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Abstract. Variational Autoencoders play important role in text gener-
ation tasks, when semantically consistent latent space is needed. How-
ever, training VAE for text is not a trivial task due to mode collapse
issue. In this paper, autoencoder with binary latent space trained using
straight-through estimator is shown to have advantages over VAE on
text modeling task. In our model, Bernoulli distribution is used instead
of Gaussian (usual for VAE). The model can be trained with only re-
construction objective, without using any additional terms such as KL
divergence. Experiments reported in this paper show binary autoencoder
to have the main features of VAE: semantic consistency and good latent
space coverage; while not suffering from the mode collapse and being a
lot easier to train than VAE.
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1 Introduction

In Natural Language tasks, building semantically consistent latent space is cru-
cial. Variational autoencoders provide an appealing algorithm of building such
a vectors without supervision.

Main advantage of VAE is the ability to train good latent semantic space.
This means that we expect correspondence between some distance in latent space
and semantic similarity. Another desirable property is smoothness of the distri-
bution over the latent space. We would like to be able to sample latent variables
from known distribution and then generate realistic and diverse examples from
the samples. In VAE framework, model learns distribution of latent values on
training dataset to be close to predefined prior distribution. For data generation,
latent values are usually sampled from this prior.

It was shown in previous work, that VAE often suffers from the so-called
variable collapse: the model learns to ignore latent variables, and latent space
loses semantic properties. Another known problem is the difference between prior
and posterior distributions [12]. In this case we can have some areas in latent
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space where there are no data points. Sampling from these areas could lead to
non-realistic generated examples, because the generator didn’t see these values
during training.

In this work, we propose novel model for texts, which allows to overcome the
above problems. In our model we use binary latent vectors. Our latent represen-
tations are stochastic Bernoulli variables. Unlike VAE, we train the model with
maximum likelihood objective, without setting any pre-defined prior distribu-
tion. We show experimentally, that our model learns roughly uniform posterior
distribution over latent space, and does not suffer from mode collapse.

2 Related work

2.1 AE and VAE for text generation

One of the most important achievements in text representations is seq2seq model
[18], which learns latent text representation jointly with encoder and decoder by
optimizing maximum likelihood objective. This model led to a great improve-
ment in Machine Translation. Seq2seq autoencoders were also considered [11],
but their application was limited because of lack of semantic consistency of
learned latent space.

Variational autoencoders, proposed by [10], [14], are able not only to recon-
struct data, but also to learn latent space with good semantic properties. They
were successfully applied to paraphrase generation [6], dialogs [17], and other
text generation tasks [16], [21].

Seq2seq model is trained to estimate conditional probability of generated data
p(x|z). In contrast, in VAE framework, latent distribution for each data example
is learnt instead of determenistic latent representation. The training objective
usually is not tractable and is estimated by evidence lower bound (ELBO):

L = Ez∼q(z|x)[log p(x|z)]−KL[q(z|x) ‖ p(z)]

ELBO can be considered as sum of two parts: the first is equal to maximum
likelihood (the so-called reconstruction term); the second is Kullback-Leibler
divergence between prior distribution, usually Gaussian, and actual posterior
distribution over latent space. In order to backpropagate through the random
node, the following reparametrization trick is considered:

z(x) = µ(x) + σ(x) · ξ,

KL =
µ2 + σ2

2
− log(σ)− 1

2
,

where ξ ∼ G(0, 1).
It was shown in [2], that keep a balance between these two terms in text

VAE is not a trivial task. Different improvements of text VAEs was proposed,
handling this problem, like using convolutional decoder [20], changes in inference
procedure [9], skip connections from latents in sequence generator model [3].
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To deal with difference between prior and posterior distribution, sophisticated
sampling procedure in proposed in [4], taking into account the actual posterior
distribution (realistic constrains).

Comparison between VAE and determenistic autoencoders were done in [5].
Authors show that autoencoders can outperform VAE in different tasks, if they
are equipped with proper regularizations. In contrast, in our work there is no
explicit regularization term added to autoencoder objective.

2.2 Discrete latent representations

Discrete latent representations were widely studied, e.g. [15], [8], [13]. Training
discrete model is not trivial, because gradient cannot be calculated for non-
smooth functions.

Several methods were proposed to overcome this issue. The simplest approach
is straight-through estimation [1], which is used in our work. Yet effective and
widely used in training quantized networks [23], this method still has no con-
sistent theoretical background in general case, only some limited results are
available [22].

Another way to deal with gradients through categorical variables is Gum-
bel Softmax [7], which provides smooth approximation for discrete categorical
distribution. This method uses the following reparametrization trick:

p(x) = softmax(logits(x)),

z(x) = softmax(logits(x) + g),

KL = p · log(p) + (1− p) · log(1− p)− 1

2
,

where g is sampled from Gumbel distribution using:

g = −log(−log(ξ)),

where ξ ∼ U(0, 1).

3 Our model

We propose a textual autoencoder with latent space consisting of binary vectors.
For example, [0, 1, 1, 0, 0, 0] is a binary vector of size 6. Encoder output is passed
through a linear transformation followed by a sigmoid:

p = sigmoid(W1 · [hf , hb] + b),

Where hf , hb are the forward and backward encoder outputs respectively; W1

is a matrix of shape [2 · hidden size× latent size]; b is the bias vector of shape
[latent size]. p = p(z|x) is a probability vector with the same size as the latent
vector.
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Fig. 1: Model architecture. Encoder output is passed through sigmoid to pro-
duce probability vector of multivariate Bernoulli distribution. Binary vector z
is sampled from this distribution and then passed to the decoder. Gradient is
backpropagated through sampling operation unchanged.

3.1 Training

Vector p is used as probability of a Bernoulli distribution. Discrete binary vector
z of the same shape is sampled from the multivariate Bernoulli distribution: each
pi is the probability of discrete element zi to be one, and 1−pi is the probability
of zi to be zero. z is sampled using the following operation:

z = step(p− ξ).

Where ξ is a vector of i.i.d. random variables ξi ∼ U(0, 1); step is elementvise
Heaviside step function. Note that Ez = p. Also note that zi 6= 0.5 almost surely.

Gradients do not backpropagate through step operation. Gradients are made
to backpropagate from z to p unchanged:

∂L
∂p

:=
∂L
∂z

;

or:
z = step(p− ξ) + (p− stop gradient(p)).

In literature, this is called Straight-Throw Estimation of gradient [1].
Randomly sampled discrete vector z is then passed to the decoder:

initial state = W2 · z,

Where W2 is a matrix of shape [latent size× hidden size].
The loss function used here is the cross entropy of reconstruction made by

decoder. Unlike in VAE, Kullback-Leibler divergence is not used here.

3.2 Inference

At the inference time there are two options. Vector p can be deterministically
rounded to a vector of zeros and ones of the same size:

z = step(p− 0.5),
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and then passed to the decoder. Also, p can be passed to the decoder as the
mean value of z:

z := Ez = p.

3.3 Motivation to use the Straight-Throw Estimator

The key advantage of STE autoencoder against Gumbel-softmax autoencoder is
that when sampling directly from Bernouli distribution, we get binary vectors
consisting of zeros and ones. In contrast, when sampling from Gumbel-softmax,
we get still continuous probabilities which means that the decoder does not
see the actual binary vectors when training. For this reason, we refer to STE
autoencoder as binary autoencoder in the next sections.

Considering that the latent space is constrained to be binary, we may not
need to use any other restrictions to conserve the consistency of latent space,
i.e. the closeness of the encoded sentences in the latent space. That means that
usage of KL divergence can be unneccesary.

Using the stochastic process of sampling from Bernoulli distribution, we may
also expect that the decoder will see enough points from the binary space during
the training procedure.

4 Experiments

Model PPLmean PPLgreedy PPL NLL (KL)

LM 120.7 106.8

Bottleneck 7.4 50.9
Gumbel 18.9 32.6 24.15 80.76
binary 26.3 30.9 36.3 89.8

binary (WD) 32.5 38.0 44.5 95.0

VAE (WD) 44.6 64.7 100.2 (13.2)
Gumbel VAE 22.3 35.3 31.1 86.4 (8.9)

Gumbel VAE (WD) 27.2 42.8 36.2 90.4 (9.7)
binary VAE 104.3 1.5 · 105 104.5 107.0 (0.1)

binary VAE (WD) 71.9 94.0 115.4 109.1 (3.5)

Table 1: Language modeling results. PPLmean stands for perplexity of the de-
coded text when z is picked as mean from p(z|x); PPLgreedy stands for greedy
picking of z = argmaxz[p(z|x)] where z can only be binary vector; PPL stands
for average perplexity when z is sampled from the distribution used by its specific
autoencoder; NLL stands for average negative log-likelihood when z is sampled
and KL stands for Kullback-Leibler divergence.



6 R. Baynazarov et al.

4.1 Dataset

We use large document classification dataset Yahoo Answer. We use 9.2M sen-
tences for training, 10k for dev and 10k for test. We did tokenization, lowercasing
and text clearing. Prepared dataset is available in our repository.

4.2 Model parameters

As encoder we used one layer bidirectional GRU with hidden size 512. We have
compared our latent representation with Gaussian VAE, Gumbel VAE and bot-
tleneck autoencoder. We found that latent size between 30 and 100 does not
significantly affect quality. Latent size 50 is used for every autoencoder. The
decoder is a single layer GRU with hidden size 512.

Other parameters: vocabulary size: 20k; dropout rate: 0.2; batch size: 5k
tokens. Adam optimizer with constant learning rate 10−3 is used here. As input
embeddings, pretrained GLoVe with dimension 300 is used. Model is trained
one epoch on 9.2M sentences dataset. When training VAE, KL cost annealing
was used: KL cost was set to grow linearly from 0.01 to 1 for first 1M training
samples. For models with word dropout, drop probability 0.5 was used.

4.3 Language modeling results

We have measured the performance of our model on language modeling task.
Results are shown in Table 1. For reference, language modeling results for pure
decoder without any inputs are reported (”LM” in the table). Gumbel-softmax
autoencoder trained without KL divergence (”Gumbel” in the table) shows good
language-modeling performance when decoding from mean values i.e. probabili-
ties and from its own sampled values, i.e. sampled by Gumbel-softmax. However,
our model (”binary” in the table) outperforms Gumbel autoencoder when de-
coding from vector rounded to zeros and ones i.e. the true latent space. Note
that although PPL and NLL scores are higher for our model, it does not repre-
sent the real difference between autoencoders since values put into decoder were
sampled from different distributions: Gumbel-softmax and Bernoulli.

Variational autoencoder with Gaussian prior was trained with word-dropout
(”VAE (WD)” in the table). In our setup it performed slightly better than pure
language model unlike in [2]. Gumbel-softmax VAE performed well both with
and without word dropout. We also tried to train our binary autoencoder with
straight-throw estimator with KL divergence term. As language model it shows
poor quality.

Binary VAE without word dropout shows collapse of latent space. Note the
high perplexity score when using greedily obtained binary vectors. The probabil-
ities in the latent space are all close to 0.5. Also they are highly correlated. In our
experiments, when rounding them to 0 and 1 we got vectors of mostly the same
numbers (all zeros or all ones). This result was not obvious: if the weights of a
model are initialized randomly than how did the latent space become correlated
with the same sign? One explanation can be that for the decoder values 0 and
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1 are not symmetric. When the binary vector is multiplied by a matrix, value
1 gives some ”meaningful” (i.e. trained) additive contribution to the resulting
vector, and value 0 gives always zero contribution. It seems that the decoder was
trained to rely not on information from the encoder itself, but on the fact that
some information is present. That explains the high perplexity score, since the
decoder have not seen such binary vectors in the training process: the binary
vector consisting of same numbers has very low probability of being sampled.

4.4 Generating sentences from the discrete space

Interesting results were obtained in [2]: two random points in VAE space were
chosen and sentences were generated from the points between these two. Re-
sulting sentences appeared to be grammatically correct and semantically layed
between the original two sentences.

We tried to repeat this experiment with binary autoencoder. Path between
two binary vectors z1 and zn can be defined as the set of binary vectors zi such
that Hamming distance between zi and zi+1 equals one, i ∈ {1, n−1}. Unlike in
VAE continuous latent space, in discrete space there can be many paths between
two vectors. To generate sentences, we choose one of the paths randomly. Results
can be seen in Table 2.

can i find a phone book on the phone at the same time?
can i watch a show at the same time?

can a website tell me the details of the show
do a girls watch the show and see what happens about the boys

do a visit and see what the us is talking about

every site is the store, and they will be in the same store for the same price.
everyone is in the store, and they will be able to show the information.

here is the list, and then click on the size of the store.
everyone is, and they are usually called the average joe.

everyone is different, and they will always be normal.

Table 2: Paths between pairs of random points in binary space: Note that inter-
mediate sentences are grammatical, and that topic and syntactic structure are
usually locally consistent.

4.5 Latent collapse

It is known for VAE that some dimensions of latent space tend to collapse [2],
[20]. This means that KL divergence of the dimension is close to 0 and this
dimension does not encode any useful information. To measure this effect we
have tried to ”spoil” one dimension i.e. multiply all its values by (−1) and
measure the perplexity on test set with only this one dimension spoiled. Results
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(a) VAE (WD) (b) binary (c) Gumbel VAE (WD)

Fig. 2: Columns show how much does the perplexity grow when i‘th dimension
of latent space is distorted. Columns are sorted by height.

(a) binary (b) Gumbel VAE (WD)

Fig. 3: Average values of bits on the test set. Note that no bit is always 0 or 1.
Dimensions are sorted in the same order as in Figure 2.

for all VAE dimensions are shown in Figure 2a. It is shown that decoding is
not sensitive to changing some values, i.e. these dimensions encode close to zero
useful information.

To conduct the same experiment with binary latent space we selected one
bit and spoiled it by replacing 0 to 1 and 1 to 0. Results are shown in Figure 2b.
As can be seen from the figure, spoiling any bit results in noticeable perplexity
growth. However, no bit is as crucial for decoding quality as some of VAE’s
dimensions. Similar results were obtained for Gumbel-softmax VAE in Figure
2c.

It is also useful to encode test set to binary space and measure the average
value of each bit. In case of some kind of latent collapse, some bits may be always
0 or 1. Spoiling these bits can result in perplexity growth not because these bits
encode useful information but because the decoder has never seen such values.
Figure 3 shows that the average values of bits are not too close to zero or one.
Similar results were obtained for Gumbel-softmax VAE.

It is interesting to note that those bits which are more shifted towards one
of the values {0, 1} tend to show more ”importance”.

The fact that certain bit is not always 0 or 1 does not guarantee that it
encodes useful information and that the latent space is fully covered. Some bits
may have strong correlations and though may not be independent, i.e. encode
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(a) VAE (WD) (b) binary

(c) Gumbel VAE (WD) (d) Gumbel AE

Fig. 4: Absolute value of covariance matrices between dimensions of latent space.
Dimensions are sorted in the same order as in Figure 2.

the same information. Also this would mean that not all of the combinations of
bits are observed by the decoder. That could be seen as a sort of latent collapse.
Figure 4b shows that no such correlations are observed. The same covariance
matrix for VAE in Figure 4a demonstrates latent collapse. Results similar to the
binary case were obtained for Gumbel-softmax VAE. However, correlations for
some of dimensions are slightly more noticeable.

A conclusion can be made that binary autoencoder does not suffer from latent
collapse and that the useful information about the input sentence is distributed
relatively uniformly between the binary dimensions.

4.6 Supervised classification using latent vectors

Yahoo dataset contains labels for each sentence representing one of the 10 classes:
Science, Sports, Business etc. In order to test the ability of latent representation
to preserve the meaning of a sentence we have tried to use the autoencoder’s
latent vectors as features for classification task. For this purpose, a dense model
with 2 hidden layers containing 100 units each was trained. The final layer is
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softmax over 10 classes. The input to this model is latent variable, obtained
from autoencoder. Samples are normalized so that the mean and variance of a
train set are 0 and 1 respectively. Training set consists of 9k samples. Quality is
measured on development set, containing 1k samples. None of those sentences
were used in the autoencoder training.

Fig. 5: Training curves for supervised classification task. Latent variables ob-
tained from different autoencoders were used as input features to feedforward
classifier.

Gaussian VAE representation was chosen as a strong baseline. Bottleneck
autoencoder representation was also tested in this experiment. As was expected,
VAE representation performs noticeably better than bottleneck, as shown in Fig-
ure 5. Using binary vector as input to classifyer appeared to perform poorly. Us-
ing probabilities of the Bernoulli distribution instead of binary samples improves
the classification quality. However, it is still slightly worse than the bottleneck
results. It is possible that probability is not a good feature for a neural network
due to the NN’s linear nature. Using logits before the sigmoid operation from
binary autoencoder (i.e. the energy of Bernoulli distribution) as input features
to classifyer significantly improves classification quality. It is still slightly worse
than VAE. Assumption is that VAE makes better sentence meaning representa-
tion because it was trained with word dropout. Adding word dropout to binary
autoencoder pushes the classification quality close to that of VAE. Using KL
divergence when training binary autoencoder results in the highest classification
quality in our experiments although it results in the worst language model-
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Input Encoder Input Features NLL Accuracy

Bottleneck latent variable 1.73 0.408
VAE (WD) mean 1.62 0.466

binary zeros and ones 1.86 0.372
binary probability 1.75 0.405
binary logits 1.65 0.439

binary (WD) logits 1.62 0.461
binary VAE (WD) logits 1.59 0.478

Gumbel logits 1.69 0.438
Gumbel VAE logits 1.65 0.445

Gumbel VAE (WD) logits 1.62 0.458

Table 3: Classification results. Negative log likelihood and accuracy metrics are
presented.

ing scores. Experiments with Gumbel-softmax autoencoder showed the results
slightly worse than using binary latent space.

Note that classification using the output of the autoencoder is not expected
to be efficient. The obtained results are rather weak compared to the baselines
[19] but are still useful for comparing between different latent representations.

5 Conclusion

This paper studies the binary autoencoder with straight-through gradient esti-
mator used for natural language sentences. Comparing to VAE this autoencoder
does not suffer from latent collapse when KL divergence tends to zero. This
makes binary autoencoder much easier to train since it does not require tricks
such as KL cost annealing and word dropout. Comparing to Gumbel-softmax
VAE, STE binary autoencoder produces better latent representation of a sen-
tence and also is simpler in training. Binary autoencoder preserves the main
feature of VAE: it densely covers its own latent space and forms meaningful
clusters in it. Also, binary autoencoder uses only reconstruction error as a loss
function unlike VAE, which uses variational lower bound as loss. This can make
it easier to apply autoencoders with binary latent space to more types of data
in the future.
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