
EasyChair Preprint
№ 7706

Towards Model Co-Evolution Across
Self-Adaptation Steps for Combined Safety and
Security Analysis

Thomas Witte, Raffaela Groner, Alexander Raschke,
Matthias Tichy, Irdin Pekaric and Michael Felderer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 2, 2022



Towards Model Co-evolution Across Self-Adaptation Steps for
Combined Safety and Security Analysis
Thomas Witte
Raffaela Groner

Alexander Raschke
Matthias Tichy

<firstname>.<lastname>@uni-ulm.de
Institute of Software Engineering

Ulm University, Germany

Irdin Pekaric
Michael Felderer

<firstname>.<lastname>@uibk.ac.at
Institute of Computer Science

University of Innsbruck, Austria

ABSTRACT
Self-adaptive systems offer several attack surfaces due to the com-
munication via different channels and the different sensors required
to observe the environment. Often, attacks cause safety to be com-
promised as well, making it necessary to consider these two aspects
together. Furthermore, the approaches currently used for safety and
security analysis do not sufficient take into account the intermedi-
ate steps of an adaptation. Current work in this area ignores the
fact that a self-adaptive system also reveals possible vulnerabilities
(even if only temporarily) during the adaptation. To address this
issue, we propose a modeling approach that takes into account
the different relevant aspects of a system, its adaptation process,
as well as safety hazards and security attacks. We present several
models that describe different aspects of a self-adaptive system and
we outline our idea of how these models can then be combined
into an Attack-Fault Tree. This allows modeling aspects of the sys-
tem on different levels of abstraction and co-evolve the models
using transformations according to the adaptation of the system.
Finally, analyses can then be performed as usual on the resulting
Attack-Fault Tree.

CCS CONCEPTS
• Software and its engineering → System description lan-
guages; Fault tree analysis; • Computer systems organization
→ Embedded and cyber-physical systems; Dependable and fault-
tolerant systems and networks.

KEYWORDS
self-adaptive systems, attack-fault trees, safety, security, modeling
ACM Reference Format:
Thomas Witte, Raffaela Groner, Alexander Raschke, Matthias Tichy, Irdin
Pekaric, and Michael Felderer. 2022. Towards Model Co-evolution Across
Self-Adaptation Steps for Combined Safety and Security Analysis. In 17th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’22), May 18–23, 2022, PITTSBURGH, PA, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3524844.3528062

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9305-8/22/05.
https://doi.org/10.1145/3524844.3528062

1 INTRODUCTION
The use of self-adaptive systems is steadily increasing, especially,
e.g, in the context of cyber-physical systems or autonomous vehi-
cles. The advantage of such systems is that they are aware of their
state and the state of their environment and, if necessary, decide for
themselves whether to adapt when a state changes, and if so, how.
However, this advantage also poses serious risks, since classical
analyses are no longer applicable due to their inability to take the
adaptation into account. Since a faulty system can cause damage to
property, health and the environment, a consideration of the safety
of self-adaptive systems is essential. But this is still not sufficient,
since faulty system behavior can not only occur due to errors in
the system, but can also be deliberately provoked by attacks.

Current research in the field of combining safety and security
for self-adaptive systems is not sufficient. There is some existing
work in this field, for example by Fovino et al. [13] or Kumar and
Stoelinga [11], that combine Fault Trees and Attack Trees to Attack-
Fault Trees. The Attack-Fault Trees presented are not specialized
to the challenges of self-adaptive systems, since they are created
manually and not updated automatically according to an adaptation
performed. Čaušević et al. [6] present in their vision paper their
idea for combining safety and security for self-adaptive systems
using different models at design and at runtime. Another example
is the work of Lui et al. [12], that presents an approach of defining
safety and security goals and then determining which attacks could
compromise them. These works are a first starting point, but both,
Čaušević et al. [6] and Lui et al. [12], lack the consideration of the
safety and security risks arising during an adaptation. The fact
that an adaptation is not performed in zero time and cannot be
considered as an atomic transaction is not taken into account.

To close this gap, we propose a modeling approach, which con-
sists of several models, that describe different aspects of a system.
We present a model to describe the data flow between individual
components and a model to describe the deployment of the compo-
nents of a system. These two models are closely representing the
system and are able to adapt and co-evolve with the self-adaptive
system. To model the individual steps of an adaptation, we use
transformations which, when applied to the models, lead to the
individual transient states of an adaptation process. The safety as-
pects are modeled using Fault Trees [29] and the security aspects
are modeled using Attack Trees [23]. Since Fault Trees are modeled
mainly at the component level and Attack Trees at a more detailed
level, e.g., at the protocol level, these two models cannot be easily

https://doi.org/10.1145/3524844.3528062
https://doi.org/10.1145/3524844.3528062


SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Witte and Groner, et al.

combined. Therefore, we outline our idea on how we can com-
bine the information from our models to generate an Attack-Fault
Tree (AFT) [11]. The resulting AFT then serves as the basis for the
associated safety and security analyses.

In the following section, we discuss related work and in Section 3
we present our proposed modeling approach using an illustrative
example. In Section 4, we provide an outlook on the planned analy-
ses, which are based on our modeling approach. Finally, in Section 5
we summarize and conclude this paper.

2 RELATEDWORK
In this section we relate our research to other existing approaches.
In the context of SAS several work regarding security aspects were
published. One large topic in this area is the automatic detection
of attacks by establishing intrusion detection systems (IDS), e. g
[17, 18]. The authors of [24] mention a "threat database" that is used
for automatic adaptation of Android Application’s permissions, but
in contrast to this work, this database is fed manually and not by
mining CVS notifications. Pianini et al. "look at security in the
context of CASs [collective adaptive systems] by reasoning on how
existing patterns and recommendations may apply under the as-
sumptions and characteristics of such systems." [19]. According to
their taxonomy our work covers all of the four layers presented in
the context of the "Defense in depth" principle: application, middle-
ware, platform, and close-to-metal. While the mentioned research
focus on security, there exist also some work regarding safety of
SASs (e. g. [5, 8]). Only some researchers consider safety and secu-
rity aspects together as shown in the following.

In [12] the authors present a safety-security co-design engineer-
ing process that is tailored for platooning system. In this process the
security goals are derived from the safety goals and an attack model.
Similarly, in [28] the usage of digital twins is suggested to support
the identification of safety and security goals. Whereas these ap-
proaches focus on the identification of abstract safety and security
problems, the vision described in [6] introduces some ideas how
these models could be used. The authors mention architecture and
behavioral models that shall be used to analyze safety and security
requirements at run-time of a self-adaptive system. However, no
details are given, how these models should look like. In our work we
introduce concrete architecture and deployment descriptions that
allow for an integration of known or arising vulnerabilities of used
components into an analysis framework at run-time, thus bridging
the gap between abstract high-level safety goal descriptions and the
low-level distributed execution of a system on different platforms.

The approach of Khakpour et al. [7] focuses on vulnerabili-
ties of the system in transient states that occur especially during
architecture-based adaptations. They manually add vulnerability
information to the architecture description by utilizing Acme’s
properties of components. Finally, they use MulVAL[16] to gener-
ate a probabilistic attack graph. We also take the adaptation process
into account by modeling the adaptation as graph transformation
(similarly to Bucchiarone et al. [4]) consisting of different steps. We
extend this approach by considering security with respect to safety
aspects. Instead of defining vulnerabilities manually, we mine them
for the components involved from CVE (Common Vulnerabilities

and Exposures) databases and the architecture description. Fur-
thermore, we model not only components but also protocols or
hardware in our architecture description. The generation of attack
trees (in particular for a network-based model) was also done by
Kotenko et al.[9] and Ou et al. [15].

The approach presented by Priesterjahn et al. [20] analyzes the
time needed to finish a system adaptation before a hazard occurs.
The authors introduce min-max execution time intervals for each
component in order to analyze the propagation time of a failure
through the system, but they do not take security aspects into
account.

Several approaches influenced our ideas how to combine the
different models: The combination of fault trees with attack trees
can be done by introducing new gates and symbols as suggested
by Kumar and Stoelinga in [11] or Stoelinga et al. in [1]. Another
alternative is a less tight coupling just by allowing roots of attack
trees as basic events in fault trees. We adopted this suggestion
introduced by Steiner and Liggesmayer [25] and Fovino et al. [14].

Finally, the comparison of used libraries to CVE database entries
is realized by commercial products like snyk1 and for Java by Viertel
et al. [30].

3 PROPOSED APPROACH
Safety and security properties are intertwined and must not be
analyzed in separation. In addition, the resulting model must con-
sider possible architecture adaptations of the system (which have
an impact on these safety and security properties) and allow the
model to adapt accordingly and automatically.

Figure 1 gives a broad overview over our proposed modeling ap-
proach for self-adaptive systems. Sections 3.1 and 3.5 describe how
Fault and Attack Trees can be modeled independently by experts
or mined from vulnerability databases. Section 3.2 introduces the
logical Dataflow Graph that can be tied to events in these Fault or
Attack Trees. These links may be annotated with additional impact
requirements–minimum CVSS (Common Vulnerability Scoring Sys-
tem) impact scores required to trigger the linked event. In order to
allow attacks to reference specific libraries, protocols or hardware, a
Deployment Model is introduced in Section 3.3. Graph transforma-
tion rules are used to describe the system adaptation (Section 3.4).
From these distinct models, a combined AFT is generated by using
general combination rules, representing common weaknesses and
attack patterns (Section 3.6). Analysis (Section 4) is then performed
in two dimensions: state space exploration of the transformation
steps and stochastic model checking on the combined AFTs.

In order to illustrate our proposed approach, we use a small,
simplified example, due to space limitations. Our example consists
of a ground control station (GCS) that communicates with an un-
manned aerial vehicle (UAV), i.e. quadcopter, during a given mission
via WiFi. The GCS sends flight commands to the UAV and receives
telemetry data. If the UAV passes areas where the WiFi signal is
too weak, the adaptation process starts and the system switches
to longer range radio communication. The UAV then receives the
command to fly back closer to the GCS. If the UAV is close enough
to the GCS again, the system completes its adaptation by switching
back to communicate via WiFi.

1https://snyk.io

https://snyk.io


Towards Model Co-evolution Across Self-Adaptation Steps for Combined Safety and Security Analysis SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

Fault Trees (3.1)

Dataflow Graph (3.2)

Deployment Model (3.3)

Combined Attack-Fault Tree

CVSS

CVSS

A B

A'

B'

Combination Rules (3.6)

CVSS
CVSS

Attack Trees (3.5)

CVE

*
Architecture Adaptation

(3.4)

*
AFT Adaptation

CVSSCVSS

CVSS

Figure 1: Overview of the modeling approach.

3.1 Fault Trees
In order to model possible safety hazards, we use Fault Trees (FT).
Starting from an undesired event and taking into account the sys-
tem and its environment, it is analyzed which events lead to the
occurrence of the undesired event analyzed [29].

There are several variants of Fault Trees [22], we use a simple
one as a starting point, because it can be easily extended if neces-
sary. The leaves of a Fault Tree are so-called basic events that do
not depend on other events and do not require further specifica-
tion. The inner vertexes of a Fault Tree are so-called intermediate

events, which are events that depend on other events. Gates are
used to express the dependencies between events by linking them
logically, e.g. by AND or OR [29]. Basic events in a Fault Tree can
link to elements of the Dataflow Graph (cf. Section 3.2). We in-
troduce an additional element, which is modeled as an external
event (house shape in Figure 2) that contains the name of the refer-
enced Dataflow Graph element and the minimum required CVSS
impact on the dataflow element to trigger the linked event. The
impact specification corresponds to the CVSS metrics: for example,
an event can cause or require an impact on the Confidentiality,
Integrity or Availability of the channel or component. The basic
event "connection lost" in a Fault Tree might reference one or more
dataflow channels and require a high impact on the availability (e.g.
caused by a DoS-attack) in order to activate this basic event. Vice
versa, the top event "data corruption in component" of an Attack
or Fault Tree can reference a component of the Dataflow Graph
and cause a high integrity impact on the component if the event is
activated.

In our approach, we assume that a Fault Tree is modeled for
each fault manually by a safety expert, resulting in a forest of fault
trees. These Fault Trees are immutable, however, the linked dataflow
elements or their deployment might change during reconfiguration.

Figure 2 displays an excerpt of a Fault Tree for our UAV example.
The analyzed safety risk is the loss of control of the UAV, which
can lead to theft of the UAV, property damage or even injuries. One
way that this undesirable event occurs is through the occurrence
of the two basic events (shown as ellipses in Figure 2) “No WiFi
connection” AND “No radio connection”. The intermediate event
"Incorrect return message" is linked to the "commands"-channel in
the Dataflow Graph using an external event. Since there are other
combinations of events that lead to loss of control, the AND-gate
and the intermediate event are connected to the top event using an
OR-gate. For reasons of readability, we have omitted further parts
of the Fault Tree.

Loss of control over
the quadcopter

Incorrect return
message

No radio
connection 

No WiFi
connection commands

Figure 2: Excerpt of a Fault Tree for the example.

3.2 Dataflow Graph
The dataflow between the software components of an application,
subsystems and physical components contains information how
failures or attacks may spread and proliferate. A Dataflow Graph
that contains the system’s components and abstract connections,
i.e. not regarding the deployment or realization of the data channel,
is used to determine whether an event in one part of the system
can have an impact on other parts of the system.

The high level of abstraction of this Dataflow Graph simplifies
modeling implicit or indirect information flow, e.g. side channels
that may leak information or sensors measuring the system state



SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Witte and Groner, et al.

through the environment. This logical dataflow is intentionally
architecture and technology agnostic to possibly model any kind
of system. The specific protocols or technology used is specified in
the Deployment Model.

The Dataflow Graph consists of components and channels be-
tween these components. Components can send messages through
directed channels with an arbitrary number of senders and receivers
per channel.

A fault or attack event (in the respective tree) can reference
a component or channel that is affected by or the source of the
event. The relation of linked Fault or attack events, e.g. that an
attack event has a cascading effect affecting other components, is
expressed through combination rules (Section 3.6) that define the
structure of the generated AFT.

mavros_node PX4

commands

telemetry

GCS

Figure 3: Excerpt of the Dataflow Graph for the example.

Figure 3 shows an excerpt of the Dataflow Graph for our running
example. The mavros_node in the GCS communicates with the
quadcopter (PX4) through a command and telemetry channel. The
Fault Tree can reference the commands through an external event
irrespective of the realization of the channel (WiFi or radio).

The Dataflow Graph can be generated if the platform or frame-
work used offers appropriate introspection capabilities. For example,
the node graph of a running ROS [21] system can be obtained at
runtime and directly transformed into a Dataflow Graph. Alterna-
tively, the Dataflow Graph can be derived statically from e.g. SysML
internal block diagrams. Additional dataflow information, implicit
or indirect channels can be added manually ahead of time.

3.3 Deployment Model
Every component in the Dataflow Graph runs on a specific hard-
ware (HW) with a given operating system (OS) that provides a set
of libraries that might be used by the components. Similarly, every
communication channel can use a protocol (stack) that is typcially
also implemented in libraries running on an OS on a given HW.
Each involved unit (protocol, library, HW) can have one or more
vulnerabilites that could be exploited to attack the system.

The goal of the Deployment Model is on the one side to model
the overall architecture of a system on different levels of abstraction
and on the other side to define the deployment of the components
and channels of the Dataflow Graph on the different parts of the
system.

For this purpose, we define a transitive dependency relation
𝑐 → 𝐷 with 𝑐 is the identifier (e. g. a common platform enumera-
tion entry (CPE)2) of a component/channel/protocol/library/set of
libraries/hardware/proxy, 𝐷 is a set of protocols/libraries/hardware
components, and 𝑐 depends on the entries given in 𝐷 . Types are

2a unified naming scheme for hardware, software, and packages, see https://nvd.nist.
gov/products

added to each of these elements for a better differentiation. The com-
bination of dependencies describes the set of platforms on which
components can be deployed. In this context, a proxy is an abstract
placeholder for a concrete instance of a platform. In the following
example,WiFi is a proxy for a concrete instance of an existing WiFi
network with certain properties. The instantiation of this proxy is
done in a separate entry.

The deployment of a component (of the Dataflow Graph) is
just a top level dependency of the Deployment Model. Thus, the
highest level of the Deployment Model correspond to elements of
the Dataflow Graph and the lowest level correspond to (potential)
vulnerable elements like protocols, libraries, and hardware compo-
nents. An architecture reconfiguration can be modeled as a change
of the deployment of a component which includes the exchange of
a component by a new one.

In our running example, an excerpt of a simplified Deployment
Model might look like this (for sake of brevity, only left-hand-side
types are shown):
PX4:Component → {Mavlink2.0, pixhawk, ...}
Mavlink2.0:Protocol → {MavlinkLib, UDP, UART, ...}
commands:Channel → {Mavlink2.0, WiFi}
WiFi:Platform → {IEEE 802.11n, WPA2, UDP, TCP/IP, ...}
Radio:Platform → {UART} . . .

Note, that some of the dependencies can be derived automati-
cally (e.g. by examining the dependencies of a linux binary or by
retrieving the installed library versions of an OS).

Due to the transitive property of the relation it is possible to
combine the dependency sets, e.g.: commands → {Mavlink2.0,
MavlinkLib, IEEE 802.11n, WPA2, UDP, TCP/IP, UART, ...}.

3.4 Architecture Adaptation
In order to describe the adaptation of a system, we use graph trans-
formations. Thereby, the individual steps of an adaptation to be
performed are described by several individual transformation rules.
These transformation rules can then be applied to the Dataflow
Graph and the Deployment Model to automatically achieve the
transient states during an adaptation.

We use Henshin [26] to define the transformations. This is a
declarative transformation language where transformation rules
are created by defining a precondition that a model must satisfy in
order for the rule to be applied. If the precondition is satisfied, the
model is updated to satisfy the postcondition of the rule.

The first step of the adaption performed in our UAV example is
the switch between the communication via WiFi to radio. This can
be described in the textual syntax of Henshin with the following
excerpt:
graph {

node commands:Channel
node WiFi:Platform
node Radio:Platform
edges[(delete commands->WiFi:depends),

(create commands->Radio:depends)]}
The precondition specifies that the commands-channel depends

onWiFi. The postcondition states that the commands-channel should
depend on Radio and no longer onWiFi. This change is defined in
Henshin by the keywords delete and create. Where delete marks the

https://nvd.nist.gov/products
https://nvd.nist.gov/products


Towards Model Co-evolution Across Self-Adaptation Steps for Combined Safety and Security Analysis SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

parts of the precondition that must not exist after the application.
And create marks the parts of the postcondition that will be created
after the application. Parts without one of the two keywords are
part of the precondition and the postcondition, and must be valid
before and after the transformation application

In order to model the entire adaptation process, further transfor-
mations must be defined manually, which describe also the individ-
ual transient adaptation steps. In our example, this means, e.g, that
a transformation must be defined, which switches the communica-
tion back again, in order to describe the entire adaptation.

3.5 Attack Trees
Potential attacks on platforms and protocols are modeled using
Attack Trees (AT). An Attack Tree represents various ways and
necessary steps through which an adversary can attack the system.
Due to possible system reconfiguration, it is necessary to generate
Attack Trees for every platform, library or protocol used in the
system. The target of such an Attack Tree (e.g. a library) is modeled
as an external event that can be linked to the respective resource
in the Deployment Model.

Attack Trees are generated using a semi-automated approach,
similar to [15] by incorporating the data from three sources: CVE,
CVSS, and system library data. Each attack targets a platform, iden-
tified by its CPE entry, and may use one or more vulnerabilities to
impact it. The vulnerability data is obtained by implementing active
monitors allowing the collection of the most recently published
CVE data, the generation of corresponding Attack Trees and cre-
ation of an attack database for the system. The characteristics and
severity of vulnerabilities are represented using CVSS data. Finally,
the system library data includes all the libraries and applications,
as well as their specific versions that are used by a self-adaptive
system. These can be linked to the CVE data because it also includes
information regarding the library that was affected by a specific
vulnerability.

Force Downgrade of
Mavlink version

Access Mavlink 1.0
connection

Access Mavlink 2.0
conection

CVE-2020-10283
C�H/I�H/A�H

CVE-2020-10282
C�H/I�H/A�H

Mavlink 2.0

Figure 4: Example of an attack tree.

The root element (external event) describes the target of an attack
and serves as an interface to link the attack to the combined AFT.
For example, the exploitation of two vulnerabilities could result in
an attack on theMavlink Protocol (Figure 4). Multiple vulnerabilities
(CVEs) can be linked together to build an attack path. In addition,
the CVSS:3.1 vector is added to the CVE identifier in order to provide
additional vulnerability information such as exploitability, impact,
temporal score, and environmental score metrics for each basic

attack step. This also includes impact measures on CIA metrics. By
utilizing the vector data, we limit applicable combination rules to
rules matching the characteristics of the attack.

3.6 Model Combination
Joint analysis of safety and security requires combining Attack
and Fault Trees into AFTs using additional information from the
Dataflow Graph and Deployment Model. Attack and Fault Trees
often operate on different levels of abstraction, i.e. attacks mostly
target libraries, frameworks, protocols or hardware while basic
events of Fault Trees are mostly triggered by missing or corrupted
logical data flow or components. This different levels of abstraction
are mirrored in the logical Dataflow Graph and the Deployment
Model which specifies concrete systems and software implementing
this data flow.

A�H

A B

I�H

Dataflow Pattern AFT Fragment

A�H

A'

B'
I�M

send malicious message

Figure 5: Example combination rule for CWE-20: Improper
Input Validation.

Using a rule based translation scheme, patterns in the data flow
or deployment model create partial AFTs – representing generic
attack patterns or common weaknesses – that are connected to
external events in the Attack and Fault Trees, combining them
and bridging the abstraction gap. Rules are derived from Common
Weakness Enumeration (CWE) as well as Common Attack Pattern
Enumeration and Classification (CAPEC) data. These combination
rules can, for example, translate a logical data flow between two
components 𝐴 and 𝐵 into a tree fragment shown in Figure 5. Any
Attack or Fault Tree referencing component𝐴 or𝐵 can be connected
to the events 𝐴′ or 𝐵′ respectively. Such a rule might represent
the additional attack step needed to forge an invalid message in
component 𝐴 and sending it in order to compromise component
𝐵. To forge such a manipulated message, the attack or fault event
connecting to 𝐴′ needs to satisfy additional impact criteria, in this
case on the integrity or availability of component 𝐴. These impact
requirements, i.e. required values in the CVSS vector, serve as an
interface to combine only compatible events. Combination rules,
fault or attack events as well as references to elements in other
models can be annotated with such impact specifications.

Similarly, combination rules can express the spreading of faults
along data flow or how an attack on a vulnerable library allows
the attacker to also compromise a component using it – thereby
connecting a logical component from the Dataflow Graph with the
libraries its realization uses.

In our example scenario, the Fault Tree leading to control loss
and theft of the drone (Figure 2) and the Attack Tree in Figure 4
can be combined into the AFT shown in Figure 6. The Dataflow
Graph and Deployment Model—in the transient reconfiguration
state, when the WiFi connection is lost, but the return signal is
not yet sent—provide the necessary information to join the models



SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Witte and Groner, et al.

Loss of control over
the quadcopter

MITM attack on
commands channel 

Unauthenticated
connection

Spoofed
message injected

Radio connection
unauthenticated

Mavlink 2.0 connection
unauthenticated

Force Downgrade of
Mavlink version

Access Mavlink 1.0
connection

Access Mavlink 2.0
conection

Access radio
connection

CVE-2020-10283
C�H/I�H/A�H

CVE-2020-10282
C�H/I�H/A�H

p=1.0

Incorrect return
message

No radio
connection 

No WiFi
connection commands

Radio Mavlink 2.0

Figure 6: Combined AFT of the example.

despite their incompatible abstraction levels. Two combination
rules are used to combine the trees. These are derived from two
CAPEC patterns:

CAPEC-115: Authentication Bypass A channel is accessible with-
out authentication if all constituent protocols, hardware, etc. is
accessible without authentication.

CAPEC-594: Traffic InjectionAmalicious actor can insert a spoofed
message into a channel, if it requires no authentication.

These rules are used to generate the partial tree (black) that
connects the external events of the Attack and Fault Trees. The first
rule matches the deployment of the commands channel, connecting
it to attacks on the authentication of the platforms and protocols
used. Next, the second rule matches the commands channel in the
dataflow and is connected to the external event in the fault tree.

The resulting AFT shows, that the Mavlink vulnerability in com-
bination with using radio communication can lead to the control
loss over the quadcopter. This state occurs during adaptation, after
the quadcopter flies out of WiFi range by injecting a false return
message into the commands channel.

4 ANALYSIS APPROACH
In this section, we provide an outlook on the two dimensions of
our planned analysis approach.

Attack-Fault Tree Analysis. For each state of the system (transient
as well as steady), the corresponding combined AFT is generated.

Existing approaches for analyzing AFTs can be used, e.g. first trans-
lating the AFT into stochastic timed automata as input to existing
model checkers, e. g. Uppaal SMC [11]. Our proposed combination
approach for ATs and FTs will be extended to provide the necessary
timing and probability information. Already, events in ATs and
FTs are often annotated with timing or probability information. By
enriching the Dataflow Graph with additional timing information,
representing the delay and frequency of messages or the process-
ing time of these messages in components, timing constraints on
adaptations can be derived in the analysis, similar to [20]. For ex-
ample, an adaptation to avoid the spread of an error across multiple
components must be faster than the spreading of the error.

Henshin state space analysis. Since we model the individual steps
of an adaptation using Henshin transformation rules, we can also
use the state space analysis provided by the Henshin tool set [2].
This allows to explore the entire state space resulting from the trans-
formations, including the transient states that may occur during
adaptation with respect to the Dataflow Graph and the Deployment
Model. By examining the state space, resulting reachable states
can subsequently be examined in more detail with the help of the
AFT. This requires applying the individual transformations to the
models and then generating a new AFT. In addition, the correctness
of the modeling of the adaptation can be examined with the help
of invariants. For example, to ensure that there exists no combi-
nation of transformations that results in the command channel
communicating via radio and WiFi at the same time.

5 CONCLUSION AND FUTUREWORK
In this vision paper, we present an integrated approach to model
and analyze safety and security aspects of a self-adaptive system.
Bridging the gap between high-level modeling and low-level im-
plementation on specific platforms enables the analysis of vulnera-
bilities of system components with respect to safety requirements.
We also consider intermediate steps of an adaptation phase, which
may provide new attack surfaces. The next steps of our research
are to implement the different models and to define precisely the
translation into AFTs. Currently, our approach does not consider
time and probability aspects, although this is an important point
since, e.g., long lasting high effort attacks on vulnerabilities that
exist for only a short time during adaptation are less likely than
attacks that can be executed within a short time [1, 10]. In addition,
do we plan to use our approach also at run-time to continuously
analyze a system with respect to safety and security. This allows
us to include emerging security vulnerabilities even during the
runtime of the system. To do this, however, we must ensure that
the models are kept in sync with the system state as efficiently as
possible and that the translation and analysis of the AFT can be
performed within fixed time limits [3, 27]. Additionally, we plan
a case study in which we use our approach to analyze larger and
realistic systems in order to evaluate its scalability.

ACKNOWLEDGMENTS
This work was partially supported by the Austrian Science Fund
(FWF): I 4701-N andGerman Research Foundation (DFG): 435878599.



Towards Model Co-evolution Across Self-Adaptation Steps for Combined Safety and Security Analysis SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

REFERENCES
[1] Étienne André, Didier Lime, Mathias Ramparison, and Mariëlle Stoelinga.

2019. Parametric analyses of attack-fault trees. CoRR abs/1902.04336 (2019).
arXiv:1902.04336 http://arxiv.org/abs/1902.04336

[2] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. 2010. Henshin: Advanced Concepts and Tools for In-Place EMF Model
Transformations. In Model Driven Engineering Languages and Systems, Dorina C.
Petriu, Nicolas Rouquette, and Øystein Haugen (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 121–135. https://doi.org/10.1007/978-3-642-16145-2_9

[3] Amel Bennaceur, Robert France, Giordano Tamburrelli, Thomas Vogel, Pieter J.
Mosterman, Walter Cazzola, Fabio M. Costa, Alfonso Pierantonio, Matthias Tichy,
Mehmet Akşit, Pär Emmanuelson, Huang Gang, Nikolaos Georgantas, and David
Redlich. 2014. Mechanisms for Leveraging Models at Runtime in Self-adaptive
Software. Springer International Publishing, Cham, 19–46. https://doi.org/10.
1007/978-3-319-08915-7_2

[4] Antonio Bucchiarone, Hartmut Ehrig, Claudia Ermel, Patrizio Pelliccione, and
Olga Runge. 2015. Rule-BasedModeling and Static Analysis of Self-adaptive Systems
by Graph Transformation. Springer International Publishing, Cham, 582–601.
https://doi.org/10.1007/978-3-319-15545-6_33

[5] Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra. 2021. Runtime
Equilibrium Verification for Resilient Cyber-Physical Systems. In 2021 IEEE In-
ternational Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS). 71–80. https://doi.org/10.1109/ACSOS52086.2021.00025

[6] Aida Causevic, Alessandro V. Papadopoulos, and Marjan Sirjani. 2019. Towards
a Framework for Safe and Secure Adaptive Collaborative Systems. In 2019 IEEE
43rd Annual Computer Software and Applications Conference (COMPSAC), Vol. 2.
165–170. https://doi.org/10.1109/COMPSAC.2019.10201

[7] Narges Khakpour, Charilaos Skandylas, Goran Saman Nariman, and Danny
Weyns. 2019. Towards Secure Architecture-Based Adaptations. In 2019 IEEE/ACM
14th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). 114–125. https://doi.org/10.1109/SEAMS.2019.00023

[8] Dominik Klumpp, Axel Habermaier, Benedikt Eberhardinger, and Hella Seebach.
2016. Optimising Runtime Safety Analysis Efficiency for Self-Organising Systems.
In 2016 IEEE 1st International Workshops on Foundations and Applications of Self*
Systems (FAS*W). 120–125. https://doi.org/10.1109/FAS-W.2016.37

[9] Igor Kotenko and Andrey Chechulin. 2013. A Cyber Attack Modeling and Impact
Assessment framework. In 2013 5th International Conference on Cyber Conflict
(CYCON 2013). 1–24.

[10] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. 2015. Quantitative Attack
Tree Analysis via Priced Timed Automata. In Formal Modeling and Analysis of
Timed Systems, Sriram Sankaranarayanan and Enrico Vicario (Eds.). Springer
International Publishing, Cham, 156–171. https://doi.org/10.1007/978-3-319-
22975-1_11

[11] Rajesh Kumar and Mariëlle Stoelinga. 2017. Quantitative Security and Safety
Analysis with Attack-Fault Trees. In 2017 IEEE 18th International Symposium
on High Assurance Systems Engineering (HASE). 25–32. https://doi.org/10.1109/
HASE.2017.12

[12] Jiafa Liu, Di Ma, Andre Weimerskirch, and Haojin Zhu. 2017. A Functional
Co-Design towards Safe and Secure Vehicle Platooning. In Proceedings of the
3rd ACM Workshop on Cyber-Physical System Security (Abu Dhabi, United Arab
Emirates) (CPSS ’17). Association for Computing Machinery, New York, NY, USA,
81–90. https://doi.org/10.1145/3055186.3055193

[13] Igor Nai Fovino, Marcelo Masera, and Alessio De Cian. 2009. Integrating cyber
attacks within fault trees. Reliability Engineering & System Safety 94, 9 (2009),
1394–1402. https://doi.org/10.1016/j.ress.2009.02.020 ESREL 2007, the 18th
European Safety and Reliability Conference.

[14] Igor Nai Fovino, Marcelo Masera, and Alessio De Cian. 2009. Integrating cyber
attacks within fault trees. Reliability Engineering & System Safety 94, 9 (2009),
1394–1402. https://doi.org/10.1016/j.ress.2009.02.020 ESREL 2007, the 18th
European Safety and Reliability Conference.

[15] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. 2006. A Scalable Ap-
proach to Attack Graph Generation. In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security (Alexandria, Virginia, USA)
(CCS ’06). Association for Computing Machinery, New York, NY, USA, 336–345.
https://doi.org/10.1145/1180405.1180446

[16] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. 2005. MulVAL:
A Logic-Based Network Security Analyzer. In Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14 (Baltimore, MD) (SSYM’05). USENIX
Association, USA, 8.

[17] Jesus Pacheco and Salim Hariri. 2016. IoT Security Framework for Smart Cyber
Infrastructures. In 2016 IEEE 1st International Workshops on Foundations and
Applications of Self* Systems (FAS*W). 242–247. https://doi.org/10.1109/FAS-
W.2016.58

[18] Jesus Pacheco, Xiaoyang Zhu, Youakim Badr, and Salim Hariri. 2017. Enabling
Risk Management for Smart Infrastructures with an Anomaly Behavior Anal-
ysis Intrusion Detection System. In 2017 IEEE 2nd International Workshops
on Foundations and Applications of Self* Systems (FAS*W). 324–328. https:
//doi.org/10.1109/FAS-W.2017.167

[19] Danilo Pianini, Roberto Casadei, and Mirko Viroli. 2019. Security in Collective
Adaptive Systems: A Roadmap. In 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS*W). 86–91. https://doi.org/10.
1109/FAS-W.2019.00034

[20] Claudia Priesterjahn, Dominik Steenken, and Matthias Tichy. 2013. Timed Hazard
Analysis of Self-healing Systems. Springer Berlin Heidelberg, Berlin, Heidelberg,
112–151. https://doi.org/10.1007/978-3-642-36249-1_5

[21] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

[22] Enno Ruijters and Mariëlle Stoelinga. 2015. Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools. Computer Science Review 15-16
(2015), 29–62. https://doi.org/10.1016/j.cosrev.2015.03.001

[23] Bruce Schneier. 2015. Secrets and Lies: Digital Security in a Networked World.
Wiley.

[24] Gian Luca Scoccia, Marco Autili, and Paola Inverardi. 2020. A self-configuring
and adaptive privacy-aware permission system for Android apps. In 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS). 38–47. https://doi.org/10.1109/ACSOS49614.2020.00024

[25] Max Steiner and Peter Liggesmeyer. 2013. Combination of Safety and Security
Analysis - Finding Security Problems That Threaten the Safety of a System.
In 32nd International Conference on Computer Safety, Reliability and Security
(SAFECOMP 2013). Workshops and Tutorials : CARS, SASSUR, DECS, ASCOMS.
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-43604

[26] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer,
Manuel Ohrndorf, andMatthias Tichy. 2017. Henshin: A Usability-Focused Frame-
work for EMF Model Transformation Development. In Graph Transformation,
Juan de Lara and Detlef Plump (Eds.). Springer International Publishing, Cham,
196–208. https://doi.org/10.1007/978-3-319-61470-0_12

[27] Michael Szvetits and Uwe Zdun. 2016. Systematic literature review of the ob-
jectives, techniques, kinds, and architectures of models at runtime. Software &
Systems Modeling 15, 1 (2016), 31–69. https://doi.org/10.1007/s10270-013-0394-9

[28] Omar Veledar, Violeta Damjanovic-Behrendt, and Georg Macher. 2019. Digi-
tal Twins for Dependability Improvement of Autonomous Driving. In Systems,
Software and Services Process Improvement, Alastair Walker, Rory V. O’Connor,
and Richard Messnarz (Eds.). Springer International Publishing, Cham, 415–426.
https://doi.org/10.1007/978-3-030-28005-5_32

[29] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F Haasl.
1981. Fault tree handbook. Technical Report. Nuclear Regulatory Commission
Washington DC.

[30] Fabien Patrick Viertel, Fabian Kortum, Leif Wagner, and Kurt Schneider. 2019.
Are Third-Party Libraries Secure? A Software Library Checker for Java. In Risks
and Security of Internet and Systems, Akka Zemmari, Mohamed Mosbah, Nora
Cuppens-Boulahia, and Frédéric Cuppens (Eds.). Springer International Publish-
ing, Cham, 18–34.

https://arxiv.org/abs/1902.04336
http://arxiv.org/abs/1902.04336
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-319-08915-7_2
https://doi.org/10.1007/978-3-319-08915-7_2
https://doi.org/10.1007/978-3-319-15545-6_33
https://doi.org/10.1109/ACSOS52086.2021.00025
https://doi.org/10.1109/COMPSAC.2019.10201
https://doi.org/10.1109/SEAMS.2019.00023
https://doi.org/10.1109/FAS-W.2016.37
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1145/3055186.3055193
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1145/1180405.1180446
https://doi.org/10.1109/FAS-W.2016.58
https://doi.org/10.1109/FAS-W.2016.58
https://doi.org/10.1109/FAS-W.2017.167
https://doi.org/10.1109/FAS-W.2017.167
https://doi.org/10.1109/FAS-W.2019.00034
https://doi.org/10.1109/FAS-W.2019.00034
https://doi.org/10.1007/978-3-642-36249-1_5
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1109/ACSOS49614.2020.00024
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-43604
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1007/978-3-030-28005-5_32

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Fault Trees
	3.2 Dataflow Graph
	3.3 Deployment Model
	3.4 Architecture Adaptation
	3.5 Attack Trees
	3.6 Model Combination

	4 Analysis Approach
	5 Conclusion and Future Work
	Acknowledgments
	References

