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Abstract – In this paper we study the wave processes in the 

boundary acoustic layers of the multimode waveguide systems. 

Wave propagation in a waveguide with "imperfectly" rigid walls 

is considered. Thermoacoustic effects that occur when a wave 

propagates in a near-surface layer with a finite impedance of the 

inner surface of the waveguide are considered. The estimation of 

changes in the energy dissipation of a propagating wave of rigid 

walls is performed. 
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I. INTRODUCTION  

Elastic vibrations and acoustic waves are widely used in 
engineering. At the same time, depending on the scope of 
application, the requirements for the accuracy of the 
description and the reliability of the results obtained increase 
many times. These requirements lead to the need for wave 
propagation to take into account physical phenomena of the 
second order of smallness. In a number of applied problems of 
acoustics, the determining factor is the registration or emission 
of sound signals without distortion introduced by 
inhomogeneous surface waves. Such tasks are related to the 
development of miniature electronic devices (cell phones, 
microphones, hearing AIDS). In hydroacoustics, the influence 
of inhomogeneous surface waves is manifested in the 
development of miniature hydrophones, the use of elastic PI, 
etc. All these problems are combined with the problem of 
describing physical phenomena in the boundary layers 
responsible for acoustic energy dissipation. In practice, it is 
extremely cumbersome to solve precise hydrodynamic 
equations that allow us to take into account the influence of 
viscous and heat waves in surface layers and calculate energy 
dissipation. In this case, the final result depends largely on the 
accuracy of the description of physical conditions, which are 
not always known with sufficient accuracy. In this regard, an 
acoustic waveguide with rigid walls was chosen to study the 
physical processes that determine acoustic energy dissipation. 

A physical and mathematical model of a cylindrical 
waveguide with rigid walls can be chosen with sufficient 
accuracy to describe second-order smallness physical 
phenomena. The geometry and boundary conditions of the 
waveguide ensure the propagation of plane harmonic sound 
waves at a constant speed and shape preservation. Take into 

account that the loss of energy propagating in water can be 
considered negligible ~0,0002 [dB/m]. Accordingly, the energy 
dissipation of a plane wave in a waveguide should be 
determined only by losses at the ends of the waveguide and 
thermoacoustic transformations in the surface layers. For the 
medium, we can assume that entropy is constant and not 
consider the mechanisms of dissipative losses for a propagating 
wave. 

The theory of wave propagation in waveguides is well 
known and methodologically implemented in acoustic 
measuring pipes (waveguides), which, depending on the 
purpose and technical data, can also be called impedance pipes, 
pulse pipes, and Kundt pipes. Acoustic research in measuring 
tubes is based on the theory of sound wave propagation in 
waveguides, described in fundamental works [2 – 4]. The 
theoretical basis allows measurements in liquid and air media 
when signals are propagated in noise, tone, or pulse modes. 
However, physical phenomena occurring in layers near the 
walls of the waveguide are not taken into account in these 
studies. This is due to the fact that measurements are usually 
indirect and absolute values of the wave energy are not 
required in the experiment. Another necessary condition is the 
approximation of ideal "acoustically" rigid walls in the 
frequency range below the first critical frequency. This 
condition guarantees the propagation of only one plane wave at 
a constant speed and preserving its shape. Failure to meet this 
condition leads to a superposition of non-planar waves in the 
waveguide propagating at different speeds. Accounting for 
these forms is difficult to analyze. Their excitation in the 
waveguide does not correspond to the excitation conditions in a 
free medium. The condition of "absolutely" hard walls for a 
real waveguide used in acoustic measurements is usually 
fulfilled with a sufficient degree of accuracy. This greatly 
simplifies the task of estimating the plane wave dissipation 
energy during the experiment. 

To study these phenomena on the example of a real 
cylindrical waveguide, we used short acoustic pulses emitted 
by a cylindrical piston installed at one end of the waveguide. A 
sufficiently wide spectrum of the propagating pulse created 
additional conditions for evaluating the influence of 
"imperfect" boundary conditions on the waveguide walls. 
Based on the results obtained, the analysis of wave energy 
dissipation at the level of second-order smallness values was 
performed. 
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II. STATEMENT PROBLEM 

Consider a cylindrical waveguide of radius R (fig. 1), 
length L, filled with water. It is known that the type of waves 
propagating along the tube is determined by the nature of the 
excitation of vibrations. Under the conditions of the problem, 
we assume that a flat piston is installed in the initial section 
z = 0. Vibrations of the piston emit a sound wave in the 
waveguide under the action of a given pulse from an 
electromechanical vibrator. The position of the point in the 

waveguide is determined in cylindrical coordinates (r, , z). 

The radiated pulse P1 of the signal passed the distance of 
the section of the pipe filled with water L = 6.5 m, experienced 
a reflection from the "soft" border (the border of the media 
"water-air"), then P2 passed the section filled with water in the 
opposite direction and was registered at the radiation site. The 
total distance covered was 13 m. At the point where the pulse 
was registered, it experienced a reflection from the "hard" 
border (the border was created by a massive iron cover). The 
experiment used a pulse with sinusoidal filling, which allowed 
the calculation to use the formula for the harmonic wave. As a 
result of repeated reflection, the pulse faded. The amplitudes of 
the first and subsequent reflected pulses are shown on fig. 2. 

Energy dissipation was estimated by the pulse attenuation. 
The attenuation coefficient can be estimated from the change in 
the pulse amplitude over a known time (or a known distance). 
Taking into account the speed of sound c0 = 1480 m/s and the 
length of the traveled distance of 13 m, the period of 

registration of re-reflected pulses is i = 0.0088 s. The 
amplitude of the damped oscillations in the plane wave 
approximation is determined by the formula 

p(t) = piexp(-it  k0x) exp( x),    (1) 

where рi – is the amplitude of the initial pulse (at the 
registration point and the rigid wall); 

 =  + ik0 – constant distribution; 

 – dissipation (attenuation of the amplitude per unit path 
length); 
k0 – wave number. 

Dissipation can be defined using the ratio: 

 = (1/2L)×ln(pi/pi+1),   (2) 

where i – the sequential number of the reflected pulse. 

Table 1 is shown the amplitudes of reflected pulses in a 
cylindrical waveguide with different carrier frequency of the 
tone signal. 

The energy calculation shows that, on average, in the 
frequency range, the amplitude of each reflected pulse 
decreases almost twice as compared to the previous one, i.e. 

about 6 dB. Accordingly, the pulse loses approximately  
(W–Wi+1)/Wi = 1 – (Ai+1/Ai)

2
 = 1– (1/2)

2
 = 3/4 parts of initial 

energy. At low frequencies, the attenuation was higher, 
apparently due to the fact that at these frequencies the acoustic 
impedance of the "hard" wall is a complex value. In this case, 
its mass was not large enough to fully reflect the wave, and the 
connection with the waveguide itself and the technological 
binding led to the radiation of part of the energy to the external 
environment. It was difficult to account for such energy losses 
in this experiment (additional recording tools must be used). 
Therefore, we consider only the values at frequencies of 5000 
and 5800 Hz as control values, where in the theoretical 
calculation the wall can be considered absolutely "rigid" with 
infinite impedance. Table 1 is shown that the wave attenuation 
is 0.22–0.24[dB/m].  

III. A THEORETICAL MODEL  

To begin with, let's consider the problem without taking 
into account viscous and heat losses. In this setting, instead of 
the Navier-Stokes equation, we consider the solution of the 
Helmholtz wave equation (3). 

1/r×(rp/r) + 1/r
2
×(

2
p/

2
)+ 

2
p/z

2
+k0

2
p = 0.   (3) 

In general, the equation allows for the existence of an 
infinite number of sound waves in the waveguide, which have 
different shapes and propagation speeds. Using a piston with a 
diameter close to the diameter of the pipe R as a radiator allows 
you to limit the range of possible solutions to the function, 
excluding the azimuth component from the solution 

     (4) 

where pn(r,z,t) = An J0(krnr)×exp(-i(t-kznz). 

The presence of sufficiently thick steel walls allows [3] to 
consider them "absolutely" rigid in the problem of sound wave 
propagation. In other words the impedance of the inner surface 
of the pipe zt is assumed to be infinitely large compared to the 

impedance of the medium z0 = c0.  

.        (5)

 

 

Fig. 1. A cylindrical waveguide filled with water 

 

TABLE 1.  CALCULATION OF THE AVERAGE DISSIPATION 

Frequency, 

Hz 
Amplitudes of reflected pulses, мВ 

, m-1 
1 2 3 4 

800 42 12.5 4.1 1.9 0,05 

2000 29.9 16.1 8.5 4.5 0.04 

4000 24.2 12.9 6.9 3.5 0.04 

5000 11.6 6.0 3.3 2 0.03 

5800 13.5 6.3 3.8 2.3 0.03 
 

 
Fig. 2. Registered pulses 



This condition implies a solution for propagating waves in 
a waveguide. 

.        (6)

 

The zeros of the Bessel function krnR = 0n; 00 = 0; 

01 = 1.220; 02 = 2.223; …determine the solution of equation 
(6). This solution admits the presence of a plane propagating 
wave always in the waveguide, corresponding to the solution at 

00 = 0: 

  

The presence of non-planar propagating sound waves for 
the considered waveguide R = 0.075[m] is possible at 
frequencies higher than some critical one, at which the 
component of the wavenumber in the axial direction becomes a 
real value: 

 
. 

For the considered waveguide of radius R, the first critical 

frequency is f  5900[Hz]. It is the frequency range below this 
critical frequency that is of interest from a practical point of 
view, since it allows us to limit the solution only for a plane 
wave in a multimode waveguide. 

Knowing the propagating modes of vibrations, it is possible 
to calculate the passage and reflection of the acoustic wave 
from the ends of the studied waveguide and estimate the 
energy loss. According to the experimental conditions, on the 
one hand, the pulse was reflected from the "soft" border, on the 
other from the "hard" one. For a plane wave, the reflection 
coefficient can be calculated using a simple formula using the 
ratio of the impedances of the two media. For a "soft" border, 
we get: 

.   (7)

 

Assuming that the energy flux is proportional to the square 
of the amplitude, we can conclude that the proportion of the 
pulse energy (99,9 % of the energy must be reflected back into 
the medium Z0). The complex part of the impedance will 
determine the energy loss due to an inhomogeneous surface 
wave. In this calculation, we consider the effect of this wave on 
additional attenuation negligible and do not evaluate it. 

Thus, the main part of the absorbed wave energy must be 
determined by the boundary conditions on the walls of the 
waveguide. It is obvious that the accuracy of the boundary 
condition (3) will largely determine the propagation conditions 
not only of the plane wave, but also the conditions of energy 
dissipation. 

Note that the impedance of the inner surface of a real 
waveguide is a finite value. In this case, the boundary 
condition (3) can be rewritten as mixed boundary conditions: 

. (8)

 

In the approximation of i /zt<< 1, the roots of equation 
(8) must be close to the values of the roots (6). In other words, 
the boundary frequency above which non-planar waves must 
be taken into account will still be close. At low frequencies, it 
is possible to limit ourselves to considering only the zero 
waveform. Decomposition of the Bessel functions (8) into a 

Taylor series near the root kr0R  00 in the equation leads to 
the expression 

 

From this expression, wave numbers of the zero mode can 
be obtained directly in the approximation of the final value of 
the impedance on the wall surface. 

.                     (9)

 

From equations (4) and (9), we can write an expression for 
the sound pressure and vibrational velocity of a wave in a 
waveguide with "imperfectly" rigid walls in cylindrical 
coordinates: 

 

It can be seen zt   that when equation (10) passes into 
the equation of a plane wave. 

From the obtained expressions (10) it can be seen that the 
front of the propagating wave is quasi-plane, the wave has 
attenuation and its phase velocity differs from the phase 

velocity of the wave in free space. Vz(r, , z, t) – the vibrational 
velocity in the radial direction is not zero on the surface of the 
waveguide walls. Obviously, when calculating viscous and 
heat waves in the boundary layer, it is necessary to take into 
account the influence of the radial component of the velocity. 

The phase velocity and amplitude of the resulting quasi-
plane wave can be estimated from the expression (7): 

.      (11)

 



The wave impedance of a quasi-plane wave when radiated 
by a piston has the form: 

 

.     (12)

 
In this statement of the problem (i /zt<< 1), the values 

p(r, , z, t), V(r, , z, t), cz0, zz0 will determine the desired 
second-order smallness correction for a propagating quasi-
plane wave in a real waveguide with walls close to "absolutely" 
rigid. 

Assuming that the average velocity over the surface of the 
piston in the waveguide must be a constant value for 
vibrations, we introduce a function uz0(t) that depends only on 
time. The sound pressure for the transition wave propagating in 
the waveguide, taking into account the approximations made 
when solving equation (4), can be expressed as: 

. (13) 

In the limit case zt, equation (9) will take the known 
form: 

p (z,t) = c0uz0 (t – z/c0). 

It is obvious that the structure of the acoustic field in a 
cylindrical waveguide with "imperfectly" rigid walls will be 
determined by the impedance of the wall surface, the frequency 
and function of the piston vibrations. The given formula (13) 
allows performing an analytical calculation of a propagating 
pulse in a hydroacoustic waveguide of any shape and obtaining 
a vector of velocities and displacements near the waveguide 
boundaries. 

IV. NUMERICAL MODEL OF PROPAGATION OF A SHORT 

SINUSOIDAL SIGNAL 

Obviously, in the simplest setting, the tone signal can be 
considered. In this case, the integral according to the formula 
(13) is reduced to calculating the signal amplitude at a single 
frequency, which from the physical point of view corresponds 
to the propagation of a sinusoidal signal with a certain 
amplitude and phase velocity determined by the equations (11–
12). During the experiment, the effect of the impedance of the 
waveguide walls is reduced only to determining the correction 
to the phase velocity of the piston wave. The most interesting 
physical processes are that occur during the propagation of 
short (broadband) signals. The results of the analysis of such 
processes are extremely sensitive to the accuracy of setting the 
envelope of the pulse front, the accuracy of setting the initial 
and boundary conditions. To improve the accuracy of the 
comparative analysis, a numerical model of a cylindrical 
waveguide was constructed, which was used in experimental 
studies (fig. 2). 

Figure 3 shows a finite element model of a cylindrical 
waveguide (for clarity, the b sector is cut out in the model ). A 
model of a piston radiator is located at one end of the model, 
and a free border (water-air border) is set at the other end. The 

impedance boundary conditions corresponding to the 
impedance of the inner surface of the waveguide are set on the 
walls of the waveguide. Under the conditions of the problem to 
be solved, they could take values corresponding to elastic 
impedance, purely real impedance, and absolutely rigid 
boundary impedance. To analyze the results obtained and 
compare them with experimental data, the model identified 
four control points (Point_1, Point_2, Point_3, Point_4) located 
1 meter apart. In the experimental hydroacoustic waveguide 
during the experiment, three small hydrophones were located 
near the control point Point_1. 

The shape of the experimentally obtained echo signal 
(fig. 4) under the influence of a short pulse close to the Delta 
function was affected by random fluctuations. In addition, the 
actual envelope of the pulse was known fairly approximately, 
which made some additional errors in the calculation. 

For further research, a short pulse equal to one period of 
oscillation at a frequency f = 2000 [Hz]  

Fig. 5 shows experimental data of a propagating echo 
signal obtained in a waveguide when a short sinusoidal pulse is 
applied to the piston (fig. 4). For clarity, a time interval is 
shown that includes a signal from the emitter and a signal that 
passes along the entire length of the waveguide and is reflected 
from its second end with a free boundary. 

 

Fig. 3. Numerical model of a cylindrical waveguide 

 

 
Fig. 4. A single sinusoidal pulse applied  

to the electrodynamic vibrator 



Fig. 6 shows the spectra of the forward (from the emitter) 
and reverse (reflected from the end) pulse. The analysis shows 
that the spectrum of the reverse pulse is wider and smaller in 
amplitude. Assuming that the medium (the waveguide was 
filled with distilled water) is homogeneous and isotropic, 
possible changes in the pulse propagation speed and its shape 
are possible only from the boundary conditions on the 
waveguide walls. It is obvious that the effect of finite 
impedance value manifests itself in the dispersion rate and the 
change in pulse shape. Of practical interest is the type of 
function describing the frequency dependence. Within the 
framework of the research described in this paper, this was 
done fairly approximately. 

In the original equation (13), an unknown function - the 
impedance of the internal walls of the waveguide determines 
not only the distortion of the pulse shape, but also determines 
the speed of wave propagation. We estimate the speed of wave 
propagation in an experimental waveguide in comparison with 
the speed in free space. The total length of the cylindrical 
waveguide used in the experiment was, with a radiator installed 
at one end and a free "water-air" boundary at the other 
l1 = 6.5 [m]. The hydrophone for fixing the acoustic pulse in 
the waveguide was installed l2 = 0.9 [m] at a distance from the 
emitter. Thus, the direct signal from the emitter to the moment 
of its fixation on the hydrophone passed the distance 
Lpr = 1.2 [m]. The return signal passed the distance l1 = 6.5 [m] 
reflected from the water-air boundary with a change in phase 
and came back to the hydrophone from the opposite side. The 
total distance passed by the reverse pulse was 
Lrev = 6.5+5.3 = 11.8 [m]. The forward and reverse pulses were 
recorded in real time, which allowed us to determine the 
correction to the speed of propagation of the pulse in the 

waveguide in comparison with the speed of sound in a 
boundless medium. Within the accuracy of the hydrophone 
installation, the speed of the propagating quasi-plane wave was 

experimentally equal to cz0  1420–1440 [m/c], which is 
approximately 3% less than the speed of the wave in free 
space. Numerical calculation on a finite element model also 
showed a deceleration of the propagating pulse in a waveguide 
with an "elastic" impedance on the wall surface. An error of 
3% does not allow us to compare the calculated data with the 
experimental data with a sufficient degree of accuracy. 
However, the expression (12) allows us to approximate the 
value of the impedance of the pipe surface. 

  

.  (14) 

This formula is very convenient when using tone signals as 
a pulse. Since in general, the impedance and speed are 
frequency-dependent, which is manifested in the dispersion of 
the speed of sound and distortion of the original wide-field 
pulse. This paper does not present the results of studies using 
tone signals. In this regard, we assume that the changes in the 
spectrum are insignificant for forward and reverse pulses and 
cz0 = const. Equation (13) in this case allows you to move from 
the integral form of the record to a purely linear form (which 
does not take into account the variance). In this case, the 
impedance of the waveguide surface is represented by a purely 

elastic characteristic zt  i/Kt, where Kt – a certain constant 
value characterizes the malleability of the walls. From (12) we 
obtain an expression for the characteristic of the impedance of 
the inner surface of the waveguide in the form: 

   

.      (15)

 

For the waveguide under consideration, the estimate of the 
impedance value under the assumption is: 

zt  1.510
11
i/[Pas/m].  

At the end of the analysis, the analysis of the wave front 
propagating in a waveguide with impedance walls was 
performed.  It is shown (fig. 7–8) calculations of the front of 
the propagating pulse in the waveguide in the approximation of 
"absolutely" rigid walls (fig. 7) and "nonabsolute" rigid walls 
(fig. 8) in the same time frame (tcontrol = 1.25 [mc]). 

In the case of finite impedance on the inner surface of the 
waveguide, the front of the propagating pulse becomes quasi-
plane. An example of numerical calculation of the propagating 
pulse front for a waveguide with different wall impedance is 
shown in fig. 7 and 8. The wave Front (10) depends on the 
frequency and impedance characteristic. However, for a 
hydroacoustic waveguide with rigid walls, the wave front is 
almost flat (deviations do not exceed 1–2%). 

The analysis of the obtained results shows that the pulse 
propagation speed in a waveguide with "absolutely" rigid walls 
is higher than in a waveguide with finite impedance. At the 
same time, the frequency of the isosurfaces shows that the 
shape of the pulse changes during propagation (the pulse is 
blurred). This effect indicates the velocity dispersion 
determined by the wall surface impedance. 

 

Fig. 5. Echo signal in the waveguide when a short 

sinusoidal pulse is applied to the piston 

 

Fig. 6. The spectra of the forward and return signal 



V. CALCULATION OF ENERGY DISSIPATION IN A WAVEGUIDE 

The above assumption for the medium about the 
immutability of entropy does not provide for accounting for the 
mechanisms of dissipative losses in the calculation model. 
However, this condition must be violated in the boundary 
layer. Change in entropy means the presence of irreversible 
processes in the system due to the work of dissipative forces 
that lead to the transition of vibrational energy to the internal 
(thermal) energy of the system. This automatically leads to a 
transition from the Helmholtz equation (1) to a more General 
type of wave equation for the hydrodynamics of compressible 
media – the Navier-Stokes equation. According to the theory of 
hydrodynamics [2], the total energy of the pulse at time t: 

.    (16)
 

The flow of sound energy (acoustic power) through the 
section of the acoustic tube can be estimated as: 

.                      (17) 

Changes in energy are determined by the presence of 
viscous and heat losses 

. (18)

 

The sound pressure and the vibrational velocity vector (10) 
make it possible to estimate the amount of absorbed energy in 
the case of a waveguide boundary with "non-ideal" acoustically 
rigid walls. In general, this solution for a cylindrical waveguide 
is quite cumbersome. For a qualitative evaluation of the result, 

you can use the expressions obtained for a wave propagating in 
a waveguide with rigid walls. In the work of L.D. Landau [2] 
the expression for the fraction of absorbed energy per unit 
distance for a wave propagating in a waveguide with rigid 
walls is obtained as: 

.                  (19) 

Similar in physical sense reasoning in the problem of wave 
damping in a waveguide due to viscous friction forces in the 
near-surface layer was used in his works by S.N. Rzhevkin. For 
a cylindrical waveguide of radius R, an expression for the 
damping coefficient is given in [3]: 

          (20)

 

where 
  

is the formula obtained earlier in
 

the works of Stokes and Helmholtz. 

For media with high thermal conductivity in the works of 
S.N. Rzhevkin [3], an additional correction to the absorption 
coefficient was obtained, which slightly increases the 
coefficient value. However, this and other possible additives do 
not significantly affect the final result of the formula (20). 

The calculated values of the attenuation coefficient 
calculated using formulas (19) and (20) have some differences 
between them. The calculated values of the attenuation 
coefficient for wave propagation in the tube according to the 
formulas from the works of Rzhevkin S.N. and Landau L.D. 
0.1÷0.18 [dB/m] were at frequencies 5000–6000 [Hz]. At the 
same time, measurements in the hydroacoustic waveguide 
showed a value (table 1) of approximately 0.22÷0.24 [dB/m]. 
The formulas (19–20) are obtained in the approximation of 
absolutely rigid walls and do not take into account exactly the 
mechanism of energy dissipation for the considered waveguide 
with real wall impedance. However, for the considered 
waveguide, it is possible to obtain an estimate with a high 
degree of accuracy. 

CONCLUSION 

In this paper, studies of wave processes in a cylindrical 
waveguide are performed. The propagation and attenuation of a 
plane wave in a waveguide with "imperfectly" rigid walls is 
considered. Analytical and numerical analysis of the change in 
the wave front is performed taking into account the final 
impedance of the waveguide walls. The estimation of wave 
absorption due to thermoacoustic energy conversion in 
boundary acoustic layers in the approximation of "absolutely" 
rigid walls is made. 

Experimental results of energy dissipation for a real 
waveguide and calculated results of energy dissipation for a 
waveguide with absolutely rigid walls are shown. The 
calculated data correspond fairly accurately to the experimental 
results for the waveguide. However, the calculated data were 
lower than the experimental values. Taking into account the 
impedance on the inner wall of the waveguide will allow us to 

 

Fig. 8. The wave front (ISO surfaces of equal pressure)  

in a waveguide with "non- absolutely " rigid walls 

 

Fig. 7. The wave front (ISO surfaces of equal pressure)  

in a waveguide with "absolutely" rigid walls 

 



Supplement the calculation model and increase the accuracy of 
calculating the dissipative losses of the acoustic system of the 
waveguide. 
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