
EasyChair Preprint
№ 9544

Distributed Computing & Smart City Services

Sudirgha Chakma, Annajiat Alim Rasel and Md Sabbir Hossain

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 5, 2023

Distributed Computing & Smart City Services

 Sudirgha Chakma Annajiat Alim Rasel

Department of Computer Science and Engineering Department of Computer Science and Engineering

 BRAC University BRAC University

Dhaka, Bangladesh Dhaka, Bangladesh

 Sudirgha.chakma@g.bracu.ac.bd annajiat@bracu.ac.bd

 MD Sabbir Hossain

Department of Computer Science and Engineering

 BRAC University

Dhaka, Bangladesh

 Sabbir.hossain@bracu.ac.bd

Abstract: The widespread grow of big data and the

evolution of Internet of Things (IoT) technologies enable

cities to obtain valuable intelligence from a large amount of

real-time produced data. In a Smart City various IoT

devices generate data continuously which needs to be

analyzed within a short period of time, using some big data

technique. In this paper, we examine applicability of

employing distributed stream processing frameworks at the

data processing layer of Smart City and appraising the

current state of their adoption and maturity among the

Smart City use cases. Our experiments focuses on

evaluating the performance of three SDPSs, namely

Apache Storm, Apache Spark Streaming, and Apache

Flink. According to our obtained results, choosing proper

framework at the data analytics layer of a Smart City,

depends on characteristics of the target IoT applications.

Finally, we present a category of applications that suit each

framework.

Keywords

Smart City, Internet of Things, Big Data, Distributed

Computing.

1. INTRODUCTION

Now smart cities are a new amount of urbanization of the

digital services. The smart city concept is a way to make

digital solution and more inclusive in transportation,

education, advanced healthcare and many other aspects of

our daily life. Smart cities can promote our lifestyle, many

innovation and others technology that makes smart cities

very efficient. For example wind turbines are used to get

power in street light as well as our home also. By the using

of bicycles is very essential for us to ignore the

environment pollution all around the city. With unidentified

data and services the transformation to digital cities often

results in applications and data soils.

In a Smart City generated data normally has the following

characteristics:

• Large volumes of data: the amount of real-time

generated data by different applications in a Smart City can

be in order of terabytes.

• Heterogeneous data sources: in Smart Cities, the data

sources are diverse; for example, there are many sensors

data, RFID data, cameras data, human generated data, and

so on.

• Heterogeneous data types: collected data by different

devices are different in format, packet size, required

precision and arrival time.

1.1 Smart city

A smart city is a municipality that uses information and

communication technologies to increase operational

efficiency, share information with the public and improve

both the quality of government services and citizen welfare.

A smart city success depends on its ability to form a strong

relationship between the government including its

bureaucracy and regulations and the private sector. The

relationship is necessary because most of the work that is

done to create and maintain a digital, data-driven

environment occurs outside of the government. Suveillance

equipment for busy streets could include sensors from one

company, cameras from another and a server from yet

another.

1.2 Features of a smart city

Any area of city management can be incorporated into a

smart city initiative. For example is the smart parking meter

that uses an application to help drivers find available

parking spaces without crowded city blocks. The smart

meter also enables digital payment so there is no risk of

coming up short of coins for the meter.

Also in the transportation area, smart traffic management is

used to monitor and analyze traffic flows in order to

optimize streetlight and prevent roadways from becoming

too congested based on time of rush hour schedules.

mailto:Sudirgha.chakma@g.bracu.ac.bd
mailto:annajiat@bracu.ac.bd
mailto:Sabbir.hossain@bracu.ac.bd

Smart city technology is increasingly being used to

improve public safety from monitoring areas of high crime

to improving emergency preparedness with sensors. For

example smart sensors can be critical components of an

early warning system before droughts, floods, landslides or

hurricanes.

1.3 System Architecture for smart city

The system structure that integrates big data into Smart

City can be considered as bellow. Layers in this

architecture are similar to IoT system architecture layers

and can be divided as follow:

1. Device layer: set of sensors, RFID, cameras, and other

devices that capture data continuously and are connected

via a network.

2. Data collection layer: a collection of unstructured data

captured by devices and stored in big data store systems

such as Cassandra, Hbase, MangDB, and Redis.

3. Data processing layer: In this layer, the stored data are

processed using batch or stream distributed processing

engines like Hadoop, Spark, Storm, and Flink.

4. Application service layer: Here many applications such

as intelligent traffic management, water and electricity

monitoring, disaster discovery, fraud detection and web

display analysis are provided. In this layer people and

machines directly interact with each other.

The goal of this survey is to examine applicability of

employing distributed computing processing frameworks at

the data processing layer of smart city.

 Fig 1: System architecture for smart city

2. Evaluation

There are many distributed stream processing frameworks

which can be employed as the data analytics layer of IoT

applications in Smart Cities. Apache Storm, Apache Spark,

and Apache Flink are the most popular DSPFs for stream

processing and in this section we have evaluated these three

open source and community driven frameworks. To

compare the performance of DSPFs we measured end-to-

end latency and throughput as the major metrics of

evaluation. Here end-to-end latency is the spent time for a

tuple to be completely processed by framework and

throughput is the number of tuples that frameworks can

process in a given amount of time.

2.1 Experimental Setup

For our experimental evaluation, we have set up a cluster

with 9 machines. Table 1 shows the specification of master

and worker nodes. Machine one is the master node which

runs job manager and its corresponding demons, and all

employed worker nodes have same characteristics and are

from type two. In all experiments we have used Apache

Storm 0.10.0, Apache Flink 1.2.0 and Spark 2.2.1 on top of

Ubuntu 16.04 operating system.

2.2 Benchmark Application

The benchmark program is a sample IoT application. In this

program each incoming tuple is processed step by the

following operations respectively.

Source: This component reads tuples from Kafka message

broker and prepares them as standard data units according

to the DSPF’s data processing model.

Deserialize: Divides the input JSON string to some

meaningful fields.

Filter: Filters out irrelevant tuples based on their type.

Projection: Remove unnecessary fields.

Join: Joins tuples by a specific field with its associated

information of another field.

Count: Take a windowed count of tuples per joined field

and store them.

2.3 Scalability Evaluation

To observe behavior of DSPFs under different loads we

have run benchmark with a range of input rates. The rate at

which data source emitted data tuples into the processing

system is varied from 20k tuples/sec to 560k tuples/sec. For

each input rate, benchmark application is executed for 100

minutes and end-to-end latencies are measured. To make

sense about constancy of DSPFs the 99th percentile latency

is calculated at each rate and the values are illustrated in

figure 10. By placing resource utilizations of all DSPFs

under scrutiny, we realized Flink is more network intensive

than other frameworks while its CPU usage is less than

both Storm and Spark. As we can see in figure 2 and 3

Flink has stable performance while input rate is increasing,

but at certain rate the network gets bottleneck and its

latency become worse than both Storm and Storm no-Ack.

These results say while network resources do not get

bottleneck Flink provides more stable response time and its

99th percentile latency value says its better solution for

hard real-time applications. On the other hand, Spark

Streaming latency strongly depends on input rate. It would

not be good choose for application with variable data load

like network monitoring. With acking disabled, Storm has

better performance and provides more reliable response

times at high throughput. However, in this conditions the

ability to handle failures is disabled. The last experiment is

related to scaling ability of intended frameworks. Here we

increased cluster size by adding more worker nodes from 2

to 8. Figure 4 and 5 shows scale out a distributed system

for smart city.

Looking at these graphs we can see Flink has worse

scalability and its latency and throughput have few

improvements when the number of worker nodes is

increased. Storm and Spark beat Flink in terms of latency

and throughput respectively for bigger cluster. Both Storm

and Spark have near linear behavior in terms of scalability

but Storm scales even better than Spark and behaves almost

linear when there is no acking mechanism.

 Fig 2: Average latency comparison

 Fig 3: Latency comparison

Fig 4: Average latency comparison for different number

Fig 5: Comparison for different number of worker nodes

3. Conclusion

Collections of large amount of IoT devices and objects are

producing huge amount of data in Smart Cities which

requires being processed immediately. Big data analytics

tools have the capacity to handle large volumes of data

generated from IoT devices that create a continuous stream

of information. There are plenty of big data processing

platforms which each one is designed for special purposes.

At the age of IoT and Smart Cities it is interesting to

compare the behavior of available distributed stream

processing frameworks and examine the applicability of

employing them to process high volume of data generated

in Smart Cities.

References

1. “Apahe Kafka: A distributed Streaming

Paltform.” [Online]. Available:

http://kafka.apache.org/. [Accessed: 12-Feb-

2018].

2. F. Chen, P. Deng, J. Wan, D. Zhang, A. V.

Vasilakos, and X. Rong, “Data mining for the

internet of things: Literature review and

challenges,” Int. J. Distrib. Sens. Networks, vol.

2015, no. i, 2015.

3. M. Zaharia et al., “Apache Spark: a unified

engine for big data processing,” Commun. ACM,

vol. 59, no. 11, pp. 56–65, 2016.

4. G. Hesse and M. Lorenz, “Conceptual Survey on

Data Stream Processing Systems,” 2015 IEEE

21st Int. Conf. Parallel Distrib. Syst., pp. 797–

802, 2015

