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Abstract—The revolution of smart devices such as smart-
phones, smart washing machines, smart cars is increasing every
year, as these devices are provided connected with the network
and provide the online functionality and services available with
the lowest cost. In this context, the Android operating system (OS)
is very popular due to its openness. It has major stakeholder
in the smart devices but has also become an attractive target
for cyber-criminals. In this chapter, we present some current
methods and results in the research area of Android malware
detection and analysis of Android malware. We begin by briefly
describing the background of the static, dynamic and hybrid
analysis of the Android malware detection techniques which
provides a general view of the analysis and detection process
to the reader. After that, the most popular framework to detect
malware is discussed. Then, the most popular and basic algorithm
and techniques are discussed which is mostly an analysis of
malware. Finally, some conclusions about Android malware
detection techniques.

I. INTRODUCTION

With the growth of smartphone and the services they provide
such as online shopping, health monitoring system, money
transaction and many more. The android has largest global
market in the world. The frequent use of mobile devices
with that facilities encourage people to store and share their
personal and critical information through using mobile de-
vices, and the wide use of devices with Android system
make Android-based mobile devices a target for malicious
application developers [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10]. Therefore, malicious activity can affect the working of
many devices connected in a network. Malware is a program
or a set of programs that can cause harm to financial forgery,
identity, sensitive information or data, and resources.These
malicious applications may leak user’s private information
without their knowledge or consent.

Personal data leakage: People are not concerned with the
security of data or personal information in mobile devices
while they are normally very concerned for the same in PC
environments [11]. Some apps steal personal information and
at the same time demand payments. Such Trojan apps have
been downloaded 9,252 times and 211 affected users paid a
total of $250,000 to the malware developers [12]. Malware
developers successfully stole personal data such as contacts,
emails, SMS, and device information which can be used in
identity theft and spamming [12].

Social: GPS location, call log, and contact lists can be
captured by malware [12]. The contact list and location are
user-sensitive information. This information can be captured
by malware and can do harm by leaking social identity that
can be used in various ways to threaten the security of a user’s
social image.

Business: Business organizations have their own apps to
run their business. Malware can capture user information or

business data which will put the business organization at a
risk. The business owner will be at a risk of financial loss as
well as reputation

Financial loss: The motive of malware development has
changed and now focuses on financial gain [13]. Capital
expenses related to malware average $6–7bn dollars in a fiscal
year [13]. “Zeus in the Mobile” is a Trojan that captures the
authentication code of the user in a banking application, which
may cause financial losses to the user. It is also expensive
to remove, where a security firm charged $21/s for the first
detection in 2010 [11]. This type of malware can cause user
financial losses as well as large financial losses to a business
owner in detection fees. In some cases, a user may have to
pay large phone bills for premium rate services because of the
malicious activity of an app [12].

Every day has various new applications in the market. It
is assessed that there will be roughly 6.1 billion smartphone
clients by 2020 [14], [15]. Google, the manufacturers of
the Free Phone Alliance, and the open source community
of Android developers have made great efforts to enhance
security for Android. However, a major concern tends to be
the proliferation and development of emerging security threats.
Hence, in this context, we discuss the static, dynamic and
hybrid analysis detection Android malware features extraction
techniques.After that, the most popular framework to detect
malware is discussed. Then, the most popular and basic algo-
rithm and techniques are discussed which is mostly an analysis
of malware. Finally, some conclusions about Android malware
detection techniques. Additionally, this chapter identify many
elements of security threats involved in using mobile phones
and applications, and the user will feel confident in using these
applications.

II. STATIC, DYNAMIC AND HYBRID ANALYSIS OF
ANDROID MALWARE BACKGROUND

In this chapter we discuss the background of the Android
malware detection techniques. There are three basic techniques
to detect the android malware. i) Static analysis, ii) Dynamic
analysis, iii) Hybrid analysis

A. Static Analysis

The static analysis method refers to analyzing source code
files or executable files without running applications. There are
several features such as API call and permissions to analysis
the static analysis. The feature extraction methods are shown
in Figure 1.

Furthermore, some static features detection methods are
shown in Table II. The k-nearest neighbours machine learning
classifier achieves better performance and accuracy in the
detection of the malware. However it takes more processing
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Figure 1. Static Feature Extraction of method

Table I
OVERVIEW OF FEATURE SETS

Feature sets

manifest

S1 Hardware components
S2 Requested permissions
S3 Application components
S4 Filtered intents

dexcode

S5 Restricted API calls
S6 Used permission
S7 Suspicious API calls
S8 Network addresses

time with a large amount of data. That’s why most of the
authors used Support Vector Machine and Random Forest
classifiers.Therefore, we use and enhance the Random Forest
algorithm for Android malware detection.

1) Permission-based analysis: Permission-based access
control mechanism is a major component of the Android
platform security mechanism. On the Android platform, ap-
plications are separated from applications, and applications
and systems are isolated. When applications perform certain
operations or access certain data, they must apply for cor-
responding permissions. This means that permissions defined
in the manifest file can indicate the behavior of the appli-
cation. Developers can declare the permissions that need to
be applied in the <uses-permission> tag or <permission> tag.
The permissions in the <usespermission> tag are predefined
by android, and the permissions in the <permission> tag
are customized by the developer and belong to third-party
permissions. According to Android’s official documentation,
the level of protection of permissions implies the potential
risks involved, and points out the verification process that
should be followed when the system decides whether to
grant application permissions. The four protection levels are
described as follows: Normal defines the low-risk permissions
to access the system or other applications, which does not
require user confirmation and is automatically authorized.
Dangerous can access user data or control the device in
some form, such as READ_SMS (allowing applications to
read SMS). When granting such permissions, the system will

Figure 2. Suspicious API calls

Figure 3. Workflow of Android file decompiling

pop up a confirmation dialog box and display the permis-
sion information requested by the application. The user can
choose to agree or cancel the installation. Signature is the
most severe permission level and requires an encryption key.
It only grants applications that use the same certificate as
the declared permissions. Therefore Signature usually only
appears in applications that perform device management tasks,
such as ACCESS_ALL_- EXTERNAL_STORAGE (access to
external storage). SignatureOrSystem can be granted either
partial applications of the system image or applications with
the same signature key as the declaration permission.

2) Suspicious API calls : The second solution is a static
analysis of the source code of the app. Malicious codes usually
use a combination of services, methods and API calls that is
not common for non- malicious applications [45]. To differ-
entiate malicious and non- malicious applications,the Machine
learning algorithms are able to learn common malware ser-
vices such as combinations of APIs and system calls. Figure
2 shows the some of suspicious API calls,which are mostly
used by malware applictions. Figure 3 shows the extracted the
features from the APK file that contains the classes.dex file.

B. Dynamic Analysis

The dynamic analysis method is not affected by code
transformation technologies such as bytecode encryption, re-
flection, and native code execution, and can deeply analyze
the malicious behaviors of the application. Therefore, it makes
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Table II
STATIC FEATURES DETECTION METHODS

Ref Features Accuracy Machine
Learning
Models

Contribution Limitation

[16] Permission 91.75% Random Forest Permission based approach using KNN clustering Risky permission not founded
[17] Permission 81% C4.5, SVM The framework quick identify the malicious

permission
It uses the limited number of malware. it
require the evidence

[18] Permission 88.20% HMNB Probabilistic generative models for ranking the
permission. it identifies ranging from the simple
Naive Bayes, hierarchical mixture models

Susceptible to adversarial attack

[19] Permission - AHP a global threat score deriving set of permissions
required by the app

Only depends on permissions with known
limitations- susceptible to attack

[20] Permission 98.6 J48 Build a framework for based on SIGPID. It extracts
top 22 permissions.

Susceptible to impersonate attack

[21] Permission 92.79% Random Forest Design a model which score the malicious permission Susceptible to adversarial attack
[22] Permission 94.90% Random Forest It uses the classification algorithm to detect the

malware.
Susceptible to adversarial attack

[23] Permission,
API calls

92.36% Random Forest Susceptible to adversarial attack

[24] Permission,
API calls,
intent

97.87% k-nearest
neighbors

Design a DroidMat Framework which is based on
manifest and API call tracing

Susceptible to adversarial attack

[25] API call 99% k-nearest
neighbors

It mitigate Android malware installation through
providing lightweight classifiers

Susceptible to impersonate attack

[26] API call 93.04% Signature
matching

It measure the similarity of malware Susceptible to impersonate attack

[27] API call 96.69% SVM The paper use malicious-preferred features and
normal-preferred features for the detection of
malware

Susceptible to impersonate attack

[28] ICC related
features

97.40% SVM Design a ICCDetector framework which classify the
malware based on android intent filters

Susceptible to impersonate attack

[29] Permission,
command, API
calls

98.60% Parallel
classifier

This paper combine the machine learning classifiers
to classify the malware.

Susceptible to impersonate attack

[30] Requested
permissions-
used
permission-
ssensitive API
calls-Actions-
app
components

F1 97.3
Prec. 98.2
Recall
98.4

DBN DroidDeep for detection of malware using deep
belief network

Susceptible to adversarial attack

[31] Risky Permis-
sionsdangerous
API calls

F1- 94.5
Recall-
94.5
Prec-93.09

DBN Proposed DroidDeepLearner combines risky
permission and dangerous API calls to build a DBN
classification model.

Susceptible to adversarial attack

[32] API call blocks ACC
96.66%

DBN DroidDelver Detection system is used to identify
malware using an API call block.

Susceptible to adversarial attack

[33] Requested
permission

Acc 93% CNN-AlexNet Proposed a detection system that converts the
requested permissions into an image format and then
uses CNN for classification

Only depends on permissions with known
limitations- susceptible to attack

[34] 323 features F1 95.05 DBN An identification system designed by FlowDroid uses
data flow analysis to identify malware.

Susceptible to adversarial attack

[35] Learn to detect
sequences of
opcode that
indicate
malware

ACC 98
Prec. 99
Recall 95
F1 97

CNN Developed a detection system that uses automatic
functions to learn from raw data and to treat the
disassembled code as text

Although trained on a large dataset,
performance dropped when tested on a new
dataset- Susceptible

[36] API call
sequence

Acc 99.4
Prec. 100
Recall
98.3
Acc 97.7

CNN The proposed method based on API call sequence
that can use the multiple layers of CNN.

Susceptible to impersonate attack

[30] Extract
features from
the transferred
images

CNN Proposed a RGB scheme based on color
representation.

Results showed that human experts are still
needed in the collection and updating of
long- term samples. Susceptible to an attack

[37] Dangerous API
calls-risky
permissions

Recall
94.28

DBN DBN was used to create an automatic malware
classifier

Susceptible to adversarial attack

[38] API calls
Permissions-
Intent
filters

Prec 96.6
Recall
98.3
ACC 97.4
F1 97.4

CNN Presented system detection of malware
DeepClassifyDroid Android based on CNN

Susceptible to impersonate attack
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Ref Features Accuracy Machine
Learning
Models

Contribution Limitation

[39] API calls Acc 95.7 DBN Suggested approach to image texture analysis for
malware detection

Risky permission not founded

[40] Permissions
requested
permissions
filtered intents
restricted API
calls-hardware
features-code
related features
suspicious API
calls

Acc 98.8
Recall
99.91
F1 99.82

CNN A hybrid malware detection model has been
developed using CNN and DAE

It uses the limited number of malware. it
require the evidence

[41] API sequence
calls

F1 96.29
Prec 96.29
Recall
96.29

CNN MalDozer used natural language processing
technique to detect Android malware, that can
identify the malware family attributes.

Susceptible to adversarial attack

[42] The semantic
structure of
Android
bytecode

Acc 97.74 CNN
LSTM

DeepRfiner was proposed to identify the malware.
The structure of method use the LSTM for semantic
byte code

Only depends on permissions with known
limitations- susceptible to attack

[43] Permissions
API Calls

Prec 97.15
Recall
94.18
F1 95.64

DNN Implemented DNN - based malware detection engine Susceptible to impersonate attack

[44] Code Analysis Acc 95.4 CNN The proposed method for analyzing a small portion
of raw APK using 1-D CNN

Susceptible to adversarial attack

Table III
DYNAMIC FEATURES DETECTION METHODS

Ref Features Accuracy Machine
Learning Models

[46] System call 91.75% Signature
Matching

[45] System call 81% K-Means
[47] System call 88.2% Frequency
[48] System call - Pattern matching
[49] API call 97.6 KNN_M
[17] Native Size 99.9% RF, SVM

sense to collect dynamic features, which can effectively com-
pensate for the limitations of static analysis. Figure 4 shows
the feature extraction method and detection technique of the
dynamic analysis. Many machine learning algorithm used for
dynamic analysis for instance, Logistic regression (LR) , K-
means Clustering, SVM, KNN_E,KNN, Bayesian network
(BN), and Naïve Bayes. Table III illustrates the accuracy level,
dynamic features and detection methods. For example, some
malware may obtain malicious files through the network or
other means during the running process, and then write them
into the system files to perform malicious behaviors. These
means can escape static detection and affect the accuracy of
detection. DroidBox is an Android application sandbox that
extends TaintDroid. It can perform dynamic stain analysis at
the application framework level, and monitor various opera-
tions of the application, such as information leakage, network,
file input / output, and encryption operations. DroidBox pro-
vides two scripts, startemu.sh and droidbox.sh. The former is
used to start a simulator dedicated to the dynamic analysis of
Android applications, and the latter is used to perform specific
dynamic analysis. We obtain the dynamic operation log of
each application by installing and running each application in
DroidBox for 30s, and extract features from them.

Figure 4. Dynamic Feature Extraction and Detection

C. Hybrid Analysis

To improve the performance of learning algorithms, the
hybrid analysis was developed, which utilises the dynamic
and static features as shown in Figure fig: Hybrid Analy-
sis. Some researches proposed multi-classification techniques
[52], [53] to obtain high accuracy in the hybrid analysis.
Furthermore, The static features are Publisher ID, API call,
Class structure, Java Package name, Crypto operations, Intent
receivers Services, Receivers, and Permission, and dynamic
are Crypto operations, File operations, Network activity. The
APK file extracted static features from classes.dex files, and
dynamic features from Androidmanifest.xml file. Hybrid Anal-
ysis combines static features and dynamic features. These
features are used to detect malicious applications. In [54],
following features are selected form static ( permission and



5

Name Used in malicious Used in benign
PTRACE Most often utilized [50], [47] Utilized in benign applications [47]
SIGPROCMASK Most often utilized [50], [47] Utilized in benign applications [47]
CLOCK Most often utilized [50], [51] -
CLOCK-GETTIME Utilized in malicious applications [47] Utilized in benign applications [47]
RECV Most often utilized [51], [47] Not Utilized [47]
RECVFROM Most often utilized [48], [50], [51] Not Utilized [47]
WRITE Most often utilized [48], [50], [51] Utilized in benign applications [47]
WRITEV Most often utilized [51], [47] Utilized in benign applications [47]
WAIT4 Most often utilized [50]
SEND Most often utilized [51]
SENDTO Most often utilized [50], [51]
MPROJECT Most often utilized [48], [50], [51] Utilized in benign applications [47]
FUTEX Most often utilized [50], [47] Utilized in benign applications [47]
IOCTL Most often utilized [50], [47] Utilized in benign applications [47]
FCNTL64 Most often utilized [47] Utilized in benign applications [47]
GETPID Most often utilized [50], [47] Utilized in benign applications [47]
GETUID32 Most often utilized [50], [47] Utilized in benign applications [47]
EPOLL Most often utilized [47] Utilized in benign applications [47]
EPOLL-CTL Most often utilized [47] Utilized in benign applications [47]
EPOLL-WAIT Most often utilized [51], [48] Utilized in benign applications [47]
CACHEFLUS - -
READ Most often utilized [50], [51] Utilized in benign applications [47]
READV Most often utilized [51] -
STAT64 - -
GETTIMEEOFDAY utilized in malicious applications [47] Utilized in benign applications [47]
ACCESS Most often utilized [51], [48] Utilized in benign applications [47]
PREAD - -
UMASK Most often utilized [47] Not Utilized [47]
CLOSE utilized in malicious applications [47] Utilized in benign applications [47]
OPEN Most often utilized [51], [47] Utilized in benign applications [47]
MMAP2 utilized in malicious applications [47] Utilized in benign applications [47]
MUNMAP - -
MADVISE utilized in malicious applications [47] Utilized in benign applications [47]
FCHOWN32 Most often utilized [47] Not Utilized[47]
PRCTL Not Utilized [47] Utilized in benign applications [47]
BRK Most often utilized [47] Not Utilized[47]
LSEEK Utilized in malicious applications [47] Utilized in benign applications [47]
DUP Utilized in malicious applications [47] Utilized in benign applications [47]
GETPRIORTY Utilized in malicious applications [47] Utilized in benign applications [47]
PIPE
CLONE Utilized in malicious applications [47] Utilized in benign applications [47]
FSYNC Most often utilized in [47] Not Utilized[47]
GETDENTS64 Utilized in malicious applications [47] Utilized in benign applications [47]
GETTID Utilized in malicious applications [47] Utilized in benign applications [47]
LSTA64 Utilized in malicious applications [47] Utilized in benign applications [47]
FORK - -
NANOSLEEP Not Utilized [47] Only Utilized in benign applications [47]
RECVMSG - -
CHMOD Utilized in malicious applications [47] Utilized in benign applications [47]
SENDMSG Most widely Utilized[50] -
FLOCK Not Utilized [47] Only Utilized in benign applications [47]
MKDIR Most often utilized [47] Not Utilized [47]
CONNECT Most often utilized [47] Not Utilized [47]
POLL Not Utilized [47] Only Utilized in benign applications [47]
RENAME Most widely Utilized [51] Not Utilized [47]
SETPRIORITY - -
SETSOCKOPT Most often utilized [47] Not Utilized [47]
SOCKET Most often utilized [47] Not Utilized [47]
UNLINK - -
GETSOCKOPT - -
BIND Most often utilized [47] Not Utilized[47]
FTRUNCATE Utilized in malicious applications [47] Utilized in benign applications [47]
GETSOCKNAME -
INOTIFY -
RESTART -
SCHED Utilized in malicious applications [47] Utilized in benign applications [47]
GETRLMIT -
LGETXATTR -
READLINK -
SOCKETPAIR -
SATAFS64 Utilized [47] Not Utilized[47]
FDATSYNC Utilized [47] Not Utilized[47]
GETPPID -
KILL -
PWRITE Utilized [47] Not Utilized[47]
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Name Used in malicious Used in benign
MSGGET Used [47] Not Utilized[47]
RMDIR Used [47] Not Utilized[47]
SELECT Used [47] Not Utilized[47]
SEMGET Used [47] Not Utilized[47]
SEMOP Used [47] Not Utilized[47]
CHDIR Not Utilized [47] Only Utilized in benign applications [47]
GETCWD Not Utilized [47] Only Utilized in benign applications [47]
RT_SIGRETURN Utilized [47] Only Utilized in benign applications [47]
SIGACTION Not Utilized [47] Only Utilized in benign applications [47]
SYS_281 Not Utilized [47] Only Utilized in benign applications [47]
SYS_283 Not Utilized [47] Only Utilized in benign applications [47]
SYS_224 Utilized [47] Not Utilized[47]
SYS_248 Utilized [47] Not Utilized[47]
SYS_290 utilized in malicious applications [47] Utilized in benign applications [47]
SYS_292 utilized in malicious applications [47] Utilized in benign applications [47]
SYSCALL_903042 utilized in malicious applications [47] Utilized in benign applications [47]
FSTAT64 utilized in malicious applications [47] Utilized in benign applications [47]

APICall) and dynamic ( SystemCall). Y. Liu, et al. [54] used
the SVM and Navie Bayes machine learning classifier. The
SVM classifier used for static analysis achieved 93.33 to 99.28
percent accuracy,while the Naive Bayes used for dynamic
analysis achieved accuracy up to 90 percent. Furthermore, Kim
et al. [55], used the J48 machine learning classier, the features
are selected from static (permission ) and dynamic (APICal l)
. A. Saracino el al. [56], achieved 96.9 % accuracy based on
KNN by selecting the static feature (permission) and dynamic
(critical API, SMS, User activity System call) feature.

Figure 5. Dynamic Feature Extraction and Detection

D. A Comparison of Static, Dynamic, and Hybrid Analysis

Static Analysis:
1) Single Category features: The advantages of single cate-

gory features are easy to extract, and low power compu-
tation. The limitations associated with this method are
code obstruction, imitation attack and low precision.

2) Multiple categories of Features: The advantages of mul-
tiple category features are easy to extract, and high
accuracy. The limitations associated with this method
are Mimicry attack, high computation, code obfuscation,
and difficult to handle multiple features

Dynamic Analysis:
1) Single Category features: it poses a better accuracy

and easy to recover code obfuscation as compared with
static analysis. However, its feature extraction process is
difficult, and it consumes high resources.

2) Multiple categories of Features: It gives better accuracy
and easy to recover code obfuscation as compared with
a static and dynamic single category. The limitations of
this approach are: 1) difficult to handle multiple features,
2)high resources, and 3) more time computation.

Hybrid Analysis: The main benefits of hybrid analysis are
to perform the highest accuracy as compared to static and
dynamic analysis. The limitations are 1) highest complexity, 2)
framework requirement to combine the static and dynamic fea-
tures, 3) more resources utilization, and 4) time-consumption.
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Table IV
HYBRID ANALYSIS METHODS

Ref Methodology Tools Achements Limitations

[57] Decompress and decompile the Android app using the tool Baksmali.
Scans decompiled samli files to extract static patterns.
Generate static behavior vector.
Installs and executes the applications on emulator
Runs monkey to give user inputs
Hijacks system calls using LKM
logs the system calls

Baksmali
Monkey
tool
Emulator

can detect the
malicious
system calls at kernel
space

Insufficient test results for
malware detection
No comparison of the system
is provided against any other
malware detection techniques.
Not any classification results
are available
Increase in malware detection
rate is not shown Incomplete
evaluation system

[58] Detects known malware samples by filtering and foot printing based on
permission.
Detects zero-day malware through heuristic filtering and dynamic
monitoring of execution

– Successfully detects
211 malicious apps
among 204,040 apps.
+Detect two zero-day
malware Droid Dream
light and Plankton
Achieves 86.1
accuracy.

This study is limited to two
heuristics
Permission based filtering
only considered the essential
permission of 10 malware
families

[59] Pre-process the App through API Monitor to obtain static features such as
API calls.
Install the app on AVD.
Uses APE_BOX, combination of DroidBox and APE, to collect the runtime
activities and simulation of GUI based event.
Combines the static and dynamic features and apply SVM classification.

API
Moni-
tor
APE
DroidBox
LIBSVM

Achieves 86.1%
accuracy

Time consuming due to use of
emulators
High resource consumption in
log collection.
Malware can easily
evade-anti-emulator
techniques.

[60] Extract the static features from manifest file and disassembled dex file using
Aapt
Extracts dynamic features using CuckooDroid
Maps the features into vector space and perform vector selection.
Uses LinearSVC classifier in Misuse detection to classify the application, if
app is malware uses signature based detection to identify the malware.
Applies anomaly detection if App is not classified by misuse detection and
use signature based detection to identify the family of malware.

Android
Asset
Pack-
aging
Tool

Detects known
malwares and their
variants with 98.79%
true positive rate.
Detects the zero-day
malwares real positive
rate with 98.76
percent accuracy

Comparison of proposed
scheme with other well-known
malware detection schemes
e.g., RiskRanker, Drebin,
Kirin etc. is not provided.

[61] Parameters related to permissions, such as broadcast receivers , intents and
services, are decompiled from the manifest file in the static analysis phase
using Aapt.
In the behavior analysis phase, the Android emulator app is executed and
the functions related to user interactions, java- based and native function
calls are extracted. Performs feature on the basis of information gain and
record them in CSV file.
Rule generation module uses CSV file to create rules and maps the
permission against the function calls for classification

Android
Asset
Pack-
aging
Tool.

Achieves 96.4%
detection rate

High time for scanning. High
electricity consumption. High
consumption of resources /
storage.

[62] Extracts PSI from binary code files as static features sort features according
to the frequency of occurrence in each file.
Selects feature with occurrence frequency above certain threshold value and
create static feature vector. For dynamic feature use cuckoo malware
analyzer.
For each file, create API call grams and analyze API call sequences based
on the n- gram method. Selects grams of API call above a certain threshold
value and creates a dynamic function vector. Concatenates both feature
vector for each file and input them to Machine learning classifiers.

WEKA Classifies 98.7 percent
accurate unknown
applications.

Comparison of proposed
scheme with other well-known
malware detection schemes
e.g., RiskRanker, Derbin,
DroidRanger etc is not
provided

[63] Extracts sensitive API calls and permissions as static features.
Logs dynamic action for dynamic analysis Applies deep learning model for
classification

7ZIP,
XML-
printer2
Tinyxml
,
Dropid-
BOX
Baksmali

Detects 96.7 percent
accurate malware.

Unrealistic malware for
dynamic analysis that does not
display malicious behavior
throughout the monitoring
interval can evade the
detection system

[54] Decompiles applications using Akptool and analyze the decompiled results.
Automatically switches to static analysis if app is correctly decompiled.
Performs extraction of static features, permission and API calls, from
manifest and smali files. Inputs the feature vectors to machine learning
classifiers, SVM, KNN and Naive Bayes. If application do not correctly
decompile then it performs dynamic analysis by operating the app with
monkey tool and monitoring the app’s actions using strace. Generates the
feature vector of traced system call logs and apply the machine learning
classifier on the feature vector for classification.

APK
tool
Strace
Monkey
ool

Achieves 99%
accuracy as a result of
static analysis and
90% accuracy as a
result of dynamic
analysis.

Only static or dynamic
analysis can be performed on
the application, so that the
dynamically labelled data
cannot be detected in an easy
way for static analysis
Only the executed code is
analyzed when dynamic
analysis is carried out.
The non-executed code
remains undetected.
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Ref Methodology Tools Achements Limitations

[56] Extracts features at four different levels: user level, application level, kernel
level, and package level user activities at user level and market information
and riskiness of application at package level Generates feature vectors
consisting of 14 features and input the vector to KNN classifier. Notifies the
user about malicious apps and helps the user to block and remove them
through UI

Only runs on rooted devices
with a carnal having module
support due to which it has
not been conceived for
distribution in the mass
market.
Pre-installed apps are not
analyzed by the app evaluator.
Thus, will not be included in
apps suspicious list and so
will not be dejected against
known malware behavior
patterns.
only the apps identified as
risky or added to the apps
suspicious list.
9.4% memory overhead
because classifier requires the
training data and memory.

[64] Feature collector collects static features of at the application at installation.
GramDroid a web tool that extracts the features of applications and provides
their visual representation in order to identify the threads posed by the
application Local detector classifies the application as legitimate, malware
or risk using static features.
Response manager gives control to use if app as detects as malware.
Cloud detector performs detailed dynamic analysis at a remote server if app
is detected is risk by local detector updates the database if app is detecting
malware.

From top 20 enlisted
frequently requested
permission

[65] The Android device’s client application captures the application’s specific
information and sends it to the server.
Detailed analysis and application execution based on emulation is carried
out. Otherwise, the APK file will be sent from the client device to the server.

AndrogaurdDetects 99% accurate
malware applications.

The malware can easily evade
emulation- based detection

[66] User permission to detect malware behavior as static analysis.
The signature data type contains all applications signature.
Android user offers users a malware analysis service..
The central server connects the Android client to the signature database.

Archives 92.5%
specificity

It lacks the advantages of
dynamic analysis, as dynamic
malicious payloads cannot be
detected

[67] Uses static functions, manifest file and code files assembled.
Uses system calls and binder transactions as dynamic behavior features.
The user and the application monitor and se signature are forwarded to the
server which applies generate the signature.
The signature matching algorithm.

Achieves 99%
accuracy

Overall causes 7.4 percent
overhead performance and 8.3
percent overhead memory.

III. DEEP LEARNING BASED ANDROID MALWARE
DETECTION SCHEMES

A. Basic proposed framework to detect android malware

In this section, We discusses the methodology to detect the
malicious codes detection techniques based on deep learning
and machine learning. Kim et al. [1] proposed an multi-
model malware detection based malware analysis system to
automatically analyze and classify malware behaviors. Figure
6 shows the overall architecture of the developed frame-
work. The multimodal deep learning framework uses seven
kinds of the feature; String feature, method opcode feature,
method API feature, shared library function opcode feature,
permission feature, component feature, and environmental
feature. Using those features, the seven corresponding feature
vectors are generated first, and then, among them, the permis-
sion/component/predefined setting feature vectors are merged
into one feature vector. Finally, the five feature vectors are fed
to the classification model for malware detection.

Moreover, Tao Lei et al. [68] proposed an Graph based
malware detection model based on three components: 1) call
graph extraction; 2) event group building; and 3) NN training.
These three phases shown in 7. In call graph phase it extract

the call graphs of every sample from the training samples by
using the static analysis tools and then filter out repetitive
API calls. The event group building component aims to build
the event group for apps, which consists of event subgraph
traverse, API calls encoding and clustering. Finally, the event
group (clustering result) are fed into the NN to train the
parameters.

Andrea Saracino et al. [56] detect malicious behavioral-
patterns extracted from several categories of malware.The
features at the four system levels, and to detect and prevent
a misbehavior. It consist of 4 steps shown in Figure 9. The
first one is the App Risk Assessment, which includes the
App Evaluator that implements an analysis of metadata of
an app package (apk) (permission and market data), before
the app is installed on the device. The second block is the
Global Monitor, which monitors the device and OS features at
three levels, i.e., kernel (SysCall Monitor), user (User Activity
Monitor) and application (Message Monitor). The third block
is the Per-App Monitor, which implements a set of known
behavioral patterns to monitor the actions performed by the
set of suspicious apps (App Suspicious List), generated by the
App Risk Assessment, through the Signature-Based Detector
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Figure 6. A Multimodal Deep Learning Method for Android Malware Detection Using Various Features [1].

Figure 7. EveDroid: Event-Aware Android Malware Detection Against Model Degrading for IoT Devices [68].

Huijuan Zhu et al. [70] raises a stacking ensemble frame-
work SEDMDroid to identify Android malware. Specifically,
to ensure individual’s diversity, it adopts random feature
subspaces and bootstrapping samples techniques to generate
subset, and runs Principal Component Analysis (PCA) on each
subset. The accuracy is probed by keeping all the principal
components and using the whole dataset to train each base
learner Multi-Layer Perception (MLP). Then, Support Vector
Machine (SVM) is employed as the fusion classifier to learn
the implicit supplementary information from the output of
the ensemble members and yield the final prediction result.
The Figure 9 shows the overall proposed framework of the
SEDMDroid.

Ming Fan et al. [71] in first step , the apk file is given as
the input, whose classes.dex file is converted into .smali files
(an interpreted language that syntactically approaches pure
source codes) with apktool. By scanning the .smali files, the
possible functions and the calling relations between them can

be obtained. Thus, StaticFunction-CallGraph (SFCG) can be
constructed in manner in which nodes denote the functions and
edges denote the calls. Second, two key steps are performed:
measuring the sensitivity coefficient of each sensitive API and
mining the Sensitive Subgraph (SSG shown in Figure 11) in
the generated SGS. Lastly, five features of SSG are constructed
and fed into machine learning algorithms to detect whether the
app is piggybacked or benign shown in Figure 10.

Jin Li, et al. [69] propose the malware detection frame-
work based on static analysis for permission feature. The
proposed framework consist three technique to collect the
risky permissions. i) Permission Ranking With Negative Rate
ii)Support-Based Permission Ranking iii) Permission Mining
With Association Rules. It extracts significant permissions
from apps and uses the extracted information to effectively
detect malware using supervised learning algorithm.

Kumar et al. [2] propose the malware detection framework
which is based on three techniques, i) Clustering Algorithm
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Figure 8. Significant Permission Identification for Machine-Learning-Based Android Malware Detection [69].

Figure 9. SEDMDroid: An enhanced stacking ensemble framework for Android malware detection[70]

Figure 10. DAPASA: Detecting Android Piggybacked Apps Through Sensitive Subgraph Analysis [71].



11

Figure 12. Significant Permission Identification for Machine-Learning-Based Android Malware Detection[69]

Figure 11. DAPASA: SSG Graph [71].

ii) Naive Bayes Classifier for Multi-Feature iii) Blockchain
based malware detection framework. Overall architecture of
the proposed system shown in Figure 13. A new blockchain-
based framework was presented to evaluate the performance
of malware detection. The newly proposed machine learning
technique provides an efficient approach to train the model and
then stores and exchanges the trained model results throughout
the blockchain network for spreading the information of newly
generated malware.

More precisely, the first method based on a clustering algo-
rithm, which reduces the high dimensional data and removes
unnecessary features. Secondly, we use classification method
based on naïve Bayes for multi-feature classification. Finally,
a blockchain database store the malware information.

Figure 13. A multimodal malware detection technique for Android IoT
devices using various features [3].

B. Basic proposed algorithms for android malware features

This section discuss the basic algorithms and techniques
which is used commonly.

1) Clustering Techniques to classify the malware : The
centroids of the clusters which are calculated using the basic
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Figure 14. K-Means Algorithm

Figure 15. Existence Based Feature Vector Generation

K-means [72] clustering algorithm shown in Figure 14The
process of future generation values in the malicious feature
database correspond to the elements of the feature vector,
and every feature value is searched in the features extracted
from input applications. If there is no certain feature value
in the extracted features, its absence is represented as zero.
Otherwise, the existence of the feature value is represented
as one in the vector. The overall process of future generation
shown in Figure 15. Additionally, the similarity-based feature
vectors are generated in Figure 16

2) Feature Ranking-Based Algorithms: Average Accuracy-
Based Ranking Scheme: The ranking is designed to be di-
rectly proportional to the average prediction accuracies across
the classes.

Let Pbase be the set of performance accuracies Pk,cε Pbase

of K base classifiers. If m denotes malware and b, benign then
the average accuracy of the kth base classifier is given by

ak = 0.5×
∑

c=m,b

Pk,c|k ∈ {1, . . . ,K}, 0 < Pk,c ≤ 1 (1)

.

Figure 16. Similarity Based Feature Vector Generation

Figure 17. Feature Value Clustering based Feature Transformation

Let A ← ak,∀k ∈ {1, . . . ,K} be a set of the average
predictive accuracies, to which a ranking function Rankdesc (.)
is applied

Ā← Rankdesc (A) (2)

Thus,Ā contains an ordered ranking of the level-1 base
classifiers average predictive accuracies in descending order.
Next, the top Z rankings are utilized in weight assignments
as follows

ω1 = Z, ω2 = Z − 1, . . . , ωZ = 1, Z ≤ K (3)

Class Differential-Based Ranking Scheme: let the average
accuracy of each base classifier be given by ak in 1 and
define D̄ with cardinality K as a set of ordered rankings
in descending order of magnitude. Calculate dk proportional
to average accuracies and inversely proportional to absolute
difference of interclass accuracies

dk =
ak

|Pk,m − Pk,b|
, k ∈ {1, . . . ,K} (4)
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D̄ ← Rankdesc (D) (5)

Ranked Aggregate of Per Class Accuracies-Based
Scheme: With F̄ defined as the set of ordered rankings with
cardinality K, given the initial performance accuracies of Pp,c

of the K base classifiers

{
Pm ← Pk,c where c 6= b
Pb ← Pk,c where c 6= m

, k ∈ {1, . . . ,K}, c ∈ {m, b}
(6){

P̄m ← Rankdesc (Pm)
P̄b ← Rank (Pb)

(7)

{
fk ← P̄k,m + P̄k,b

F ← fk
,∀k ∈ {1, . . . ,K}

F̄ ← Rankdesc (F )
(8)

C. Feature Selection-Based Algorithms

Feature selection is extremely important in static, dynamic
and hybrid analysis. The appropriate feature set is selected
using different selection methods such as information gain,
mutual information,fisher score, similarity function, etc.

Information gain (IG) feature ranking approach to rank the
features and then selecting the top n features. IG evaluates
the features by calculating the IG achieved by each feature.
Specifically, given a feature X, IG is expressed as

IG = E(X)− E(X/Y ) (9)

where E(X) and E(X/Y ) represent the entropy of the fea-
ture X before and after observing the feature Y , respectively.
The entropy of feature X is given by

E(X) = −
∑
x∈X

p(x) log2(p(x)) (10)

where p(x) is the marginal probability density function for
the random variable X . Similarly, the entropy of X relative
to Y

E(X/Y ) = −
∑
x∈X

p(x)
∑
x∈X

p(x | y) log2(p(x | y)) (11)

Similarity based feature selection shown in below equation,
B represents the benign and M represents the malware. X is
the feature list and γ is the similarity between the features.

SB (Xj) = ep

n∑
i=1

γSB
(
Xsb

j

)
ψ
(
Xsb

j

)
, (Xj) ∈ Xsb (12)

Sscore = Sp + Sj (13)

D. Association Rule-Based Algorithms

Association rule mining is used to discover meaningful re-
lationships between variables in huge databases. For example,
if events A and B always occur at the same time, then the two
events are likely to be associated. for instance, we found that
many permission are always together i.e., READ_CONTACTS
and WRITE CONTACTS are always used together. These
dangerous Android permissions belong to permission Google’s
list. As we know that those permission always together. So we
only need one of them to characterize certain behavior.
STEP1: Find out the frequent two-permissions sets
STEP2: Diversity-based interestingness measures for asso-

ciation rule using frequent two itemsets that was
developed by Piatetsky- Shapiro[73]

- When support(Y
⋃
Z) ≈

support(Y )support(Z) , the two-item sets(Y,Z)
are mutually independent. That is, the association
rule Y ⇒ Z is uninteresting.

interest(y, z) = support(Y ∪Z)
support(Y ∪Z) − 1

= P (Y |Z)
P (Z)

- if interest(Y,Z) > 0 ,Y andZ are correlated
positively.

- if interest(Y,Z) ≈ 0 , Y andZ are commonly
independent, and the common two- item sets
should be rejected.

- if interest(Y, Z) < 0 , Y and Z are negatively
correlated.

STEP3: Create the association rule based on the permis-
sion

Algorithm 1 Association Rule set R For Permission Based
1: input← 1 Associaion Rule Set R
2: minSub← minimum thershold of support cofficient
3: minConf ← minimum thershold of confidence cofficient
4: for Z=D do
5: r = null
6: r.PushTail(Z)
7: for Y in D do
8: if Y ⇒ Z ∈ L2 and support(Y ⇒ Z) > minsup and

confidence(Y ⇒ Z) > mincof then
9: r.PushTail(Y )

10: end if
11: r.PushTail(r)
12: end for
13: end for
14: output← Association Rule R

STEP4: Calculate probability table of the association rules.

E. Model Evaluation Measures

Python programming language contains tools for data pre-
processing, classification, clustering, regression, association
rules, and visualization, which make it the best tool for the data
scientist to measure and test the performance of classifiers.
There are various criteria for evaluating classifiers and criteria
is set based on the selected goals. For the classification
methods are evaluating such as True Positive Rate (TPR) and
False Positive Rate (FPR) and classification accuracy. we used
the following standard measurements: Given the number of
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true positives for malicious applications using the following
formulas:

TPR =
Tp

Tp + Fn

False Positive rate is the proportion of negative instance for
the benign apps

FPR =
Fp

Fp + Tn

The accuracy is defined as below equation

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

IV. EXPERIMENTAL RESULTS
The proposed framework poses a strong evidence over

acquired experiments results. Here, we discuss major aspects
for experimentation which include statistics and source of
dataset, evaluation measures to understand the performance
criteria for exploited machine learning algorithm and result
outcomes which gives strong evidence towards the significance
of our proposed model.

A. Publicly Available Most Popular Dataset

In order to excavate practical significance, we introduce 10
most popular dataset in Table V. The more description of the
dataset are discuss in provides links.

B. Dataset other reasearch work

The comparison the number of benign and malware apps
used in previous work shown in Table VI.

Authors Benign Malware
[17] 480 124769
[74] 45 300
[28] 5264 12026
[18] 378 324658
[25] 3978 500
[23] 175 621
[22] 1446 2338
[75] 5560 123453
[29] 2925 3938
[26] 238 1500

Table VI
COMPERSION ACCURACY WITH OTHER WORKS

C. Results Discussion

1) Permission-Based Resutls : Among the 145 permission
set, 48 permission are risky permissions which are mentioned
in previous literature [23], [76], [77] and Table VII. Moreover,
Jin Li, et.al, [20], developed a SIGPID framework to detect the
risky permission, the author generate top 22 risky permission
mentioned in Table VIII. Furthermore Kumar et.al[2], used a
data-mining technique to extract the risky permission, based
on association rule set of risky permission shown in Table IX.

Table VII
PERMISSION SET MOSTLY USED IN MALWARE

Risky Permissions
ACCESS_WIFI_STATE SEND_SMS
READ_LOGS READ_CALL_LOG
CAMERA DISABLE_KEYGUARD
CHANGE_NETWORK_STATE RESTART_PACKAGES
WRITE_APN_SETTINGS SET_WALLPAPER
CHANGE_WIFI_STATE INSTALL_PACKAGES
READ_CONTACTS WRITE_CONTACTS
WRITE_SETTINGS GET_TASKS
RECEIVE_MMS ACCESS_WIFI_STATE
WRITE_APN_SETTINGS SYSTEM_ALERT_WINDOW
READ_HISTORY_BOOKMARKS RECEIVE_BOOT_COMPLETED
ACCESS_NETWORK_STATE CALL_PHONE
READ_EXTERNAL_STORAGE ACCESS_FINE_LOCATION
EXPAND_STATUS_BAR ADD_SYSTEM_SERVICE
PERSISTENT_ACTIVITY INTERNET
GET_ACCOUNTS WRITE_SMS
PROCESS_OUTGOING_CALLS CHANGE_CONFIGURATION
READ_HISTORY_BOOKMARKS GET_PACKAGE_SIZE
WAKE_LOG ACCESS_MOCK_LOCATION
WRITE_CALL_LOG WRITE_HISTORY_BOOKMARKS
READ_PHONE_STATE RECEIVE_WAP_PUSH
SET_ALARAM WRITE_SMS
RECEIVE_SMS READ_SMS

Table VIII
TOP 22 PERMISSIONS

Random Forest Based Malware Detection for Permissions
ACCESS_WIFI_STATE SEND_SMS
READ_LOGS READ_CALL_LOG
RESTART_PACKAGES DISABLE_KEYGUARD
READ_EXTERNAL_STORAGE CHANGE_NETWORK_STATE
WRITE_APN_SETTINGS SET_WALLPAPER
CHANGE_WIFI_STATE INSTALL_PACKAGES
READ_CONTACTS WRITE_CONTACTS
CAMERA GET_TASKS
READ_HISTORY_BOOKMARKS ACCESS_WIFI_STATE
WRITE_APN_SETTINGS SYSTEM_ALERT_WINDOW
WRITE_SETTINGS RECEIVE_BOOT_COMPLETED

2) Cluestring based Results:

3) Classification Results: From the machine learning-based
methods to the general classification-based methods, various
kinds of the Android malware detection methods were sur-
veyed. As shown in Table X, the detection accuracy or the F-
measure values of our framework were higher than the other
methods including the deep learning based methods[52], [55],
[20], [36].
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Table V
PUBLICLY AVAILABLE MOST POPULAR DATASET

Original Label Sources Description
1 Android Malware Genome Project http://www.malgenomeproject.org 2539 benign, 1260 malware
2 M0Droid Dataset http://m0droid.netai.net/modroid/
3 The Drebin Dataset http://user.informatik.uni-goettingen.de/~darp/drebin/ 5560 benign ,9476 malware
4 AndroMalShare http://sanddroid.xjtu.edu.cn:8080/#home
5 Kharon Malware Dataset http://kharon.gforge.inria.fr/dataset/
6 AMD Project http://amd.arguslab.org
7 AAGM Dataset http://www.unb.ca/cic/datasets/android-adware.html
8 Android PRAGuard Dataset http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
9 AndroZoo https://androzoo.uni.lu/
10 A Dataset based on ContagioDump http://cgi.cs.indiana.edu/~nhusted/dokuwiki/doku.php?id=datasets

Table IX
PERMISSION PATTERNS MALWARE AND BENIGN

Permission Patterns Benign Malware
Common Android request permission

READ_PHONE_STATE, ACCESS_WIFI_STATE 2.36 63.08
INTERNET, ACCESS_WIFI_STATE 5.05 63.49
READ_PHONE_STATE 31.87 93.4
ACCESS_WIFI_STATE 5.22 63.49
ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE 3.99 60.31
INTERNET, WRITE_EXTERNAL_STORAGE, READ_PHONE_STATE 13.28 65.44
INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE 24.21 78.97
INTERNET, READ_PHONE_STATE 31.21 93.078
WRITE_EXTERNAL_STORAGE, READ_PHONE_STATE 13.37 65.53
READ_PHONE_STATE, ACCESS_NETWORK_STATE 24.21 79.05

Common Android Run-time Permissions
READ_PHONE_STATE, ACCESS_NETWORK_STATE 23.63 77.18
INTERNET, READ_LOGS 6.85 6.85
READ_PHONE_STATE 30.32 91.69
INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE 26.36 77.18
READ_PHONE_STATE,VIBRATE 21.92 65.28
INTERNET, READ_PHONE_STATE 29.9 91.52
READ_PHONE_STATE, READ_LOGS 5.38 46.86
READ_LOGS 6.93 47.6
INTERNET, READ_PHONE_STATE, VIBRATE 21.68 65.12

Unique Android request permission
READ_PHONE_STATE, WRITE_SMS 0 50.94
INTERNET, READ_PHONE_STATE, ACCESS_WIFI_STATE 0 63.09
ACCESS_NETWORK_STATE, RECEIVE_BOOT_COMPLETED 0 51.68
ACCESS_NETWORK_STATE, WRITE_SMS 0 49.64
RECEIVE_BOOT_COMPLETED, ACCESS_WIFI_STATE 0 42.63
INTERNET, RECEIVE_BOOT_COMPLETED 0 44.75
WRITE_EXTERNAL_STORAGE, ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE 0 54.53
READ_PHONE_STATE, RECEIVE_BOOT_COMPLETED 0 43.12
INTERNET, SEND_SMS 0 43.12
INTERNET, ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE 0 60.31

Unique Android Runtime Permissions
INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE, VIBRATE 0 55.42
ACCESS_NETWORK_STATE, VIBRATE, READ_LOGS 0 38.55
READ_PHONE_STATE, ACCESS_NETWORK_STATE, READ_LOGS 0 43.2
READ_LOGS, INTERNET, ACCESS_NETWORK_STATE 0 43.2
READ_PHONE_STATE, VIBRATE, READ_LOGS 0 41.33
INTERNET, VIBRATE, READ_LOGS 0 41.49
READ_LOGS, INTERNET, READ_PHONE_STATE, 0 46.87
ACCESS_FINE_LOCATION, READ_PHONE_STATE, VIBRATE,INTERNET 0 34.23
INTERNET, SEND_SMS 0 33.58
INTERNET, ACCESS_FINE_LOCATION, READ_LOGS 0 28.45
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Figure 18. Topological data analysis (TDA) result of each feature data. Density-based spatial clustering algorithm was utilized in the TDA. (a) - (e): the
visualized result for each feature type. Malicious samples from Malgenome project were used.[1]

Table X
CLASSIFICATION RESULTS

Authors Algorthim Capicity
for

feature
diver-
sity

Accuracy F-measure

[1] Multimodal
deep neural

network

High 98% 0.99

[78] Ranking Based High 98% 0.98
[3] KNN & Navie

Bayes
High 98% 0.98

[79] DNN/RNN medium 90% NA
[35] CNN low 90% NA
[80] XGBoost low 97% 0.97
[17] Adaboost/ NB/

DT
Low N.A 0.78

[81] NB low 93% NA
[75] SVM low 93.9 NA
[82] KNN+Kmeans low NA 0.91
[83] Bayesian low 92% NA
[63] SVM low NA 0.98
[84] RF low 97.5% NA

V. CONCLUSION

This chapter analyzed a broad variety of mechanisms for an-
alyzing and detecting Android malware, highlighting evolving
patterns in its methods. This article also addressed the potential
of Android malware to hinder research and escape detection,
including deep learning and machine learning approaches.
This chapter assessed the effectiveness of current methods
for analyzing the malware and detection techniques. That’s

different from previous surveys that usually study mobile
attacks only, this chapter introduce static, dynamic and hybrid
analysis techniques and proposed algorithms.
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