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Abstract—With the massive explosion of social media platforms
such as Twitter and Instagram, people everyday share billions of
multimedia posts, containing images and text. Typically, text in
these posts is short, informal and noisy, leading to ambiguities
which can be resolved using images. In this paper we will
explore text-centric Named Entity Recognition task on these
multimedia posts. We propose an end to end model which
learns a joint representation of a text and an image. Our model
extends multi-dimensional self-attention technique, where now
image helps to enhance relationship between words. Experiments
show that our model is capable of capturing both textual and
visual contexts with greater accuracy, achieving state-of-the-art
results on Twitter multimodal Named Entity Recognition dataset.

Index Terms—Multimodal Named Entity Recognition; Self-
Attention; Gated Fusion;

I. INTRODUCTION

Recent years have seen a surge in multimodal data con-
taining various media types. Typically, users combine image,
text, audio or video data to express views on a social media
platforms. The combination of these media types has been
extensively studied to solve various tasks including classifica-
tion [1], [2], [3], [4], cross-modal retrieval [5], [6] semantic
relatedness [7], [8] and Visual Question Answering (VQA) [9],
[10]. Recently, works [11], [12] and [13] combined text and
image in a multimodal approach for text Named Entity Recog-
nition (NER) problem [14]. Typically, the text component of
a NER multimodal problem is challenging due to informal
language, slang and typos, etc. [14]. These attributes make the
task more challenging, compared to traditional NER. Moreover
there are some ambiguous cases that can only be resolved with
visual context as shown in Fig. 1. If we consider only the
text in the first example “My daughter got 1 place in Apple
valley Tags gymnastics”, Apple is recognized as the name of
an Organization, but, in this tweet, Apple should be labeled as
Location. Similarly, the text in the second example “Apple’s
latest iOS update is bad for advertisers”, Apple is wrongly
recognized as the name of an Organization. In both cases,
the disambiguation of the text is a non-trivial task, without
considering the visual context.

In this work, we propose a novel neural network architecture
which leverages on visual context to recognize named entities.
We combine character and word embeddings to handle charac-
teristics of NER textual component. In addition, self-attention
mechanism is extended to capture relationships between two

My daughter got 1
place in [Apple valley
LOC] Tags gymnastics

[Apple ORG] ’s latest [iOS OTHERS] up-
date is bad for advertisers

Fig. 1: Two NER multimodal examples show how some
entities in the text can be correctly tagged in combination with
visual information. Looking only at the text, the word Apple
is ambiguous in the text description on the left, because it can
be interpreted as Location (LOC) or as Organization (ORG).

words and image regions, unlike previous works [11], [13]
which used only single words to capture visual attention.
Finally, we introduce a gated multimodal fusion module to
select information dynamically from textual and visual fea-
tures. Intuitively, our model captures two forms of interactions:
intra-modal and cross-modal interactions.1 We achieved state-
of-the-art results on NER multimodal dataset [11]. In addition,
we performed extensive experiments to show the effectiveness
of the proposed model. Our main contributions are:
• introduction of an end-to-end model based on attention

only that jointly learns intra and cross-modal dependen-
cies, enhancing relationship of two words;

• state-of-the-art results on NER multimodal dataset [11].

II. RELATED WORK

In this section, we summarize relevant background on
previous works on attention techniques and multimodal NER.
Attention Techniques. Attention techniques allow models to
focus on parts of visual or textual inputs of a task. Visual
attention models selectively pay attention to small regions
of an image to extract features. On the other hand, textual
attention techniques find semantic or syntactic alignments in
handling long-term dependencies. Attention techniques have

1Intra-modal interactions deal within same modality, whereas cross-modal
captures interaction between modalities.



Fig. 2: (a) A neural representation of the additive attention
described in Eq. (1), for two word embeddings q and xi. (b)
The additive multi-dimensional attention described in Eq. (5).

been extensively employed to vision and text related tasks,
such as Image Captioning [15], VQA [10], Cross-Modal
Retrieval [16] NER [11], [12], [13].
Multimodal Named Entity Recognition. NER task for
short and noisy texts has been extensively studied in the
literature [17], [18]. Recent years have seen an interest in
capturing visual context from social media posts to improve
this task [11], [12], [13]. These works used bi-directional Long
Short Term Memory (LSTM) networks to extract features from
a sequence of words. The work in [11] captures interactions
between words and an image in a bi-directional way. However,
it represents this interaction in a uni-directional manner. In our
work, we extended multi-dimensional attention to jointly learn
intra and cross-modal dependencies.

III. PROPOSED MODEL

In this paper we propose a novel architecture, inspired from
Disan [19], to learn a joint representation of text and image for
multimodal NER. Our model improves the intra-text attention
to learn enhanced representations exploiting the relevancy
with images. Instead of learning text representations separately
from textual context and then leveraging on image informa-
tion [11] and [13], our model jointly learns shared semantics
between intra-text representation and visual features. In next
subsections, we first explain each module of our network, and
then, the proposed end to end model, as shown in Fig. 3.

A. Attention
The purpose of the attention module is to compute an align-

ment score between elements coming from different sources.
In Natural Language Processing, given a sequence of word
embeddings x = [x1, x2, ..., xn] and the embedding of a query
q, with xi, q ∈ Rde , the alignment score between xi and q can
be calculated using the common additive attention:

f(xi, q) = waσ(xiWx + qWq) (1)

where σ is an activation function, wa is a vector of weights
and Wq , Wx are weights matrices. A graphical representation
of the additive attention is available in Fig. 2(a). Furthermore,
we use a special case of attention called self attention in which
both elements q and xi come from the same source.
f(xi, q) is a scalar score, which determines how important

xi is to a query q. Alignment score between q and all tokens
becomes:

a = [f(x1, q), . . . , f(xn, q)] (2)

Then, a probability distribution p(z | x, q) is calculated over
a by applying softmax. This gives a measure on how much
the token xi ∈ x is important to a query q.

p(z | x, q) = softmax(a) (3)

The final output we obtain from attention vector a is the
weighted sum of all tokens in x

C =

n∑
i=1

p(z = i | x, q)xi (4)

that is the context vector for a query q.

B. Multi-Dimensional Attention

Multi-dimensional attention [19] proposed for self atten-
tion, is an additional attention technique which computes the
feature-wise score vector f̂(xi, q) described in Eq. (5) instead
of computing the scalar score shown in Eq. (1).

f̂(xi, q) = Waσ(xiWx + qWq) (5)

where f̂(xi, q) ∈ Rde is a vector with the same length as
xi, and Wa, Wq , Wx ∈ Rde×de are the weight matrices.

Softmax is applied to the output function f̂ to compute
categorical distribution p(z | x, q) over all tokens.

To find the importance of each feature k in a word em-
bedding xi, f̂(xi, q) becomes [f̂(xi, q)]k and the categorical
distribution is calculated as:

Pki = p(zk = i | x, q) = softmax([f̂(xi, q)]k) (6)

Thus the final context becomes:

C =
[ n∑

i=1

Pkixki

]de

k=1
(7)

The multi-dimensional attention defined in Eq. (5) is known
as ”token2token” self attention. It explores dependency be-
tween elements of the same source, i.e. query q and word xi
from a single source x.

C. Image Feature extraction

In order to obtain features F from an image I we use a
pretrained VGG-19 model. We extracted features of different
image regions from the last pooling layer which has a shape
of 7 × 7 × 512. To simplify the calculations, we resized it
to 49 × 512. We have N = 49 regions with di = 512 as
dimension for each feature vector Fj with j ∈ [1, . . . , N ].
Regional features of a given image are represented by the
matrix F = V GG(I).

D. Character-based representation

Text extracted from social media is usually informal. In
addition, it contains many out of vocabulary words. Character
level features can play a crucial role in handling such text. We
use a 2D Convolutional Neural Network to learn character
embeddings. A word w is transformed into a sequence of
characters c = [c1, c2, ..., cn] where n is the word length.
A convolutional operation of filter size 1 × k is applied to



Fig. 3: End-to-end Multi-Dimensional Attention based model
improving intra-modal attention using visual context for mul-
timodal NER.

the matrix W , where W ∈ Rde×n and de is the character
embedding size. Then, we compute column-wise maximum
operation to get the embedding for word w.

E. Attention Guided Visual Attention

Our proposed model uses alignment score between two
textual tokens to compute cross-modal attention, show in
Fig. 4. Given a word and query q, their alignment score is
calculated using Eq. (5).

at = f̂(xi, q) (8)

where at is a feature-wise score vector with same length of xi.
We calculate attention between at and image feature matrix
F .

av(at, Fj) = Wvσ(atWt + FjWi) (9)

where av(at, Fj) is a vector representing a single row of the
visual attention scores matrix between at and F , at ∈ Rde ,
Fj ∈ Rdi×N , N is number of image regions, Wi ∈ Rdi×de ,
Wt, Wv ∈ Rde×de are the weight matrices. To obtain the final
visual attention matrix, we compute av , such that av ∈ Rde×N

Then we normalize the scores av by applying Eq. (6) to get
a probability distribution (columns-wise) over all regions of
image.

P (av) = softmax(av) (10)

The final output is a element-wise product between p(av)
and F .

Cv =

n∑
i=1

Pi(av)� Fi (11)

Fig. 4: Attention Guided Visual Attention neural representa-
tion. The output of this model is a single vector that will be
concatenated to the others to obtain the final matrix.

where Cv ∈ Rde , is a vector containing context vector for at.

F. Gated Fusion

In order to combine alignment score at of a word w and
a query q with its visual attention vector Cv we use a gate
function to dynamically combine alignment score and visual
attention vectors.

G = σ(W (1)at +W (2)Cv + b(G)) (12)

O = G� Cv + (1−G)� at (13)

Throughout our network, we used gated fusion to merge
different modalities.

IV. END TO END MODEL

Our end to end network jointly learns intra and cross-modal
dependencies. The architecture is shown in Fig. 3.

Given a sequence of words x = [x1, x2, . . . , xn], and image
features F , we first compute the alignment score between xi
and a query q, where i ranges from 1 to the length n of a
sentence. We use Eq. (8) to compute the alignment score at. In
order to aid intra-text representation at, we compute alignment
score alignmentv between at and F using the compatibility
function given in Eq. (9).

alignmentv = av(at, F ) (14)

We then apply the method described in Eqs. (10)-(11) on
alignmentv to get a weighted sum Cv . Now this Cv is a
visual context vector, which will contribute to at. This step
makes intra-modal relation at between xi and q stronger
because it also includes image context. Relation at between
two words will remain the same if textual context is taken
into account. But if we included visual context, this relation
would become dynamic and more expressive. Thus helping
intra-modal attention to learn improved relationships between
words.

In order to make visual context vector Cv helpful for at, we
combine them using gated fusion. This will dynamically select
which features to select from various modalities. We applied
Eqs. (12)-(13) to get a fused representation Frep between at
and Cv .



Now we have fused representation Frep representing at
between query q and xi. Note that, this is calculated for all
tokens of a sequence x. We apply Eq. (6) to get a categorical
distribution P over all n tokens of x. Then, the element-wise
product is computed between P and each token of a sequence
x to get context vector C for query q.

C =

n∑
n=1

Pi � xi (15)

where C ∈ Rde , n is total tokens of a sentence and de is vector
dimension of each token. Now C is a context vector jointly
learned from text and visual features. To handle attributes of
text component of NER, we also used word representation
xi with C, exploiting gated fusion Eqs. (12)-(13) to obtain
the final output O. Furthermore, O is passed through a fully
connected layer.

Ofc = Relu(W (1)O + bo) (16)

where W (1) is the learnable parameter and bo is the bias vector.
For tag prediction, final output Ofc is passed to Conditional
Random Field (CRF) layer [20].

A. Conditional Random Field

CRF [21] are useful in tasks where output labels have
a strong dependency (e.g. I-PER cannot follow B-LOC).
Predicting such outputs independently is challenging without
correlation between labels and their neighborhood. Given
x = [x1, x2, ..., xn] as a text sequence and y = [y1, y2, ..., yn]
as a sequence of labels for x, possible labels sequences can
be calculated using following equation.

p(y | x) =

n∏
i=1

Ωi(yi−1, yi, x)

∑
y′∈Y

n∏
i=1

Ωi(y
′
i−1, y

′
i, x)

(17)

Where Ωi(yi−1, yi, x) and Ωi(y
′
i−1, y

′
i, x) are potential func-

tions. We use maximum conditional likelihood to learn best
parameters that maximize the log-likelihood.

L(p(y | x)) =
∑
i

logp(y | x)) (18)

V. DATASETS

We used multimodal NER dataset [11]. It contains 4 types of
entities {Person, Location, Organization and Misc.} collected
from 8257 tweets, containing 4000/1000/3257 samples for
training/val/test sets respectively. Table I shows number of
samples per entity. Figs. 1, 5 show some ambiguous examples.

VI. EXPERIMENTS

We performed various experiments to evaluate the effective-
ness of the proposed model on NER multimodal dataset [11].
Standard Precision, Recall and F1 scores are used as evaluation
metrics.

(a) Finding [California
OTHER] [oil OTHER]
[spill OTHER]‘s cause
could take a month

(b) Oil pipeline break dumps crude
oil on California [LOC] beach

Fig. 5: Some examples showing how images can help to
resolve ambiguities. The word ”California” in (a) and (b) is
difficult to understand without looking at the images as it has
different tags.

TABLE I: Details of Dataset

Train Val Test
Person 2217 552 1816

Location 2091 522 1697
Organization 928 247 839

Misc 940 225 726
Total samples 4000 1000 3257

A. Baselines

1) Disan: Our model is inspired from Disan, thus we con-
sider this approach as a baseline for the text only evaluation.
We used multi-dimensional self attention method to extract
context-aware representation of texts. For fair comparison,
we keep the same architecture of Fig. 3, but we exclude
the “Attention Guided Visual Attention” module. This to
analyze differences between the proposed model and multi-
dimensional self attention approaches.

2) T-NER: T-NER [22] is a tweet specific NER system
which uses hand crafted features i.e. orthographic, contextual
and dictionary features. It was trained and evaluated on
multimodal NER dataset [11]

3) State-of-the-art models: We compare our model with
previous state-of-the-art methods leveraging on LSTM net-
works to capture textual dependencies and visual attention to
exploit cross-modal interactions.

B. Word embeddings

We used 300D fasttext crawl embeddings. It contains 2
million word vectors trained with subword information on
Common Crawl (600B tokens). However, we do not apply
fine-tuning on these embeddings during the training stage.

C. Character Embeddings

50D character embeddings are trained from scratch using a
single layer 2D CNN with a kernel size of 1× 3.

D. Optimization

We set Adam optimizer with different learning rate initial-
ization: 0.001, 0.01 and 0.005. We achieved the best score



(a)

(b)

(c)

Fig. 6: Examples of “attention guided visual attention”. In
(a) a graphical representation of the visual attention matrix
av(at, Fj)∀j, for the the alignment score at = f̂(xi, q) =
f̂(Air,China) and in (b) a graphical representation of the
visual attention matrix for the alignment score at = f̂(xi, q) =
f̂(Air,Field). In (c) the visual attention matrix obtained from
a different image (Best viewed in color).

using the learning rate equal to 0.001. Batch size and dropout
keep probability are set 20 and 0.5 respectively.

VII. RESULTS

Table II shows comparison of our model with baseline and
previous state-of-the-art methods. We achieved best F1 score,
outperforming previous approaches.

A. Impact of word embeddings

Word embeddings with different sizes and trained on differ-
ent corpora have a strong impact on performance. We evaluate
the model on two word embeddings to analyze the effect.
• Twitter Embeddings: we used embeddings trained on

30 million tweets [11]. To compare our results with
this work, we used same embeddings to evaluate the
improvement that comes from our proposed architecture.

• Crawl Embeddings: we used 300D Crawl embed-
dings [23] trained on 600B tokens to fully exploit the
capability of our model,

Table II shows results with different word embeddings. Our
model achieves better results using Twitter Embedding, but
there is a clear performance boost with Crawl embeddings.
It is interesting to note that entities “PER” and “LOC” have
a minor improvement whereas there is an enhancement of
5-6% in “ORG” and “MISC”. With Crawl embeddings, our
model performs best to predict the “ORG” category, with a 3%
difference from baseline (text only using the Disan model).
Our model achieves best F1 scores using both embeddings.

This clearly shows that our model performs better regardless
to the word embedding.

B. Impact of cross-modal attention

Table II shows that “Attention guided visual attention”
boosts Disan (intra-modal attention) performance. We present
a qualitatively example in Fig 6 that shows the focus of visual
attention. Given an annotated sentence:

S = [Air B-OTHER] [China I-OTHER] [747-8i I-OTHER]
[departing O]... [Field O]

an alignment score (inter-modal attention) at = f̂(xi, q)
between two tokens “Air” and “China” is aided by visual
context, see Fig. 6 (a). Our model can successfully focus on
related image regions, strengthening the relation between two
words. Whereas alignment score at = f̂(xi, q) between “Air”
and “Field” and visual context (Fig. 6 (b)) has less relation
because word “Air” has higher dependency on “China” then
on “Field” when labeling “Air” as “B-OTHER”. Similarly,
in order to verify that relation between two tokens varies
according to image, we changed the image and kept same
sentence. Relation between fake image and alignment score
at = f̂(xi, q) between two tokens “Air” and “China“ can
be seen in Fig. 6(c) with no prominent relation, proving that
our model learns better relationships between words given an
image.

Similarly, Fig. 7 shows some examples in which our model
pays attention to related image regions. It clearly shows
that our model focuses on certain parts of image which are
beneficial for named entity task. Fig. 7(a) shows that attention
is payed only to car to predict correct tag for “Mercedes” and
“Benz”. Similarly Fig. 7(b) shows that “Opera House” is a
building and not a location, and our models correctly identifies
it by paying attention to correct image regions.

C. Error Analysis

In Fig. 8, we show some examples where our approach fails
because of the following reasons:
• Unrelated image : Text information do not match with an

image, as we can see in Fig. 8(a), ”Reddit” belongs to
”Other” but unrelated image caused wrong attention and
it results to wrong prediction ”ORG”.

• Wrong attention: Fig. 8(b) shows an example where text
and image are aligned correctly, but wrong attention
results in wrong tag prediction. Words ”Mount” and
”Sherman” were tagged as ”Person” as most of attention
is on persons, whereas expected tag was ”LOC”.

VIII. CONCLUSION

We introduced a novel model for multimodal NER. It ex-
tends multi-dimensional self-attention approaches by enhanc-
ing intra-text relationships using visual features. Qualitative
examples show that our model successfully captures correct
relations between words and images removing ambiguities
caused by the text. Our model is flexible and can be further



TABLE II: Comparison of our approach with baselines and previous state-of-the-art methods.

PER
F1

LOC
F1

ORG
F1

MISC
F1

Overall
Prec. Recall F1

T-NER ([11) 83.64 76.18 50.26 34.56 69.54 68.65 69.09
Adaptive Co-Attention Network [11] 81.98 78.95 53.07 34.02 72.75 68.74 70.69

Disan [19] (Twitter Embedding) 82.07 76.87 55.34 32.29 71.00 70.53 70.77
Our Model (Twitter Embedding) 82.83 78.22 55.88 33.00 72.81 70.33 71.55
Disan [19] (Crawl Embedding) 83.03 77.96 56.66 39.54 71.65 71.89 71.77
Our Model (Crawl Embedding) 83.98 78.65 59.27 39.54 73.50 72.33 72.91

(a) [Mercedes OTHER]

[Benz OTHER]

(b) photo of [Sydney LOC]

[Opera OTHER] [House OTHER]

Fig. 7: Two examples of correct visual attention. Our model
successfully highlights related image regions required to pre-
dict correct tag.

(a) [Reddit ORG] needs to stop
pretending

(b) teachers on top of [Mount
PER] [Sherman PER]

Fig. 8: Two examples of wrong visual attention: (a) shows an
unrelated image and a wrong prediction, while (b) shows a
related image with wrong attention and prediction.

extended to other multimodal tasks. Experiments show that
our model achieved state-of-the-art results on multimodal NER
dataset.
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