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ABSTRACT 

The interplanet internet is a conceived computer network in space, 
consisting of a set of network nodes that can communicate with each 
other. These nodes are the planet‟s orbiters (satellites) and landers (e.g. 
robots, autonomous machines, etc.) and the earth ground stations, and 
the data can be routed through Earth‟s internal internet. As resource 
depletion on Earth becomes real, the idea of extracting valuable 
elements from asteroids or using space-based resources to build space 
habitats becomes more attractive, one of the key technologies for 
harvesting resources is robotic space mining( minerals, metals, etc.,) or 
robotic building of space settlement. The metaverse is essentially a 
simulated digital environment mimicking the real world. The metaverse 
would be something very similar to real world planetary activities where 
users( space colonies or internet users on Earth) interact with overlaying 
objects represented by robots, drones, etc. for real-world planetary 
activities like space mining, building space settlements, etc. in a 
completely virtual manner. Here we show how prediction of space 
resources may be improved by capturing resource structures from a 
material sequence  i.e. the material/metals character concealed within 
resource sequences. With this background, the neural network based on 
simplified version of GAN( Generative Adversarial Networks) is 
deployed, that get finely tuned during training, in this case to predict 
concealed residual structures  and it is discovered that when the network 
is well-trained to predict the masked patterns of natural resource 
sequences, then its internal weights are actually capturing, or 
“understanding”, resource structure. The Information about the structure 
being modelled develops within the network, and the resource structure 
is predicted from the patterns activated inside the network. The desired 
response or generator loss, was defined as the yield of the target 
product, and new conditions and patterns were synergistically combined 
with automation in Space Robot and may lead to improved yield when 



graphically interpreted. The results of the study simulated on existing  
internet here on Earth show that the real individual  behaviour on a 
distant planet can be achieved  provided the interplanet internet is 
available as pathway communication. Therefore, connected metaverse 
with different encoded layers of virtual spaces for tracking resources 
along with deep learning models with structural patterns could be of 
reality even in interplanet environment. 
 

INTRODUCTION 

Inter-planetary exploration, be it Lunar habitation, asteroid mining, Mars 

colonization or planetary science/mapping missions of the solar system, 

will increase demands for inter-planetary communications. The 

movement of people and material throughout the solar system will create 

the economic necessity for an information highway to move data 

throughout the solar system in support of inter-planetary exploration and 

exploitation. The communication capabilities of this interplanet 

information highway need to be designed to offer; 1) continuous data, 2) 

reliable communications, 3) high bandwidth and 4) accommodate data, 

voice and video.   

The interplanetary Internet is a conceived computer network in space, 

consisting of a set of network nodes that can communicate with each 

other. These nodes are the planet's orbiters (satellites) and landers (e.g., 

robots), and the earth ground stations. For example, the orbiters collect 

the scientific data from the Landers on Mars through near-Mars 

communication links, transmit the data to Earth through direct links from 

the Mars orbiters to the Earth ground stations, and finally the data can 

be routed through Earth's internal internet. Interplanetary communication 

is greatly delayed by interplanetary distances, so a new set of protocols 

and technology that are tolerant to large delays and errors are required. 

The interplanetary Internet is a store and forward network of internets 

that is often disconnected, has a wireless backbone fraught with error-

prone links and delays ranging from tens of minutes to even hours, even 

when there is a connection. In the core implementation of Interplanetary 

Internet, satellites orbiting a planet communicate to other planet's 

satellites. Simultaneously, these planets revolve around the Sun with 

long distances, and thus many challenges face the communications. The 

reasons and the resultant challenges are: The interplanetary 

communication is greatly delayed due to the interplanet distances and 

the motion of the planets. The interplanetary communication also 



suspends due to the solar conjunction, when the sun's radiation hinders 

the direct communication between the planets. As such, the 

communication characterizes lossy links and intermittent link 

connectivity.   

The graph of participating nodes in a specific planet to a specific planet 

communication, keeps changing over time, due to the constant motion. 

The routes of the planet-to-planet communication are planned and 

scheduled rather than being fluctuating. The Interplanetary Internet 

design must address these challenges to operate successfully and 

achieve good communication with other planets.  

NETWORK ARCHITECTURE 

A Computer Network Architecture is a design in which all computers 

in a computer network are organized. An architecture defines how the 

computers should get connected to get the maximum advantages of a 

computer network such as better response time, security, scalability, etc. 

Network architecture refers to the way network devices and services are 
structured to serve the connectivity needs of client devices. 

 Network devices typically include switches and routers. 
 Types of services include DHCP and DNS. 
 Client devices comprise end-user devices, servers, and 

smart things. 

The network architecture for the planet Mars or the Moon is as shown in 

below figure:- 
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Computer networks are built to serve the needs of certain functionality 
and also their clients. Described below are three types of planetary 
networks: 

 Access networks, for campuses and local areas, are built to bring 
machines and things onboard, such as connecting robots, drones, 
etc. within a location. 

 Networks for data center connect servers that host data and 
applications and make them available to smart devices. 

 Wide-area networks (WANs) connect robots and others to 
applications, sometimes over long distances, such as connecting 
robots to cloud applications related to space mining operations. 

We give below the architecture of network on the planet Mars or the 

Earth‟s Moon is as shown in below figure:- 
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An Internet is a “network of networks” in which routers move data among 
a multiplicity of networks with multiple admin. domains.  

The main aim of networks is to connect remote endpoints with end-to-
end principle and network should provide only those services that cannot 
be provided effectively by endpoints. 

Since the networks are predominantly wireless, the fundamental impact 
of distance due to speed-of-light delays and impact on interactive 
applications – for both data and control is to be considered. Also power 

Smart Things 



consumption of wireless links as a function of distance is to be 
examined. 

The interplanetary internet is a conceived networks of nodes and these 
nodes are space station, planet‟s orbiters ( satellites ), planet‟s landers, 
robots ( drones, autonomous machines, etc. ), earth ground stations and 
earth‟s internal internet. 

METHODOLOGY 

Outer space contains a vast amount of resources that offer virtually 
unlimited wealth to the humans that can access and use them for 
commercial purposes. One of the key technologies for harvesting these 
resources is robotic mining of  minerals, metals, etc. The harsh 
environment and vast distances create challenges that are handled best 
by robotic machines working in collaboration with human explorers. 
Humans will visit outposts and mining camps as required for exploration, 
and scientific research, but a continuous presence is most likely to be 
provided by robotic mining machines that are remotely controlled by 
humans either from Earth or from local space habitat. 

Future Moon( or Mars ) bases will likely be constructed using resources 
mined from the surface of the Moon/Mars. The difficulty of maintaining a 
human workforce on the Moon( or Mars ) and communications lag with 
Earth means that mining will need to be conducted using collaborative 
robots with a high degree of autonomy. Therefore, the utility of 
autonomous collaborative  robotics( with thousands of robots in 
operation ) towards addressing several major challenges in autonomous 
mining in the lunar( Martian ) environment with lack of satellite 
communication systems, navigation in hazardous terrain, and delicate 
robot interactions to achieve effective collaboration between robots and 
long-lasting operation.  

Collaborative Robotics 

Robots can be shaped to perform specific tasks. Robots have been 
designed and shaped in such a way that they can walk, swim, push 
pellets, carry payloads, carry shoveling and work together in a group to 
aggregate debris scattered along the surface  into neat piles or possibly, 
to build a space settlement. They can survive for long-time without 
recharge and heal themselves after any damage/confusion. The shape 
of a robot's body, and its distribution of legs and structure are 



automatically designed in simulation to perform a specific task, using a 
process of trial and error. 

The methodology is essentially fundamental for getting the space robots 
as autonomous as possible and the aim is to represent surroundings 
and their markings from robot in space. Therefore, we use feature 
extraction from the environment to update the position of the robot. 
Landmarks are the features that can easily be observed and 
distinguished from the environment and these are used to localize the 
robot. 

The methodology primarily consists of following parts:- 

1. Selecting and deciding on the landmarks (Materials, location, etc.). 
2. Extracting landmarks from input of robot sensors/cameras at each 

time step. 
3. Based on time step, get the current position of  the robot  on the 

basis of landmark data.  
4. Carryout landmark data association with the location of the robot 

by matching with the landmarks data in the database. 
5. Introducing learning agent  in the robot that uses deep neural 

network with learning algorithm  
6. The neural network used by the learning agent will be trained 

with learning algorithm by using different methods 
7. Measuring the outcome with generator loss or optimization steps 

 

ARCHITECTURE 

1. Augmented Reality 

The word „augmented‟ means to add. Augmented reality uses different 
tools to make the real and existing environment better and provides an 
improved version of reality.  

As Augmented Reality (AR) technologies improve, we are starting to see 
use cases and these include product visualization. There are AR apps 
that allow a customer to place virtual furniture in their house before 
buying and it is also a powerful tool for marketing as it allows users to try 
products before buying.  

At its core, AR is driven by advanced computer vision algorithms that 

compares visual features between camera frames in order to map and 

track the environment. But we can do more. By layering machine 



learning systems on top of the core AR tech, the range of possible use 

cases can be expanded greatly. 

Augmented Reality(AR ) can be defined as a system that incorporates 
three basic features: a combination of real and virtual worlds, real-time 
interaction, and accurate 3D registration of virtual and real objects 
 

 2. Camera Representation 

 
A camera is a device that converts the 3D world into a 2D image. A 
camera plays a very important role in capturing three-dimensional 
images and storing them in two-dimensional images. And the following 
equation can represent the camera. 
                                                x=PX 
Here x denotes 2-D image point, P denotes camera matrix and X 
denotes 3-D world point. 

 

 
 

The above is vector representation of x=PX [1]. 
  
The camera representation method is frequently used in image 
processing and is intended to identify the geometric characteristics of 
the image creation process. This is a vital step to perform in many 
computer vision applications, especially when metric information on the 
scene is needed.  

       3. Metaverse Algorithm 

1. Physical Reality Modeling - required information 

- The goal of the agent/robot 

- What the robot sees, Materials & location 

- Real Simulation for Task Execution 

2. Task Execution ( Simulation ) 

- Generating actual materials( how materials arrive at the site) 

- Robots arrive in the environment ( speed and goal ) 



- Task Execution( Simulation Steps ), is updated as the work 

process progresses in line with the simulation 

- Task execution performance, as we have fully functional  

simulator and to make a realistic system, we would like to see 

how well it performs and mirrors real world execution( Artificial 

Intelligence ) 

- Implementation of Graphical Version of the Task Execution 

 

          Models for Metaverse & Algorithm 

 

Minimum amount of required information 

- The current state of the robot/agent and its environment 

- The goal of the agent/robot 

- What the agent  sees, materials & it‟s location 

Agents – Attributes 

We opt for the agents and they have  the  attributes: the sight and the 
goal. While the goal is chosen randomly when an agent arrives on the 
location, the sight is always fixed to the some value. The other 
noticeable fact is that our learning agents do not have a desired speed. 
We define the autonomous robots as entities whose primary concern is 
to avoid failure; they should consequently not exhibit any preference for 
a certain speed as long as they are working safely. Furthermore, we add 
an attribute  to these learning agents; this is their probability of choosing 
a random action at each time step. 
 
Agents as workmen 

Given that we define learning agents the same way as the type of 
workers, we can seamlessly add them at the location. The only 
difference is how they will choose an action: by using their learning 
model, a neural network. We can therefore adapt the site‟s time step‟s 
algorithm  to take the learning agent into account for the observation 
step. To decide what action it should take, the learning agent uses a 
neural network to approximate the Q-function. Thus, at every time step t, 
the agent c observes its state sc,t; this state is then processed in some 
way so that it can be passed to a neural network whose outputs 
correspond to all the possible actions. The values of these outputs are 
the estimated Q-values, Q(sc,t, a ); as it is using a neural network θ, we 
denote the Q-function approximated with that network by Q(s,t;θ). The 
agent then uses an ϵ-greedy strategy to choose the action  ac,t. 
The neural network used by the learning agent will be trained with  



learning algorithm by using different methods. 
 
Neural Network Models 

Presently different neural network models are available that we will use 
to train our autonomous robots. These models define what information 
the learning agents use and how they are encoded as inputs to the 
neural networks. Before we start with our model, we need to define the 
building structure; how these neural networks are used by the learning 
agents. We use a feedforward neural network  whose outputs 
correspond to the possible actions. Our models define different ways of 
using information about the agent‟s current state. Thus, they either 
encode different information or encode the same information differently 
to produce the inputs.  
 
Required Information 

We  start by defining the minimum amount of information that  an 
autonomous robot should have. Consequently, the model that we design 
will possess these pieces of information. They are: 

- The goal of the agent/robot 
- What the robot sees, Materials & location 
- The current location that the agent is in 
- The current speed of the agent 
- Real Simulation for Task Execution 

 
Task Execution ( Simulation )  

- Generating actual materials( how materials arrive at the site) 
- Robots arrive in the environment ( speed and goal ) 
- Task Execution( Simulation Steps ), is updated as the work 

process progresses in line with the simulation 
- Task execution performance and to make a realistic system, we 

would like to see how well it performs and mirrors real world 
execution( Artificial Intelligence with learning algorithm) 

- Implementation of Graphical Version of the Task Execution 
 

Reddy’s Encoding Model  

The  model is based on the idea as the robot presence at different time 
steps; we use information about the previous time step (the robots‟ 
presence represented by the observation matrix O). This time, the 
observation matrix of the previous time step t−1, denoted Ot−1, is not 
additional inputs, but it forms, along with the current observation matrix, 
a 3-dimensional matrix with time as the third dimension. We then pass 
this matrix through a 3-dimensional convolutional neural network . We 



also keep decreasing the number of inputs by including the learning 
agent itself in its observation matrix. Figure 1 illustrates this model that 
we call reddy‟s encoding model of  time-step, as it encodes the robots‟ 
presence at different time steps. The learning agent is shown in red 
while materials in its field of view are in blue. All the input vectors are 
concatenated and passed to the network. 
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   B)           Agent/Robot Sight at Time Step (t + 1)      
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Fig 1. Model encoding of an agent/robot with a goal. 

 

Our first step is the basic information regarding the robot vision and it‟s 
location. We define the model with each input as either 0 or 1 and 
information regarding the field of view of the agent/robot can only be 1 if 
there is something , or 0 if there is nothing. The agent/robot only knows 
whether there is a material to be used in some position and its location 
with respect to materials identified. 
 
We have represented this model as matrix with encoded values with 
possible values for each of these attributes. 
 

Material Structures Prediction 

We have used slightly different & simplified version of GAN(Generative 

Adversarial Network) and the following steps are executed back and 

forth allowing simplified GAN to tackle otherwise difficult generative 

related predictive problems. 
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                                                                               Backpropagation 

1. Select real images from the training data set 

2. Generate a number of fake images( in reality the images are related 

to synthesized structure of natural resources or other materials) using 

the generator 

3. Train the network(CNN) for one or more epochs using the real images 

4. Train the network(CNN) model for one or more epochs using only 

fake images 

5. Compare with real images by calculating the generator loss 

6. Finally the backpropagation is performed on the Generator of input 

images. Here the network weights are not updated but only the 

generator is tuned to make it to learn the real requirement. 

  

RESULT 

 
Convolutional Neural Network (CNN) functional model was used for the 

image processing as it uses multilayer perceptions, and we have used 

MNIST dataset( dataset of handwritten images) in absence of any real 

data on planetary natural resources and their structure. 

 

For this task, the system with different layer configurations for the hidden 
structures of the networks is as below: 
 
 

• 2 hidden layers: the first with 28 neurons and a tanh 
activation function; the second with 10 neurons and a linear 
activation function. Dropout rate of 0.5. 
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We calculated the generator loss, then backpropagation to reduce the 

loss and to improve the prediction accuracy. 

CONCLUSION 

The interplanetary computer network in space is a set of computer 
nodes that can communicate with each other. We proposed a network 
architecture with planet‟s orbiters, landers (robots, etc.), as well as the 
earth ground stations and linked through Earth‟s internal internet, and 
consisted of complex information routing through relay satellites to 
address direct planet-to-planet communication. As we know, the 
metaverse will be very different from the internet of today due to massive 
parallelism, three-dimensional (3D) virtual space and multiple real-world 
spaces like space mining, building space habitats, etc. Here we have 
shown how resource synthesis may be improved by capturing material 
structures from a resource sequence  and specifically to predict the 
material character concealed within resource sequences. With this 
background, a neural network based on slightly different version of GAN( 
Generative Adversarial Networks) was deployed, that get finely tuned 
during training, and it is discovered that when the network is well-trained 
to predict the masked patterns of natural resources sequences, then its 
internal weights are actually capturing, or “understanding”, material 
structure. The Information about the structure being modelled develops 
within the network, and the resource structure is predicted from the 
patterns activated inside the network and the desired conditions and 
patterns were synergistically combined with automation in Space Robot 
and may lead to improved yield when graphically interpreted.  
This paper presented an autonomous learning agent in a planetary 
environment for layering the presence of robots and tracking the 
environment that use encoded model, AI and learning mimicking the real 
world execution by space robots. and the results show that the real 
individual  behaviour on a distant planet can be achieved provided the 
interplanet internet  is available as pathway communication. 
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