collection  

The data collection took place in Viddaseter, one of the 

ski areas in Greenland (Visit Telemark, 2020). The 

location is about 500 hundred meters over the sea level. 

The field trip to collect the data was on the 26 of March 

2020. The temperature of the day was 5.5ºC. The first 

step was to obtain a manual sample of snow density and 

height. The sample was taken using a cylindrical gauge 

and a marked metal stick, respectively. Around the 

manual sampling place, the terrain was prepared to dig 

a rectangle hole to have enough space for the 

prototype’s installation, see Figure 3.1. The values of 

the density and height manually measured were 389.864 

Kg/m3 and 0.60 meters, respectively. 

 

Figure 3.1: Preparation of the area to take the manual 

sample and later installation of the prototype. 

In order to have more samples to train the model, the 

prototype was placed in two different places of the same 

pit. Figure 3.2 (right) shows the device placed on the 

first measuring place. Here the device was introduced 

on the snow. The first two sensors were fully covered on 

the snow, the third sensor was close to the top of the 

snow and the two remaining sensors were just 

surrounded by air. The second measuring place was in 

the opposite part of the pit. Figure 3.2 (left) shows the 

device placed on the second point. Here the device was 

covered fully with snow up to the third sensor. The two 

remaining sensors on the top were surrounded by air. 



  

Figure 3.2: First measuring place (right), second 

measuring place (left). 

To record the sensor’s measurements’ values, the 

system’s controller had a local serial connection with an 

external computer, see Figure 3.3. The laptop had 

running the open software Tera Term, which is a serial 

terminal emulator. The emulator records the readings of 

the computer’s serial port in a buffer. The measuring 

process started once the prototype was placed and stable 

in the measuring position. The process was run seven 

times. The first three tests were in the first measuring 

place. The tests 4, 5 and 7 in the second measuring place 

and test 6 all the sensors surrounded only by air. The 

mediums around the sensors during the tests are listed 

on Table 3.1. After each run the information on the 

buffer of Tera Term was saved into to a comma-

separated values file. 

 

Figure 3.3: Data collection using an external computer in 

serial communication with the prototype. 

Table 3.1: Conditions of the tests. 

        Sensor 

Test   
Sen1 Sen2 Sen3 Sen4 Sen5 

1 snow snow air air air 

2 snow snow air air air 

3 snow snow air air air 

4 snow snow snow air air 

5 snow snow snow air air 

6 air air air air air 

7 snow air air air air 

3.2 Data treatment 

In a linear regression model, it is necessary to have a set 

of matched samples for the independent and dependent 

variables of the problem (Esbensen, 2010). The samples 

are used to calculate regression coefficients, which 

complete the general equation regression (Esbensen, 

2010), presented in equation (1). In univariate 

regressions, the samples are divided into two matrices 

of one column, one containing all the values of the 

independent variable (x) and the second one with all the 

dependent variable's values (y). 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 (1) 

In one case of the multivariate regressions, there is only 

one dependent variable, but there is more than one 

independent variable. In this case, the values of the 

independent variable are arranged on a matrix (X) where 

each column corresponds to the values of each variable 

while the matrix of the dependent variable still is of one 

column. The values recorded during the field test of the 

prototype constitute raw measurements of the sensor’s 

voltage. These are the independent variables of the 

regression, which has been arranged differently. The 

next three parts detail the arranging process. 

3.2.1 Pretreatment 

The samples from tests 1, 2, and 4 were not used for 

further analysis. They were measured using an old 

version of the controller’s program, that did not work 

correctly. Before the regression matrices were 

constructed, the averages of the samples for each test 

were plotted, see Figure 3.4. The standard error 

(Francis, 2018) of the samples used to construct Figure 

3.4 is 0.001 volts. It is possible to identify that the Test 

3 values did not match the conditions of measurement 

stated in the third row of Table 3.1. In this test, the 

average for the sensors Sen1 and Sen2 were expected to 

be close to the ones in Test 5, where these sensors are 

also covered with snow. However, their values are 

closer to the averages in Test 6, where these sensors are 

exposed to air. Consequently, the only values used to 

develop the models were the ones from test 5 to 7. 

 

Figure 3.4: Average of the values by test run 3, 5, 6 and 7. 

3.2.2 Snow density 

According to the measuring concept, each sensor 

measures the density related to the material, which is in 



their surroundings. Therefore, the model to predict the 

snow density (dependent variable) requires the voltage 

value (independent variable) of the sensor in contact 

with the snow, as shown in equation (2). The X matrix 

consists of the record voltages of the sensors, from the 

tests mentioned before, stack on a column. There was 

only one manual sample for the density of the snow. 

Consequently, the Y matrix was completed with two o 

different values. When the sensor was covered by snow, 

the inserted value was the manual sample (389.864 

Kg/m3). When the sensor was only surrounded by air, 

the inserted value was 1.191 Kg/m3, which corresponds 

to the air’s density at a pressure of 95276.7 Pa and a 

temperature of 5.5 ºC (OMNI, 2020). 

𝜌𝑠𝑛𝑜𝑤 = 𝑏0 − 𝑏1𝑉𝑠𝑒𝑛  (2) 

These two columns of values form the Raw Data Set 

(SD). Applying a moving average filter to the 

measurements of the Raw Data Set (SD), two additional 

data set were created. The construction of the FilterX4 

Data Set (SD) is shown in Figure 3.5. There the filter 

uses four values from the raw measurements. The same 

notion was used to create the FilterX8 Data Set (SD), 

but the filter used eight raw measurements. To the 

validation of the models, the technique used was the 

cross-validation. The constructed datasets are then 

divided into two parts. The first part used to calibrate the 

models and the second to validate them. 

 

Figure 3.5: Construction of the FilterX4 Data Set (SD) 

from the Raw Data Set (SD) for calibration and validation 

of the Snow density model. 

3.2.3 Total height and SWE 

For the height and SWE parameters, the measurement 

concept is related to the number of sensors covered with 

snow during the sampling. Therefore, the construction 

of the matrix X for both cases was the same. This time, 

the sensors' values were independent variables, which 

their combination of values varies depending on the 

height and SWE of the surrounding. For the Y matrix, 

the inserted values vary depending on the parameter of 

interest. For the total height, the inserted values were 

corresponding to the measured height in the field. For 

the SWE, the inserted value depended on the number of 

layers’ height cover by snow. The inserted value was 

calculated using the equation (3) (Murillo Abril, 2020). 

There, the terms of ‘z’ represent the height of the 

covered layers in meters. Consequently, the SWE values 

for tests 5, 6, and 7 were completed with 233.92; 0.00; 

and 38.99 meters. 

𝑆𝑊𝐸 = (𝑧1 + 𝑧2 + ⋯ + 𝑧𝑛)
389.864 

100
 (3) 

Figure 3.6 partially shows the X and Y matrices used to 

form the height and SWE data sets. As in the previous 

part, the tests’ measurements were stack to build a Raw 

Data Set (H) and (SWE) for the height and SWE, 

respectively. Using the same filter technique, as for the 

density, over the values of each Raw Data Set created 

additional data set to analyze. For the height, the data 

sets used were Raw Data Set (H), FilterX4 Data Set (H), 

and FilterX8 Data Set(H). While for the SWE, the data 

sets analyzed were Raw Data Set (SWE), FilterX4 Data 

Set (SWE) and FilterX8 Data Set (SWE). As in the 

previous section, the data sets are divided into two parts 

to the calibration and validation of the models. 

 

Figure 3.6: Partial X and Y matrices of raw data for height 

and SWE data sets. 

4 Results 

This section reports the results obtained from the 

calibration and validation processes of the models 

generated with the Unscrambler X 10.3. 

4.1 Snow density 

The snow density regression model corresponds to the 

analysis of univariate samples; therefore, it is only valid 

to calculate the snow's density by layers. In Unscrambler 

X, the multivariate linear regression (MLR) was 

performed over the data sets but keeping the X matrix 

with only one column. This software then used the Least 

Square Regression (LS-R) method to minimize the total 

sum square of errors (SST) related to the data set. The 

SST value is calculated adding the square errors 

between the samples and a regression model as the 

average of the samples (Flotz, 2013). After finding the 

parameters of the calibrated models, the square sum of 

errors of the samples against the new regression models 

are calculated (SSE). The first two rows of Table 3.1 

have the SST and SSE from the Unscrambler X analysis. 

Table 3.1 last row is the error reduction in percentage, 
and it was calculated from the ratio of the SSE and SST 

for each data set. 



Table 4.1: SST, SSE and Error reduction (%) for the Raw 

Data Set (SD), FilterX4 Data Set (SD) and FilterX8 Data 

Set (SD). 

         Data Set 

Error 
Raw (SD) 

FilterX4 

(SD) 

FilterX8 

(SD) 

SST 16783250 14037500 10353740 

SSE 5083899 3462451 2489117 

Error reduction 30% 25% 24% 

In all the cases, the SSE is reduced, so to the select one 

over the other two models, it was calculated the ration 

of reduction. In the same order as in Table 3.1, the errors 

were reduced to 30%, 25%, and 24% of the original 

values. The model chosen was from the FilterX8 data 

set for reducing the most from the original error. The 

calibrated model is presented on the equation (4). There 

the 𝜌𝑠𝑛𝑜𝑤 is the density in Kg/m3 of the material in the 

surrounding of the sensor and 𝑉𝑠𝑒𝑛 corresponds to the 

voltage measure by the sensor in Volts. 

𝜌𝑠𝑛𝑜𝑤 = 12565.58 − 4437.733𝑉𝑠𝑒𝑛 (4) 

The model’s performance to fairly predicts the density 

with new measurements was evaluated using the 

Predicted vs. Reference plot. The plot corresponding to 

the selected model is in Figure 4.1. The blue data 

corresponds to the evaluation using the calibration data 

set while the red corresponds to the evaluation using the 

reserved data set for the validation. The statistics, shown 

in the upper left corner of the plot, indicates that using 

the data that does not intervene in the model’s 

calibration has the closest slope to the perfect prediction 

(1). The RMSE is high for both cases, but with the 

validation set is around 6 points lower. 

 

Figure 4.1: Predicted vs. Reference plot for the calibration 

and validation of the model from the FilterX8 Data Set 

(SD). 

4.2 Total height 

The samples for the height model are multivariate data 

sets. The Partial Least Square Regression (PLS-R) was 

run the Unscrambler X 10.3. The software decomposes 

the X matrix generating several models using the 

decomposed factors for each data set and automatically 

choose the one that has explained the variance of the 

data set with the lowest numbers of factors. In this case, 

in the analysis of each data set, the software determined 

two-factor models. Manually the plots of Root Mean 

Square Error (RMSE) explained against the factors used 

in the results were examined to corroborate the software 

determination. To select one of the models, it was 

analyzed the Predicted vs. Reference plots for each data 

set. These plots are in Figure 4.2, Figure 4.3, and 

Figure 4.4, respectively. From those, the model from 

the FilterX8 data set has the lowest RMSE. 

Consequently, it is the chosen model, and its equation is 

(5). From this expression the ℎ represents the height of 

the snowpack in meters and the 𝑉 terms are the voltage 

values of the sensors in Volts. 

ℎ = 2295.096 − 621.189𝑉𝑠𝑒𝑛1 − 326.097𝑉𝑠𝑒𝑛2

− 244.805𝑉𝑠𝑒𝑛3 + 311.173𝑉𝑠𝑒𝑛4

+ 62.12442𝑉𝑠𝑒𝑛5 
(5) 

As in the previous part, the Predicted vs. Reference plot 

also evaluates the models' performance to predict the 

height from new voltages’ values. The chosen model has 

a slope of 0.97, only three hundredths apart from the 

unit. 

 

Figure 4.2: Predicted vs. Reference plot for the calibration 

and validation of the model from the Raw Data Set (H). 

 

Figure 4.3: Predicted vs. Reference plot for the calibration 

and validation of the model from the FilterX4 Data Set (H). 

 

Figure 4.4: Predicted vs. Reference plot for the calibration 

and validation of the model from the FilterX8 Data Set (H). 



4.3 Snow water equivalent 

For the SWE model, the procedure used for the 

implementation in the height model was executed. The 

Predicted vs. Reference plots of the data sets are in 

Figure 4.5, Figure 4.6, and Figure 4.7, respectively. 

From the plots, the lowest RMSE corresponds to the 

FilterX8 data set. This is the model chosen and its 

equation is written in (6). The SWE is the parameter of 

interest given in millimeters and the 𝑉 terms are the 

voltage values of the sensors in Volts.  

𝑆𝑊𝐸 = 8947.771 − 2421.820𝑉𝑠𝑒𝑛1

− 1271.320𝑉𝑠𝑒𝑛2 − 954.394𝑉𝑠𝑒𝑛3

+ 1213.319𝑉𝑠𝑒𝑛4

+ 242.2006𝑉𝑠𝑒𝑛5 

(6) 

The model's performance to predict the parameter from 

new measurement values, given by the slope in Figure 

4.7, is close to the unit. 

 

Figure 4.5: Predicted vs. Reference plot for the calibration 

and validation of the model from the Raw Data Set (SWE). 

 

Figure 4.6: Predicted vs. Reference plot for the calibration 

and validation of the model from the FilterX4 Data Set 

(SWE). 

 

Figure 4.7: Predicted vs. Reference plot for the calibration 

and validation of the model from the FilterX8 Data Set 

(SWE). 

A relevant result to include is the plot of the X-Loading 

Weights, see Figure 4.8. In the analysis of the height 

and SWE models, the X-Loading Weights plot gave the 

same results. It shows a higher negative contribution 

from the values of the sensors 1 to 3. The two remaining 

sensors have a lower positive contribution. This might 

be a consequence of the variation of snow coverage 

during the sampling process only on the three first 

sensors. 

 

Figure 4.8: X-loading Weights plot for the analysis of the 

height and SWE models. 

5 Discussion 

In the development of regression models is important to 

have a rich data set of samples. Those must include as 

much information as possible in different measuring 

scenarios varying places, weather conditions, etc. 

However, due to the weather and mobility restrictions, 

the samples were collected in a single place without 

other variable conditions. Additionally, four of the 

seven test measurements were discarded due to errors 

during the measuring process. These two conditions 

make that the resulting models do not have a good 

prediction performance over other samplings scenarios. 

In the models, the ones resulted from the FilterX8 

Data Sets show better performance against the others. 

This can be the result that when the samples are filtered, 

noise errors are reduced in the data set. It is important to 

remark that the difference in performance between the 

models of the FilterX4 and FilterX8 data sets is not 

large. It is possible that increasing the values to use in 

the filter will increase the models' performance, but not 

a significant amount. Further works can test a model 

using 12 values in the filter to corroborate or discard the 

hypothesis. Also, it should analyze if the resources used 

to take more measurements and processes them 

contributes significantly to support a decision. 

The slopes close to one in the Predicted vs. Reference 

plots indicate that the three chosen models' 

performances in the prediction of the parameters are 

close to the perfect performance. However, the 

confidence in these results cannot be high. The method 

used for the validation of the model was the cross-

validation. Even the validation of the models was done 

with a separate data set that did not intervene in the 

calibration process. It comes from a single sampling 

data set. It means that the models might be representing 



the errors associated with the sampling process more 

than the actual variance in the parameters of interest. 

Further work can include a new sampling data set to 

validate the models and revalidate its prediction 

performance. 

The X-Loading Weights of the height and SWE 

models indicate that the principle of measurement can 

capture representative data to calculate the parameters 

of interest. A better structure of the sampling process 

can corroborate this theory and improve the models. A 

suggestion for the sampling process can include a step 

increase of the height of snow covering the sensors 

adding one at the time. For further works, the 

deployment of more than one device in different 

locations can increase the number of samples, and it can 

also improve the representativity of the data sets for 

calibrating and validating the models. 

6 Conclusion 

The Predicted vs. Reference plots in Figure 4.1, Figure 

4.4 and Figure 4.7 show that the models generated have 

a good performance to predict the parameters of interest 

in the snowpack. However, this is only within the 

samples collected. The variance of the sensors’ snow 

coverage during the sampling process, has a high impact 

in the loadings of the sensors’ values for the height and 

SWE models. A manual measurement for the density 

that matches the positions of the sensors might introduce 

more important information to the sampling data sets.  
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