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Abstract Cardiac disease is a primary cause of death worldwide. Prior studies have indicated that the dynamics of the 

cardiac left ventricular (LV) during diastolic filling is a major indicator of cardiac viability. Hence, studies have aimed to 

evaluate cardiac health based on quantitative parameters unfolding LV function. In this research, it is demonstrated that 

major aspects of the cardiac function, mainly ejection fraction, are due to abnormalities of the left ventricular on longitudinal 

axis variation. We used Bayesian deep learning algorithms to measure the wall motion of the LV that correlates well with the 

LV ejection fraction. Our results reveal relations among the wall regions of the LV. This research can potentially be used as 

determination value to identify patients with future cardiac disease problems leading to heart failure. 
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I. INTRODUCTION 

Death caused by Heart Failure (HF) has remarkably increased in the past few years mainly due to the general 

aging of the human population. While modern developments in the biomedical field are surely helping in 

diagnosing and subsequently treating patients whether it is the cost related to the interventional device. 

Research, production, distribution and subsequent clinical training is a huge concern that society has to deal 

with in form of ever-increasing healthcare expenses. Screening of the population that is susceptible to HF, can 

be helpful to reduce the deaths due to HF [1] and simultaneously reduce healthcare expenses through 

preventative treatments. By the guidelines of The American College of Cardiology Foundation and American 

Heart Association (ACCF/AHA), there are two classes of HF that has been categorized in these patients: class A 

and class B of HF [2]. In class A, patients are more susceptible to HF, but lacking any structural heart disease or 

symptoms. In class B, patients are seen with the structural disease, but lacking signs and symptoms of HF. 

Additional contributors to developing HF are other diseases like hypertension, diabetes mellitus, metabolic 

syndrome and atherosclerotic  [2, 3]. Now, the question is that what else can be done in preventing HF at major 

scale. We see Bayesian deep learning (DL) research and recent algorithms as possible future tools for screening 

and diagnosis in order to facilitate the detection of patients prone to HF. DL is a technique that utilizes machine 

learning algorithms (supervised or unsupervised) that are perfectly dependent on the choice of the data 

representation used for training the algorithm on various layered models of non-linear operational input [4]. The 

applications may be multifunctional and involve pattern recognition, statistical classification, convolutional deep 

neural networks and deep belief networks [5]. In this research, we present our work on building a computer 

aided diagnosis system with the goal to detect wall motion of LV based on DL. 

 

II.METHOD 

In this study, our focus was on the classification portion of the LV; as to the image processing part, the reader 

can find the details in the referenced papers that address the automatically detection of the interior (endocardial) 

and exterior (epicardial) borders of the LV [6, 7]. The images were acquired using a computerized tomography 

scanner SIEMENS_LEOVB30B at the National Institute of Hospital of Yang Ming, National Yang Ming 

University, Taiwan. This study and the informed consent procedure were approved by the Institutional Review 

Board of National Yang Ming University Hospital. A number of features were studied to identify the cardiac 
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motion in order to discover cardiac wall motion abnormalities, mainly: velocity, radial strain and circumferential 

strain, local and global Simpson volume and segmental volume, which are based on the inner (endocardial) 

contour. 

We used Bayesian Networks (BNs) to detect both the interior (endocardial) and exterior (epicardial) borders of 

the LV [8, 9]. Motion interferences were compensated by using global motion estimation based on robust 

statistics outside the LV; this is done so that the heart’s motion is only analyzed on the longitudinal axis (Fig. 1). 

Then, numerical feature vectors, which were calculated using the contours extracted from two consecutive time 

frames, were tracked through time. In general, velocity, radial strain and circumferential strain can be calculated 

in terms of standard deviation or/and mean of five segment’s respective feature values from any one view. 

The features used to help in the detection of local and global dysfunction of heart were: 

(i) Velocity features used to determine how fast any pair of control point’s change in the x and y coordinates per 

image frame; 

(ii) Circumferential strain features to assess how much the contour between any two control points shrinks in the 

systolic phase; 

(iii) Radial strain features also called Thickening of cardiac wall; 

(iv) Local and global Simpson Volume to determine the volume as computed by the Simpson rule for each 

frame of the heart as a whole;  

(v) Segmental Volume in order to obtain the volume per segment per frame and the segmental EF values. 

 

 
Fig. 1. (A) Longitudinal axis representation of LV; (B) Computer Tomography transverse section on the short axis of LV 

 

III.RESULTS 

 

Most of the research reported the longitudinal strain as a very sensitive parameter of sub endocardial 

dysfunction. In addition, evaluation of circumferential, radial strain and local and global Simpson Volume are 

also significant when assessing compensation patterns of LV function. Though, lack of a normal range of values 

and associated variation hinder their use for everyday clinical evaluation. We implemented Bayesian Network to 

detect wall motion abnormalities of LV and did parameter training using 220 training cases with CT images of 

size 512 × 512 pixels. Our feature selection resulted in every segment dependent on five features such as 

Velocity features, Circumferential strain features, Radial strain features, Local and global Simpson Volume, 

Segmental Volume. Table 1 is showing the Area under the ROC curve for the testing set. The classifier did well 

every heart segment, and entirely achieved high sensitivity and specificity between 84%, 98%. 

 
Segment of LV Bayesian Network of testing 

set  

Segment of LV Bayesian Network of testing 

set 

1 0.90873 9 0.9648 

2 0.8617 10 0.9176 

3 0.9779 11 0.8450 

4 0.91673 12 0.9837 
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5 0.84506 13 0.9715 

6 0.9874 14 0.9155 

7 0.8643 15 0.9471 

8 0.8200 16 0.945 

                                                      Table 1: Area under the ROC curve for the test set 

 
This study defines the effect of ejection fraction due to LV variation on the longitudinal axis. We have also seen 

some variation about volume change and performed the simulation study with the actual volume of LV (Fig. 2), 

which has been done by Weichihhu lab [10]. We got the variation on the longitudinal axis performing a 

comparative study of actual and simulated LV heart. Variations of 1%, 4%, 7% and 10% were found on various 

points of LV (Fig. 2, Panel C). This can be seen as an initial step to recognize local and global dysfunction in the 

heart. 

 

 
 

Fig.2 (A) Actual volume of heart model; (B) Simulated heart model; (C) Difference between the two models (A, B). 

 

 

IV. CONCLUSION 

In this research, we addressed the task of building an objective classification application for ejection fraction 

analysis and LV wall motion on the longitudinal axis based on extracted features. The simple, but effective 

feature selection technique used, resulted in a classifier that depends on only a small subset of the calculated 

features, and their limited number makes it easier to explain the final classifier result to physicians in order to 

get their feedback. Further research will integrate ejection fraction and LV motion of pathological heart. 

                                                             Acknowledgement 

João Manuel R.S. Tavares gratefully acknowledges the funding of Project NORTE-01-0145-FEDER-000022 - 

SciTech - Science and Technology for Competitive and Sustainable Industries, co-financed by “Programa 

Operacional Regional do Norte” (NORTE2020), through “Fundo Europeu de Desenvolvimento Regional” 

(FEDER). 

                                                          References 

1. Nagueh, S. F., Smiseth, O. A., Dokainish, H., Andersen, O. S., Abudiab, M. M., Schutt, R. C., ... & Klein, A. L. (2018). 

Mean Right Atrial Pressure for Estimation of Left Ventricular Filling Pressure in Patients with Normal Left Ventricular 

Ejection Fraction: Invasive and Noninvasive Validation. Journal of the American Society of Echocardiography. 

2. Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Drazner, M. H., ... & Johnson, M. R. (2013). 2013 

ACCF/AHA guideline for the management of heart failure. Circulation, CIR-0b013e31829e8776. 

3. Chen, I. L., Singh, Y., & Hu, W. C. (2017). Comparative Study of Arterial Compliance Using Invasive and Noninvasive 

Blood Pressure Waveform. Journal of Biomedical Engineering, 5(1), 25-29. 

4. Singh, Y., Wu, S. Y., Friebe, M., Tavares, J. M. R., & Hu, W. (2018). Cardiac Electrophysiology Studies Based on Image 

and Machine Learning. 



4 

 

 

5. Angermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. (2016). Deep learning for computational biology. Molecular 

systems biology, 12(7), 878. 

6. Georgescu, B., Zhou, X. S., Comaniciu, D., & Krishnan, S. (2008). U.S. Patent No. 7,421,101. Washington, DC: U.S. 

Patent and Trademark Office. 

7. Zheng, Y., Georgescu, B., Scheuering, M., & Comaniciu, D. (2012). U.S. Patent No. 8,150,119. Washington, DC: U.S. 

Patent and Trademark Office 

8. Fung, G., Qazi, M., Krishnan, S., Bi, J., Rao, B., & Katz, A. (2005, December). Sparse classifiers for automated heartwall 

motion abnormality detection. In Machine Learning and Applications, 2005. Proceedings. Fourth International Conference 

on (pp. 194-200). IEEE. 

9. Murphy, K. P., & Russell, S. (2002). Dynamic bayesian networks: representation, inference and learning. 

10. Deepa, D. , Singh, Y. , Wu, S. Y. , Friebe, M. , Tavares, J. M. , Wei-Chih, H. (2018). 'Development of 4D Dynamic 

Simulation Tool for the Evaluation of Left Ventricular Myocardial Functions'. World Academy of Science, Engineering and 

Technology, International Science Index, Computer and Information Engineering, 12(5), 2814. 

 

 

 

 

 

 

 

 
 
 

 

 
 
 

 

 

 

 

 
 


