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Abstract
Variational inference and MCMC methods have
been two popular methods in order to sample
from a posterior distribution. Whereas the for-
mer extends the computation feasibility to higher
dimension, the latter takes advantage of nice con-
vergence properties to the exact posterior distri-
bution. In this work we’ll draw the parallel be-
tween a famous MCMC scheme called the In-
dependent Metropolis Hastings and Variational
inference. We’ll explain our work on both Lin-
ear and Non-linear Gaussian cases. In the non
linear case, a new proposal will be introduced
motivated by a faster convergence of the Markov
chain.

1. Introduction
We consider a complete model (y,z) where the realizations
of y are observed and z is the missing data. When the com-
plete model p(y, z, θ) is parametric, the goal is to compute
the maximum likelihood (ML) estimate of the parameter of
this joint distribution.

θML = arg max
θ
p(y, θ) (1)

When the direct derivation of this expression is hard, sev-
eral methods use the complete model to iteratively find the
quantity of interest. The EM algorithm has been the object
of considerable interest since its presentation by Dempster,
Laird and Rubin in 1977. It has been relatively effective in
context of maximum likelihood estimation of parameters
of incomplete model (unobserved or more). This algorithm
is monotonic in likelihood making it a stable tool to work
with.

Yet, when the quantity computed at the E-step involves in-
feasible computations, new methods have been developed
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in order to by-pass the issue. The stochastic EM algorithm
(Celeux & Diebolt, 1985) has been proposed in the context
of mixture problem and involves splitting the E-step in a
first simulation of the latent variables step and then a direct
evaluation of the complete log model. A Robbins Monroe
type approximation can be used to evaluate that latter quan-
tity after the simulation step, that is the SAEM algorithm
(Lavielle, 1993; E.Moulines, 2007).

2. Model and notations
We study a classical missing data problem where:

• The observed data is a continuous random variable
Y = (Yi, 1 ≤ i ≤ N) that has observed values
(yi, 1 ≤ i ≤ N) in Y

• The latent data is a continuous random variable Z =
(Zi, 1 ≤ i ≤ N) that takes on the values (zi, 1 ≤ i ≤
N) in Z and consists in N independent variables

• The components Yi are generated independently of
each other and from their corresponding Zi

• log p(y, θ) is the incomplete data log-likelihood

• log p(y, z, θ) is the complete data log-likelihood and
obtained by augmenting the observed data with the
missing data

• We’ll call PYi,Zi,θ and PZi|Yi,θ the probability dis-
tributions associated to the densities p(yi, zi, θ) and
p(zi|yi, θ)

3. Maximum likelihood estimation
Our problem joins a familiar class of problem in compu-
tational statistics that consists in maximizing the following
quantity:

log p(y, θ) =

∫
log p(y, z, θ)µ(dz) (2)

When this quantity can not be computed in closed form,
many algorithms use iterative procedure to find the
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maximum likelihood parameter estimate. Among those
techniques, the EM algorithm (Dempster & Rubin, 1977).
This two steps algorithm consists in maximizing an
auxiliary quantity that is the expectation of the complete
log-likelihood with respect to the conditional distribution
over the missing variable conditioned on the current
parameter estimate (also called the posterior distribution).
Several alternatives have been developed throughout the
past decades. Most of them alleviate the computation of
the expectation using approximates. The MCEM algorithm
(Celeux & Diebolt, 1985) approximate this quantity by a
Monte Carlo integration, the SAEM algorithm (B. Delyon
& Moulines, 1999) uses a stochastic approximation of this
quantity.

In those both cases, we need to be able to simulate from
the posterior distribution P (Zi|Yi, θ). In most of the
cases, this probability density function is intractable. As
a result, variants include MCMC or Variational Infer-
ence engines to sample from this distribution. That’s
where we are focusing. In the sequel, the parameter θ is
thus fixed to a certain value θ0 that will remains unchanged.

4. Background on Posterior sampling
4.1. Independent Metropolis Hastings

Metropolis-Hastings are a powerful class of inference algo-
rithms that belong to the family of MCMC methods. This
kind of algorithm constructs a Markov Chain by proposing
candidate states sampled from a proposal distribution and
then accepting or rejecting it according to the MH-step (see
Algorithm 1 for detail). When this proposal is independent
of the current state of the chain, we call the algorithm In-
dependent Metropolis Hastings.

Algorithm 1 Independent Metropolis Hastings
Input: initial state Z0, proposal distribution q, number
of iterations M , target measure π
for m = 1 to M do
Zm ∼ q(Z)

α(Zm, Zm−1) = π(Zm)q(Zm−1)
π(Zm−1)q(Zm)

Accept Zm with probability min(α, 1)
end for

We will explicitly write our target measure π in the
different cases we’ll deal with in the sequel.

4.2. Variational Inference

Variational methods approximates those intractable distri-
butions by finding the best distribution minimizing a diver-

gence criteria. Let D be a family of distributions over the
latent variable Zi. Variational Methods solve the following
optimization problem:

q∗ = arg min
q∈D

DKL(q||PZi|Yi,θ0) (3)

Which simplifies to:

q∗ = arg max
q∈D
L(q) (4)

Where L(q) = Eq(log p(yi, zi, θ0)) − Eq(log q(zi)) is
called the ELBO (Evidence Lower BOund).

The practical implementation of such an algorithm consist-
ing in first, restricting the search space to a family of known
distributions (in our case the Gaussian family). Then, per-
forming a Monte Carlo integration of the gradient of the
ELBO, see (R. Ranganath & Blei, 2013) and finally per-
forming a gradient ascent as described by Algorithm 2. We
restrict ourselves to the family of Gaussian distributions of
mean µ and variance Γ. We run the variational inference
on the mean and fix the value of Γ. As a result the prob-
lem now is written, if we denote qµ the Gaussian density of
mean µ:

µ∗ = arg max
µ∈R
L(µ) (5)

Where L(µ) = Eqµ(log p(yi, zi, θ0))− Eqµ(log qµ(zi))

Algorithm 2 Gradient Descent for VI
Input: number of iterations K, initial µ0, stepsize ρ
Initialize µ0 = µ0.
for k = 1 to K do
µk < −µk−1 + ρ∇µL

end for
Return µK

5. Mixed effect models
In our domain of applications, mainly pharmacokinetic and
pharmacodynamic (PK-PD) data analysis, we are mostly
facing mixed effects models:

yij = f(ψi) + εij (6)

Where f : Rd → R is the structural model and is a func-
tion of ψi that can be linear or not, ψi ∈ Rd are the indi-
vidual parameters, yij are the observations for individual
i and εij ∼ N (0,Σ). There can be more than one obser-
vation (subscript j) per individual. The parameters ψi are
composed of a fixed part ψpop and a random one ηi:

ψi = ψpop + ηi (7)
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where ηi ∼ N (0,Ω).

In this context, our goal is to sample from the pos-
terior P (ψi|yi, θ0) for all individuals. For simplicity
we’ll consider the centered random variable ηi in our
study. Thus, the goal is to sample from P (ηi|yi, θ0) =
P (yi|ηi, θ0)P (ηi). For the purpose of the stochastic EM
algorithm we can easily shift to ψi = M(ηi, ψpop).
We’ll now separate the cases where the structural model is
linear or not and explain how MCMC are Variational Infer-
ence can be applied to our problem.

5.1. Gaussian linear case

For simplicity, we omit the number of observations per in-
dividual. The model can be written as:

yi = Aiψi + εi (8)

Where Ai is a design matrix and ψi = ψpop + ηi. In this
case, the true posterior is tractable and we can easily calcu-
late that:

ηi|yi ∼ N (m,G) (9)

Wherem = ΓA′iΣ
−1(yi−Aiψpop) andG = (A′iΣ

−1Ai+
Ω−1)−1

In this case, we can sample directly from the true poste-
rior distribution. Thus, using MCMC or Variational Infer-
ence has no sense. We can verify that those both methods,
whether we propose in the context of an MCMC with the
true posterior or we apply a gradient descent over the mean
of a candidate distribution, will converge to the right distri-
bution.

5.2. Gaussian non linear case

The model can be written as:

yi = f(ψi) + εi (10)

Where f : Rd → R is a non linear function and ψi =
ψpop + ηi. The posterior distribution P (ηi|yi, θ0) is in-
tractable in this case.
We are constructing a new independent proposal distribu-
tion for our Metropolis Hastings algorithm based on the
linearization of this model around the maximum a posteri-
ori (MAP) ψ̂i.

ψ̂i = arg max
ψi

P (ψi|yi; θ0) (11)

which can rewrite, considering the distribution of the com-
ponents of the model:

ψ̂i = arg max
ψi

(yi − f(ψi))
′Σ−1(yi − f(ψi))

+ (ψi − ψpop)′Ω−1(ψi − ψpop)
(12)

The Taylor expansion around this point gives the following
expression:

yi = f(ψ̂i) +∇ψf(ψ̂i)(ψi − ψ̂i) + εi (13)

Writing that ψi = ψpop + ηi and developing the relation in
order to have a linear expression in ηi, we obtain:

yi−f(ψ̂i)−∇ψf(ψ̂i)(ψpop−ψ̂i) = ∇ψf(ψ̂i)ηi+εi (14)

We can now write the posterior distribution ηi|yi and show
that ηi|yi ∼ N (µlin,Γlin) where µlin = E(ηi|yi) = η̂i =

ψ̂i − ψpop and Γ−1lin = ∇ψf(ψ̂i)
′Σ−1∇ψf(ψ̂i) + Ω−1

This new distribution will serve as an independent (inde-
pendent of the current state of the chain since always cen-
tered in η̂i) proposal for our MH algorithm.
The other aspect we want to develop is to know if a varia-
tional approach where our candidate distribution would be
taken in the family of the Gaussian distributions with vari-
ance Γlin and with mean µ on which we’ll do perform the
gradient ascent, would converge to the same mean η̂i. In
other words, we want to highlight the equivalence of those
two methods based on the same approximation (that the
proposal is a Gaussian distribution even though, due to the
non-linearity of the model, the true posterior does not be-
long to a known family of distribution).

6. Experiments
6.1. One-compartment model for Theophylline

This section develops the application of those two meth-
ods on a Pharmacokinetics (PK) example. Beforehand, the
standard approach is to approximate the body as a simple
compartment models. In this example we will focus on
a one-compartment model for theophylline following oral
dose D at time t = 0 leading to description of concentra-
tion y(ti) at time ti ≥ 0 (i varies from 1 to N and denote
the individual of the population):

yi = y(ti) = f(ψi) + εi (15)

With :

f(ψi) =
D(ka)i

Vi((ka)i − (Cl)i/Vi)
(e(−(ka)iti) − e(−

(Cl)i
Vi

ti))

(16)
Where (ka)i is the fractional rate of absorption for individ-
ual i, (Cl)i is the clearance rate for individual i and Vi is
the volume of distribution for individual i and D is the dose
injected.
In our notation, the complete model is p(yi, ψi, θ0) where
ψi = ((ka)i, (Cl)i, Vi) is the vector of individual param-
eters where each component is composed of a fixed effect
term and a random effect (a centered Gaussian with same
variance Ω) and θ0 = (Ω0,Σ0 (with εi ∼ N (0,Σ0) and
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(ka)i = (ka)pop + η(ka)i and η(ka)i ∼ N (0,Ω0)).
Our goal is to simulate for instance from the posterior dis-
tribution P ((ka)i|yi, θ0). As we said above we can work
on the distribution P (η(ka)i |yi, θ0) and equivalently for the
others parameters.
Following the method of linearization of this model as de-
scribed above, we obtain faster convergence of the MH al-
gorithm with this new independent proposal than our ref-
erence Random Walk Metropolis consisting in three suc-
cessive kernels proposing with a Gaussian centered in the
current state of the chain and whose variance adapts with
respect to the optimum acceptance rate.

Figure 1. MCMC samples. RWM in blue and Independent MH
with our new proposal in black. 1000 iterations of MCMC iter-
ations. Plotting the posterior distribution P (η(ka)i |yi, θ0) for a
random individual i

7. Discussion
This work is still in progress. Our goals are multiple. First
of all, following (E.Kuhn, 2015) setting convergence prop-
erties for the SAEM algorithm coupled with an MCMC
procedure, we are aiming at setting up similar properties for
the SAEM coupled with a variational inference procedure
(See also (A. Gunawardana, 2005) for the Variational EM
algorithm). Moreover, we would like to theoretically draw
some parallels between those two methods. And finally,
many PK-PD models consider not continuous but categori-
cal or count data. In this case, an alternative to linearization
has to be found in order to construct such a proposal.
Also, in our context of applying this method to the SAEM

algorithm, while calculating the MAP once for one MCMC
run is not costly, doing it K times (K being the number of
SAEM iterations) can be. We are investigating a way to
calculate the MAP once at the beginning and then apply a
single step of gradient descent at each SAEM iteration in
order to slowly move the MAP estimate after each update
of the posterior distribution towards a better approximation.
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Appendices
A. Accelerate a stochastic version of the EM

algorithm using this new proposal
Using (Y., 2007) first order conditional estimation approx-
imation of the posterior distribution as an independent pro-
posal in our MCMC procedure, can actually accelerate
our algorithm, the Stochastic Approximation of the EM
(SAEM) in the context of PK-PD models. In the sequel,
we will study the behavior of this algorithm on a PK-PD
model.

A.1. Yield Model

The data comes from 37 winter wheat experiments carried
out between 1990 and 1996 on commercial farms near
Paris, France. Each experiment was from a different site.
Two soil types were represented, a loam soil and a chalky
soil. Common winter wheat varieties were used. Each
experiment consisted of five to eight different nitrogen
fertiliser rates, for a total of 224 nitrogen treatments.
Nitrogen fertilizer was applied in two applications during
the growing season. For each nitrogen treatment, grain
yield (adjusted to 150 g.kg-1 grain moisture content) was
measured. In addition, end-of-winter mineral soil nitrogen
(NO3- plus NH4+) in the 0 to 90 cm layer was measured
on each site-year during February when the crops were
tillering. Yield and end-of-winter mineral soil nitrogen
measurements were in the ranges 3.44-11.54 t.ha-1 , and
40-180 kg.ha-1 respectively.
In this problem the sites are denoted by the index ”i”
and are the individuals in the dataset, the predictor is the
dosage, the response is the grain yield and the covariate is
the soil nitrogen.

We use a Linear Plateau model here and the the structural
model is:

f(ψi) =

{
(Ymax)i +Bi ∗ (ti − (Xmax)i) + εi, if t ≥ (Xmax)i

(Ymax)i + εi, otherwise
(17)

Where ψi = ((Xmax)i, (Ymax)i, Bi) and εi ∼ N (0, σ2).

The SAEM algorithm consists in finding the maximum
likelihood parameter estimate by first simulating the latent
variable, here the variable ψi according to the posterior dis-
tribution Pψi|yi,θk at an iteration k and for all individuals i.
Here, when the posterior is intractable we use an MCMC
procedure. As said above, we are doing the MCMC over
the random variable ηi such that:

ψi = ψpop + ηi (18)

With ψpop being the fixed parameters and ηi ∼ N (0,Ω)

the random effects.
The MLE problem consists then
in finding the vector parameter
((Xmax)pop, (Ymax)pop, Bpop, ωXmax , ωYmax , ωB , σ)
The reference algorithm, called the Random Walk
Metropolis SAEM (RWM) consists in doing 6 RWM
transition kernel proposing a candidate with the following
kernel:

(ηi)candidate ∼ N ((ηi)current,Ω) (19)

The first algorithm we implemented consists in doing 6
transition kernel proposing a candidate with the new ker-
nel as follow:

(ηi)candidate ∼ N (η̂i, (∇ψf(ψ̂i)
′Σ−1∇ψf(ψ̂i)+Ω−1)−1)

(20)
Where ψ̂i = ψpop + η̂i is the MAP estimate that needs to
be calculated at each SAEM parameter update.
Figure A.1 shows how fast this new algorithm is compared
to the reference.
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Figure 2. SAEM parameter estimates. In green the parameter es-
timate of the reference SAEM and in red the accelerated one using
the new proposal

The calculation of the MAP being very costly we sug-
gest an algorithm that consists in doing 6 transition kernel
proposing a candidate with the new kernel as above during
the first three iterations and then switching back to the reg-
ular RWM SAEM. See Figure A.1 to compare the reference
SAEM and the new two algorithms.
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Figure 3. SAEM parameter estimates. In blue the parameter esti-
mate of the reference SAEM, in red the algorithm computing the
MAP at each iteration and in green the accelerated one using the
new proposal for the first 3 iterations and switching to the regular
one beyond

A.2. Discussion

Another work in progress towards this acceleration of the
SAEM algorithm consists in calculating the MAP once dur-
ing the first iteration of the SAEM and then moving the
maximum a posteriori estimate towards the next one using
a gradient descent step. If ψ̂1 is the MAP estimate at the
first iteration of the SAEM, when θ = θ1, then for iteration
k

ψ̂k = ψ̂k−1 + ρ∇p(Ψ|y, θk−1) (21)

This has been implemented but the results are not satisfy-
ing. The tuning of the stepsize ρ and the number of gradient
descent steps could improve the convergence properties.


