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Abstract—This paper presents a study on crime classification
using two 3D deep learning algorithms, i.e. 3D Convolutional
Neural Network and the 3D Residual Network. The Chicago
crime dataset, which has records from 2001 to 2020, with a record
count of 7.29 million records, is used for training the models. The
models are evaluated by using F1 score, Area Under Receiver
Operator Curve (AUROC), and Area Under Curve - Precision
Recall (AUCPR). Furthermore, the effectiveness of spatial grid
resolutions on the performance of the models is also evaluated.
Results show that the 3D ResNet achieved the best performance
with a F1 score of 0.9985, whereas the 3D CNN achieved a F1
score of 0.9979, when training on a spatial resolution of 16 pixels.
In terms of future work, we would want to test these algorithms
on multi label classifaction and regression crime problems, also
we want to improve the performance of the 3D CNN by adding
RNN layers and evaluate an implementation of 3D ResNeXt for
crime prediction and classification.

Index Terms—Crime classification, 3D Deep learning, 3D CNN,
3D ResNet, Spatio Temporal, Sparsity.

I. INTRODUCTION

According to the United Nations [1] crime is studied in
order to prevent it. Crime prevention is thus at the heart
of criminology endeavour. Crime prevention is a systematic
approach for finding crime patterns and trends. To this end,
crime classification and prediction is essential because it
speeds up the process of solving crimes and reduces crime
rates [2].

Deep learning, a cutting-edge technology for automatic
feature identification via a deep neural network (DNN), gives
state-of-the-art performance on many predictive scenarios,
such as image classification, computer vision, speech
recognition [3]. Recent studies show that deep learning
techniques have been applied to spatio-temporal data. These
techniques include the Recurrent Neural Networks (RNN),
which are a superior in mining temporal dependencies, and
show high accurate prediction of sequential data [4]. Another
technique is the Convolutional Neural Networks (CNN),
which are superior at mining spatial features and have shown
very high accuracy in various domains including computer
vision [5].

The most frequently used framework for spatio-temporal
forecasting is a combination of 2D CNNs and RNNs [6]. The

2D CNN is typically used for learning the spatial traits and
the RNN for learning the temporal features [7]. These two
algorithms can be stacked together in multiple contiguous
layers to improve prediction performance. The arrangement of
these layers differs in various architectures such as the Spatio
Temporal Residual Network (ST-ResNet) [7], Deep Multi
View Spatio Temporal Network (DMVST-Net) [10], Spatio
Temporal Dynamic Network (STD-Net) and the Recurrent
Convolutional Network (RCNN) [9], amongst others.

In this paper, we depart from 2D architectures and focus
our attention on 3D deep learning algorithms, i.e. 3D CNN
and 3D ResNet, for crime classification. We also propose
implementation procedures. We trained the algorithms using
the Chicago crime dataset. We focused on classifying the
“Theft” crime category. Our goal was to model a binary
classification problem thereby predicting if “Theft” will occur
or not on a future date. We used a temporal window of 30
days for training and we used spatial features of that dataset
to create incident maps. This led us to creating incident maps
with a 30 day window period for all theft incidents in the
crime dataset. Our contributions are:

• We propose a guide for implementing the 3D CNN and
3D ResNet for crime classification.

• We compare the performance of these algorithms.
• We evaluate the effect of spatial resolution in the crime

dataset on crime classification.
The rest of the paper is organized as follows: Section II

presents the related work on crime prediction and classifica-
tion using deep learning techniques. Section III presents the
fundamental concepts of 3D deep learning algorithms as well
their different architectures. Section IV discusses the imple-
mentation procedures of the 3D deep learning algorithms, the
training dataset, the data prepossessing, and the metrics used in
the experiments. Section V presents and discusses the results
in different configurations using various performance metrics.
Lastly, we conclude the paper in Section VI.

II. RELATED WORK

This section discusses the related work for crime
classification using spatio temporal deep learning algorithms
and 3D algorithms for spatio temporal problems such as



video processing.

Zhang, Zheng and Qi [7] applied the ST-ResNet to
Citywide crowd flow prediction. They used the Beijing taxi
cabs trajectories and meteorological data, and New York City
bike trajectory data. In the data prepossessing procedure,
min-max normalization was used to scale the data, and
one-hot coding to transform metadata (i.e., DayOfWeek,
Weekend/Weekday), holidays, and weather conditions into
a binary vector. Root Mean Square Error (RMSE) was
used for model evaluation. The ST-ResNet achieved better
performance than Historical Average (HA), Auto-regressive
Moving Average (ARIMA), Seasonal Auto-regressive Moving
Average (SARIMA), Vector Auto-regression (VAR), Spatio
Temporal Artificial Neural Network (ST-ANN), and Deep
Spatio Temporal Neural Network (Deep ST).

Wang et al. [6] carried out real-time crime forecasting
on an hourly timescale by applying an ST-ResNet model.
They considered all types of crime in Los Angeles (LA)
over the last six months of 2015. In total there were 104,957
crimes. Due to the low regularity of the crime data in both
space and time, both spatial and temporal regularization of
the data was performed. They compared two similar DNN
structures except that one had CNN layers (the ST-ResNet).
RMSE was used to evaluate the accuracy of the models.
The ST-ResNet achieved the best results with an average
accuracy of 84.78% in the top 25 predictions. Wang et al. [6]
continued experiments on real-time crime forecasting on the
LA crime dataset using the ST-ResNet model and proposed
some improvements in terms of the model’s accuracy and
performance on mobile devices. They included weather data
in their experiments. RMSE was used for model evaluation.
The ST-Resnet was compared with HA, KNN, ARIMA
models. The ST-ResNet produced the best results with a low
error in crime density of 0.659.

Stalidis et al. [8] demonstrated that deep learning-based
methods outperform the traditional methods on crime
classification and prediction. They carried out an evaluation
of the effectiveness of different parameters in the deep
learning architectures. They gave insights for configuring
them in order to achieve improved performance in crime
classification and finally crime prediction. They used five
different datasets. These 5 datasets were incident reports
from Seattle, Minneapolis, Philadelphia, San Francisco, and
Metropolitan DC police departments. Ten algorithms were
compared namely; CCRBoost, ST-Resnet, Decision Trees,
Naive Bayes, LogitBoost, Random Forests, Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), Multi Layer
Preceprtron (MLP). F1 score, Area Under Reciever Operater
Chracteritic (AU ROC), and PAI (Prediction Accuracy Index)
were used to evaluate the model’s performance. From the
experiment, the ST-ResNet was found dominating other
methods.

Stec and Klabjan [9] used a joint RCNN for the purpose of
predicting crime. Chicago and Portland crime datasets were
used for the experiments. They combined crime data with
additional weather, public transportation, and census data.
They conducted experiments to determine the best network
structure from among the following: the Feed Forward
Network, CNN, RNN, and RCNN. Mean Absolute Scaled
Error (MASE) was used for model evaluation. The RCNN
exhibited the best accuracy results on both Chicago (with an
accuracy of 75.6%) and Portland (with an accuracy of 65.3%)
datasets.

Yao et al. [10] proposed a DMVST-Net framework to model
both spatial and temporal relations. The model consisted of
three views: temporal view (modeling correlations between
future demand values with near time points via LSTM), spatial
view (modeling local spatial correlation via local CNN), and
semantic view (modeling correlations among regions sharing
similar temporal patterns). They used a large-scale online
taxi request dataset collected from Didi Chuxing, which is
one of the largest online car-hailing companies in China.
Mean Average Percentage Error (MAPE) and Rooted Mean
Square Error (RMSE) for model evaluation. The proposed
model was compared to HA, ARIMA, Linear regression,
MLP, XGBoost, and ST-ResNet. The DMVST-Net achieved
the best results with MAPE - 0.1616 and RMSE - 9.642.

Ali et al. [11] proposed a deep hybrid neural network
composed of recurrent and convolutional networks to predict
citywide traffic crowd flows by leveraging Spatio-temporal
patterns. They used the TaxiBj and BikeNYC datasets which
were normalized using the Min-Max normalization technique.
Root Mean Square Error (RMSE) and Mean Average
Percentage Error (MAPE) techniques were used to evaluate
the model performances. They compared the performance
of their proposed model to that of HA, ARIMA, LinUOTD,
XGBoost, MLP, ConvLSTM, STDN, and ST-ResNet.

Zhang et al. [12] proposed a model for attention-based
supply demand for autonomous vehicles. The dataset they
used was obtained from an online car-hailing company
in China. The Mean Average Percentage Error (MAPE),
Mean Absolute Error (MAE), and Rooted Mean Square
Error (RMSE) techniques were used for evaluating model
performance. They compared the performance of their model
to that of ARIMA, LSTM, ConvLSTM, Reduced-ConvLSTM,
ST-ResNet, DMVST-Net, STDN, and Reduced-STDN,
baseline models. Amongst the baseline models, the STDN
achieved the best results with MAPE - 21.08%, RMSE -
0.1634, and MAE- 0.1348. The STDN achieved the best
results as compared to other baseline models that were tested.

It has recently been reported [13] that other than the popular
combination of the 2D CNN and the RNN, the 3D CNN
alone is capable of extracting both the temporal and spatial
features. Moreover, adapting the 3D CNN to the ResNet



architecture, i.e. 3D ResNet, can improve the performance
in predictions [14]. Ji et al. [13] proposed 3D CNN for
automated human action recognition in surveillance videos.
They used the TRECVID 2008 development dataset consists
of 49-hour videos captured at London Gatwick Airport.
Precision, Recall and AUC were used to evaluate the model.
The 3D CNN outperformed the 2D CNN. On the other hand,
Zunair et al. [20], proposed using 3D CNNs for tuberculosis
prediction. CT scans were used as the training data. The
results were tested against the ImageCLEF Tuberculosis
Severity Assessment 2019 benchmark. They reported 73%
AUC and binary classification accuracy of 67.5% on the test
set outperforming all methods which leveraged only image
information. Furthermore, Hara et al. [14] proposed learning
spatio-temporal features with 3D residual networks for action
recognition. They used the ActivityNet and Kinetics datasets
training. They used accuracy as the metric for evaluation. The
3D ResNet outperformed the C3D and ImageNet algorithms.

III. 3D DEEP LEARNING ALGORITHMS

In this section discuss about the fundamental concepts of
the 3D CNN and the 3D ResNet. We also give a detailed
description on the the architectural design we used for the
crime classification.

A. 3D Convolutional Neural Network

1) 3D Convolution: The 3D convolution is accomplished
by convolving a 3 dimensional kernel to the cube formed
by assembling numerous adjacent frames together. With this
course of action, the feature maps in the convolution layer
are associated with various adjacent frames in the past layer,
thereby capturing temporal information. Formally, the feature
map resulting 3D convolution can be represented with the
equation below:

vxyzij = tanh

(
bij+

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
(1)

The equation below calculates the value at position (x,y,z) on
the jth feature map in the ith layer. Ri represents the size for
the 3D kernel along the temporal dimension, and wpqr

ijm is the
(p, q, r)th value of the kernel connected to the mth feature
map in the previous layer. Fig. 1 shows an illustration of a 3D
convolution [13].

2) 3D CNN Architecture: Based on the above described 3D
convolution, a variety of CNN architectures can be devised.
In the following, we describe a 3D CNN architecture that we
have developed for crime classification on the Chicago dataset.
Fig. 2 shows an overview of the architecture we developed.

We supplied a 5 dimensional input map with shape (batch
size, sequence length, latitude, longitude, crime types). We
apply batch normalization to make the learning process more
steady and reduce the number of epochs required to train the
network. We also added dropout layers which randomly set
input units to zero with a frequency of rate at each epoch

Fig. 1: 3D convolution [13].

during training, this helps prevent over fitting, thus, enabling
the network to generalize better. We added 3D max-pooling
layers to reduce the number of parameters that the network will
learn, and also the computation it will perform. Max-pooling
layers can achieve this by reducing the dimensions in feature
maps generated by the convolution layer. We used a kernel of
size 3× 3× 3, and a fixed filter size of 3. Each Convolution
layer had an ReLU activation function. We finally flatten the
network and add a dense layer with an output dimension of 1,
and is configured with sigmoid activation function. This gives
us a fully connected network.

B. 3D Residual Network

1) Network Architecture: The 3D ResNet [14] is based on
the ResNet [15]. ResNets have skip connections that enable a
signal to passed from one layer to the next. Skip connections
are the identity shortcut connections that pass through the
gradient flows of networks from later layers to early layers,
and this lightens the training of very deep networks. Fig. 3
shows the residual block, which is an element of a ResNet.
A ResNet can consist of multiple residual blocks. The skip
connections pass a signal from the top of the block to the tail.

The 3D ResNet differs from the ResNet [15], in regards to
dimensions as it performs 3D convolutions and 3D pooling.
The size of the kernels are 3×3×3, with a stride of 1. Similar
to the 3D CNN described earlier, the input has 5 dimensions
and has shape; (batch size, sequence length, latitude, longitude,
crime types). We used the same configuration in the 3D CNN
architecture for the convolution layers. Down sampling the
inputs was performed with convolution layers with a stride
of 2. We adopted identity shortcuts with zero-padding [15] to
avoid increasing the number of parameters when the number
of feature maps increase. Fig. 4 shows the overview of the
network architecture.

IV. IMPLEMENTATION OF 3D ALGORITHMS

We implemented both the 3D CNN and 3D ResNet in
python, using Keras [16] framework and Tensorflow [17]
backend. We used training time and number of trainable
parameter to compare the two algorithms complexity as shown
in Table I. The experiments were performed on a hyper



Fig. 2: 3D CNN Architecture. BN - Batch Normalization, MP - 3D Max Pooling, DO- Dropout, FT - Flatten

Fig. 3: Residual block. Skip connections pass a signal from
the top of the block to the tail. Signals are summed at the tail.

Fig. 4: 3D ResNet Architecture, adopted from ST-ResNet [8]

threaded linux virtual machine on Azure Cloud [18], with 8
virtual CPU’s, 128GB RAM, and a processor speed of 2.3
GHz

TABLE I: Complexity of algorithms in total training time and
number of trainable parameters

Algorithm Training time Number of parameters

3D CNN 01:34:23 215 509
3D ResNet 01:55:17 269 293

A. Procedures

In our experiments for both the 3D CNN and the 3D ResNet,
the parameters were set as follows: The size of the convolution
filters are fixed to 3 × 3. The number of epochs used were
10. The learning rate was set at a value of 0.01. Batch
normalization was used. We adopted the ADAM optimizer to
optimize the loss function. The length of the temporal sliding

window was fixed at a value of at 30. We evaluated the effect
of different spatial resolutions on the performance of both
models for crime classification on the Chicago dataset. The
resolutions that were tested vary from a minimum of p = 16
(i.e. 16× 16 cells per grid) to a maximum of p = 40 cells per
grid with a step of p = 8 cells.

B. Dataset

We obtained our crime dataset from the Chicago Data
Portal. The dataset includes crime incident reports dating
back to 2001, with 7.29 million records. Each report includes
location information (in latitude and longitude), a time and a
type of crime. There are 32 distinct crime types in the dataset.
We selected records in the 3 year period from 20017 to 2020
for training our algorithms. Fig. 5 shows the different a sample
of 10 crime types and their total occurrences.

Fig. 5: Total incidents in Chicago crime dataset.

We decided to filter the dataset for a single crime type, i.e.
“Theft”, in order to suite a binary classification problem. All
records with dates when “Theft” was reported were considered
as the positive class, and the remaining records, when “Theft”
was not recorded were considered as the negative class. We
then, binary encoded the crime type, i.e. the positive class
was encoded with a 1, and 0 for the negative class. Fig. 6
shows resulting dataset for “Theft” as the chosen positive class.
We adopted the spatial grid resolution ranges that are used



Fig. 6: Total Theft incidents in Chicago crime dataset.

in the related paper [19]. These ranges are 16 × 16, 24 ×
24, 32 × 32, and 40 × 40 cells. We aim to predict whether
“Theft” incidents will happen in a given area by evaluating
past recorded incidents in the current month. Thus, the past
crime incidents were grouped in incident maps I of timespan
t of 1 day, and for a period T of 30 days. Therefore, 30 daily
incident maps were used as input to forecast “Theft” incidents
for the next period. We used a daily timespan for incidents so
that enough temporal detail can be extracted while the time
series are adequately populated.

C. Metrics

We decide not to use accuracy because we are dealing with
imbalanced data. Instead we opted to use F1 score because
it is the harmonic mean of precision and recall. Precision
tells us how many, out of all instances that were predicted
to belong to class X, actually belonged to class X, i.e. the
fraction of relevant instances among the retrieved instances.
Recall expresses how many instances of class X were predicted
correctly. The F1score is calculated by:

F1score = 2× precision× recall

precision+ recall
(2)

The area under the receiver operating characteristic (AUROC)
is a performance metric that is used to evaluate classification
models. It is calculated as the area under the ROC curve.
A ROC curve shows the trade-off between true positive rate
(TPR) and false positive rate (FPR) across different decision
thresholds. The TPR and FPR are defined as:

TPR =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

AUCPR (Area Under Curve - Precision Recall) equivalently,
is the calculated area under a precision-recall curve. Precision
and Recall are defined as:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

In the next section we present the performance of the 3D
CNN and 3D ResNet using the metrics described above.

V. RESULTS

In this section we discuss the experimental results based on
the F1score, AUCPR, AUROC, and loss values during training.
We also evaluate the effect spatial resolution on the 3D models
performance.
Table II show results achieved training the algorithms over 5
epochs using 16× 16 spatial resolution. The results show that
the models perform better after each epoch and also that the
3D ResNet is the winning algorithm on each epoch.

TABLE II: Performance of 3D algorithms over 5 epochs using
resolution of 16 pixels

Epoch 3D CNN 3D ResNet

F1 score AUCPR AUROC F1 score AUCPR AUROC

1 0.4235 0.6226 0.4743 0.5585 0.7011 0.5700
2 0.7140 0.7947 0.7947 0.9387 0.9557 0.9202
3 0.8108 0.8663 0.7467 0.9661 0.9755 0.9554
4 0.8614 0.9017 0.8140 0.9532 0.9660 0.9404
5 0.8851 0.9167 0.8461 0.9700 0.9783 0.9612

We plotted the F1 score and loss of both of the models.
Fig. 7, and 9 shows that the F1 score improves as the number
of epochs increase for both models, however the 3D ResNet
shows higher F1 scores than the 3D CNN network. Fig. 8,
and 10 shows that the loss decreases as the training iterations
continue, however the 3D ResNet shows a lesser loss value
in each iteration of training. Therefore the 3D ResNet is able
to interpret the data points better than the 3D CNN during
training.

Table III show the best results in 10 epochs for different
spatial resolution. Although increasing the number of cells
makes the feature maps sparser it is evident from the results
that this leads to a very slight deterioration in performance of
both of the models.

TABLE III: Performance of 3D algorithms for using different
spatial resolutions for classifying theft cases in Chicago dataset

Metric Resolution 3D CNN 3D ResNet

F1 score 16 0.9979 0.9985
24 0.9973 0.9970
32 0.9939 0.9954
40 0.9930 0.9950

AUCPR 16 0.9989 0.9989
24 0.9982 0.9985
32 0.9979 0.9982
40 0.9941 0.9972

AUROC 16 0.9964 0.9956
24 0.9955 0.9954
32 0.9930 0.9933
40 0.9911 0.9928



Fig. 7: 3D CNN F1 score Fig. 8: 3D CNN Loss Fig. 9: 3D ResNet F1 score Fig. 10: 3D ResNet Loss

From the experimental results we are convinced that the 3D
ResNet is the winning algorithm for the crime classification
problem using the Chicago crime dataset.

VI. CONCLUSION

In this paper we investigated the capability of the 3D
CNN and the 3D ResNet in classifying crime using the
Chicago dataset. In order to achieve this goal we trained
the deep learning methods with data only containing spatial
and temporal information. We also evaluated the the effect of
spatial resolution on the predictive performance of the models.
Our main focus was on binary classification problem. Areas
of future study we have noted are:

• Evaluating the 3D CNN and 3D ResNet for multi-label
classification of crime.

• Combining the RNN and 3D CNN and to achieve better
temporal feature extraction.

• Evaluating a variation of the ResNet, i.e. ResNeXt archi-
tecture and implementing it using 3D convolutions.
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