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Abstract—Botnets are increasingly used by malicious actors,
creating increasing threat to a large number of internet users.
To address this growing danger, we propose to study methods
to detect botnets, especially those that are hard to capture
with the commonly used methods, such as the signature based
ones and the existing anomaly-based ones. More specifically,
we propose a novel machine learning based method, named
Recurrent Variational Autoencoder (RVAE), for detecting botnets
through sequential characteristics of network traffic flow data
including attacks by botnets.

We validate robustness of our method with the CTU-13 dataset,
where we have chosen the testing dataset to have different types
of botnets than those of training dataset. Tests show that RVAE
is able to detect botnets with the same accuracy as the best
known results published in literature. In addition, we propose
an approach to assign anomaly score based on probability
distributions, which allows us to detect botnets in streaming mode
as the new networking statistics becomes available. This on-line
detection capability would enable real-time detection of unknown
botnets.

Index Terms—anomaly detection system, botnet detection,
network security, online detection, Recurrent Neural Network,
Variational Autoencoder

I. INTRODUCTION

Botnet is one of the most significant threats to the cyber-
security as they are considered a source of many malicious
activities [1]. The machines in a botnet is typically hijacked
without the owner’s knowledge. These machines are then
commanded to act together to attack more machines and
find more valuable targets. They are also frequently used to
perform distributed denial-of-service attacks (DDos), click-
fraud, spamming and crypto-mining. These botnets could
also harbor malware and ransomware for delivery to victims
of their attacks. Therefore, a critical task of cybersecurity
research is to detect botnets and stop their attacks.

At the same time, the malicious software for infecting a
machine and operating botnets is evolving to evade detection,
rendering many of the commonly used botnet detection tech-
niques ineffective. For example, the protocol used by botnet
has changed. Initially, Internet Relay Chat (IRC) in which
the bot master controls the other bots was adopted as the
communication method. After that, peer-to-peer (P2P) where
individual boats serve as clients and servers was widely used
and then HTTP based botnet hijacking a legitimate com-
munication channels began to flourish [2]. Moreover, botnet

attack techniques are continuously evolving. In 2016, a new
botnet named Mirai started to control hundreds of thousands of
Internet of Things (IoT) devices making a high-profile DDoS
threat. Mirai has made other botnets that imitate the infection
strategy [3]. The other sophisticated botnet systems, such as
Smominru which is known as crypto-mining botnet became
a rampant threat since 2018. There are also examples where
botnets could operate without detection for an extended period
of time by gradually changing its mode of operation. Detecting
these botnets requires the detection algorithms to evolve with
time and to adapt quickly with extensive retraining.

There is a significant body of published literature on de-
tecting malicious botnets. The existing approaches of botnet
detection are categorized into two broad categories: honeypots
and Intrusion Detection Systems (IDS). Honeypot is a com-
puter mechanism that is used as trap to draw the attention
of attackers to attack this computer system [4]. The honeypot
approach has several limitations in terms of scale and possible
detection types of attacks [4]. On the other hand, IDS methods
which is to monitor a network or systems for malicious
activity are further divided into two categories: signature-
based and anomaly-based methods. A signature-based method
is configured with a set of rules or signatures to classify
types of network traffics. This approach requires a relatively
small amount of computation and often can work in real-
time without slowing down normal network operations. The
effectiveness of signature-based is widely studied, but it is only
able to be identify well-known botnets [4], [5].

On the other hand, anomaly-based techniques detect botnets
based on a number of network traffic anomalies such as high
network latency, high volumes of traffic and unusual system
behavior [4]. They model a normal behavior of network traffic
and design a decision engine which determines any diver-
gence or statistical deviations from the norm as a threat [6].
Traditionally, many studies have attempted to use statistical
features or heuristic methods to detect botnet anomalies [7],
[8]. Recently, with the motivation of making more generalized
botnet detectors in anomaly-based IDS, there have been many
studies on machine learning (ML) methods to analyze botnets
behavior for the anomaly detection. With anomaly detection
system utilizing ML, previously unseen types of botnet attacks
can be detected based on its behavior [2], [9]–[12].

However, many studies suggesting ML methods for botnet



detection are limited in that they do not share the testing
dataset, which makes them incomparable to each other. [2],
[9]–[12]. In addition, most previous studies do not take into
account sequential patterns within network traffic data, even
though botnet traffic shows a repeated pattern behavior due to
the nature of the pre-programmed characteristics of bots [13].
There are some studies considering periodic behaviors, but
they are still limited as the studies only consider sequential
characteristics within the same source IP addresses not within
overall network traffic, which makes it difficult to be used
as the online detection system [14], [15]. Furthermore, some
existing studies narrow their scope by evaluating their methods
only for one of the IRC, P2P, and HTTP traffic. For these
reasons, those methods fail to validate their methods to cope
with various types of botnets or previously unseen botnet fam-
ilies, limiting the practical use given the new introduction of
new botnet families [14]–[17]. Only the method which shows
effectiveness on various types of botnets can be rendered
reliable and practically useful.

Our goal of this paper is to suggest a ML method which is
capable to reflect periodicity within network data as well as to
detect previously unseen types of botnets in a on-line manner.
We have three main contributions in this paper:
• We adapt Recurrent Variational Autoencoder (RVAE)

architecture for anomaly detection. This detection method
can be trained on normal data and detect anomalies that
vary over time. This is a novel feature of our detection
approach.

• We devise a strategy for on-line detection of anomalies
using the output from the RVAE network.

• We verify that the on-line detection approach could detect
changing botnets by splitting the popular test data set
CTU-13 into training and testing sets with different types
of botnets. Tests show that we are able to detect botnets
effectively when different types of botnets are used for
testing compared to the existing methods.

II. RELATED WORKS AND BACKGROUND

The various ML method have been utilized in botnet de-
tection. We use a fundamental structure of Recurrent VAE
(RVAE) which contains both Variational Autoencoder (VAE)
and Recurrent Neural Network (RNN) in regard that it uses
RNN structure as encoder/decoder of VAE instead of Multi-
Layer Perceptron (MLP). In the next subsection II-A, we
introduce previous work utilizing ML techniques for botnet
detection and discuss the limitation each work has. Subse-
quently, in the subsection II-B, regardless of the topic of botnet
detection, we describe each part of the proposed ML model,
how each model works, and what problems each method was
created to deal with. We also explain why the method need to
be utilized for botnet detection.

A. Machine Learning Approach for Anomaly based IDS

Variational Autoencoder: In [16], Guoc et al. introduce
VAE which is an unsupervised method for detecting anomalies
and also focus on explaining anomalies with a gradient-based

fingerprinting technique, but it is limited it assumes that they
already know the ratio of anomaly and it does not consider
sequential pattern of data which can increase the performance
of detection. Van et al. propose the revised VAE structure,
called as Dirac Delta VAE, for achieving better anomaly
detection performance in [17]. It narrows down the range
of latent space which makes classifiers detect anomaly easier.
However, the proposed method in the paper cannot be trained
end-to-end because it separately uses classifier in the latent
space. Furthermore, the authors conducted experiments using
one type of botnets for training and testing. While it is not
VAE, Ruggiero et al. utilize Denoising Autoencoder (DAE) for
botnets anomaly detection in [18]. The authors propose the
way using both DAE and filter-encoder architecture to extract
features for botnets classifier. Furthermore, there are various
of studies utilizing VAE for anomaly detection of network
traffic, as you can see in [19] and [20]. While many works
have been done so far, most are limited in that the methods
overlook sequential characteristics within network traffic.

Recurrent Neural Network: RNN have been in great use
in many studies for employing sequential characteristics of
network traffic data. Kapil et al. propose supervised approach
to detect botnet hosts by tracking a host’s network activity over
time using RNN architecture and extract graph-based features
of NetFlow data for botnet detection in [14]. However,
extracted features are obtained each host IP address. If using
periodicity of each source IP address, detecting malicious
botnets in an timely manner is impossible because we need
to wait to collect every flow with the IP address to classify
one connection as malicious or non-malicious. In addition,
the method is restricted in terms of not being generalized
in that it is trained and tested on limited botnet scenarios.
Besides, Pablo et al. assign the symbol to size and the
port and embedded the code to distributed representation like
word embedding [15]. It shows the potential to use RNN as
botnet detection model, but it is limited that it doesn’t show
comparable performance in imbalanced network traffic. In
[21], Egon et al. present a method of determining which alerts
are correlated by applying Neural Networks and clustering.
It utilizes text strings output from IDS as RNN input. It is
somehow limited as the method requires the specific output,
such as text strings. While many works have been done so
far, most are limited now that the method cannot be applied
to the online anomaly detection system because the methods
analyze traffic by the same host.

Other Machine Learning Approach: Besides VAE and
RNN, many recent studies have attempted to make use of
various Machine Learning (ML) approach to reduce the depen-
dence for human heuristics. In [22], the authors regard every
feature as sentence and embed it. With embedded features,
classifier can be trained to detect malicious botnets. In [9],
the authors propose the way of detecting HTTP botnets using
MLP. Kamaldeep et al. introduce the framework for P2P botnet
detection using Random Forest in [10]. In [11], Elaheh
et al. introduce the method of selecting effective features
for machine learning based botnet detection approaches. The



authors also assess its effectiveness on the dataset which are
constructed focusing on generality, realism and representa-
tiveness. Ongun et al. present how to extract features which
are good for ML model in [21]. The authors also compare
a statistics aggregated feature processing method with the
connection level feature processing method and validate those
methods with Random Forest and Gradient Boosting, which
are ML techniques. In [23], the authors treat network traffic
features as an image. By bringing pre-trained Convolutional
Neural Network (CNN) model which is suitable for image
data, the authors do transfer learning to adapt network traffic
data.

B. Background of ML structures Employed in the Proposed
Model

Variational Autoencoder (VAE) VAE is one of the gen-
erative models which utilizes deep neural network structure
to represent transformation. Encoder which consists of neural
network extracts latent variable z in accordance with input x
using a reparameterization trick. Decoder which also consists
of neural network reconstructs x with z that is created by the
encoder. The more detailed discussion of VAE can be referred
in [24].

Gated Recurrent Unit (GRU) We use RNN structure
which is known as containing directed cycle beneficial to
represent data with sequential pattern. Especially, we utilize
GRU model which has capability to remember values with
long sequences comparing to vanilla RNN. This allows GRU
to extract long-term periodic characteristics of network traffic
data. The more detailed discussion of GRU can be referred in
[25].

Recurrent Variational Autoencoder (RVAE) RVAE is the
structure of combining seq2seq with VAE, whose encoder and
decoder consists of auto-regressive model. As it utilizes RNN
instead of MLP or CNN to generate sequential outputs, it not
only takes the current input into account while generating but
also its neighborhood. For prior distribution, it uses Gaussian
distribution like VAE. The last hidden state is used as mean
and variance of multivariate Gaussian in latent space. The
latent variable is employed as initial hidden state of the
decoder which is also RNN structure. The more detailed
discussion of Recurrent VAE can be referred in [26] and
[27].

Generally, seq2seq models are actively being used in text
and music field. With sequential patterns, they generate music
or text sequences. The advantage to the RVAE is that it utilizes
sequential patterns to generate the data. With this structure, we
expect that the structure performs ably in network traffic data
to detect anomaly.

III. PROPOSED MODEL

In order to identify botnets, we propose a novel flow-based
botnet detection system coping with periodicity of traffic flow.
The overall procedure of our proposed system is shown in
Fig. 1, which consists of three steps as follows:

Fig. 1: Procedure of the proposed method

• Data pre-processing: The data instances are grouped
based on a predefined time interval(e.g., 60 sec for the
size of time window), and they are aggregated by host
IP addresses. This process also includes the process of
calculating statistical features and normalizing numerical
values.

• Anomaly scoring: At every time window, anomaly
scores of every flow are calculated, which provides the
degree of maliciousness of individual connections. For
scoring, we establish a function that consists of RVAE
and produces anomaly scores by comparing the input with
the output of the model which is the reconstructed input.

• Anomaly detection: Based on the calculated anomaly
scores, the anomaly detection function classifies individ-
ual connections into either Malicious or Non-malicious.
In particular, our method does not rely on threshold;
rather, it utilizes a couple of probability density func-
tion (PDF) which are estimated by normal and botnet
instances in training dataset, respectively.

Fig. 2 demonstrates a snapshot of the process for the
data pre-processing and anomaly scoring. In the phase of
data processing, every flow sorted in chronological order is
aggregated to obtain statistic features within the windows.
These flow-based features are used as input to RVAE, and are
input in the order of time. In the botnet detection system, the
encoder is expected that it is trained in a way of distilling the
common characteristics within the sequential data into latent
variable z. The decoder reconstruct sequential inputs utilizing
z. In the end, reconstruction loss is obtained as an output of
the process of anomaly scoring.

A. Anomaly Scores from Recurrent Variational Autoencoder

TABLE I: Notations used

Notation Description
hE,T The last hidden state of the encoder
Wµ Linear transformation to get µ(x)
Wσ Linear transformation to get σ(x)
z The latent variable
hD,2 The second hidden state of the decoder
hD,t The hidden state of the decoder at timestep t
Whh Linear transformation from the previous hidden state
Whx Linear transformation from input
W s Linear transformation from hidden state to get output
θ The parameters of encoder
x1 The first input of the decoder
φ The parameters of decoder
ỹt Output, reconstruction at timestep t
ỹtn nth feature of reconstruction at timestep t
DKL Kullback-Leibler divergence

Notations used in this paper are in Table I. We first
input network traffic data, which are pre-processed, to GRU



Fig. 2: Botnet detection system using RVAE with sequential dataset

structure. hE,T is used as mean and variance of Gaussian
distribution which represents latent space. With µ and σ, z
can be obtained, and the z is used as initial hidden state for
the decoder.

µ(x) =WµhE,T

σ(x) =WσhE,T

z = µ(x) + σ(x) ∗ ε, ε ∼ N(0, 1)

(1)

The second hidden state of decoder follows as:

hD,2 = sigmoid(Whhz +Whxx1) (2)

The first input of the decoder(x1) is zero-padded. Finally, the
outputs we obtain from RVAE is formulated:

ỹt = sigmoid(W shD,t) (3)

The loss function that we want to minimize:

J(x) = −Eqφ(z|x)[logpθ(x|z)]+β ∗DKL[qφ(z|x)|pθ(z)] (4)

We train the model with only non-malicious instances, and in
evaluation phase, we calculate reconstruction errors and use
it as anomaly scores using both non-malicious and malicious
instances. As we use binary cross entropy as error function,
the anomaly score is formulated:

L =

N∑
n=1

(1− ytn)log(1− ỹtn) + ytn logỹtn (5)

Each time window, we can obtain the anomaly scores of every
connection which belong to the time window. In other words,
if the traffic connection can be considered malicious or not is
indicated by the outputs(L) of the anomaly detection system.
In the following section, we present how to detect botnets with
anomaly scores.

B. Anomaly Detection

In many studies, threshold of anomaly scores is used to dis-
tinguish whether the source IP addresses in the time window is
malicious or not in anomaly detection methods [16], [18], [19].
The threshold can be set in many ways. It is one of the simple
and intuitive method; however, the information of the dataset
is required in most cases such as the ratio of botnets or at
least approximate values of anomaly scores of botnet samples.
Unfortunately, there are few cases that the information about
the traffic data is known in advance. Furthermore, detecting
attacks of botnet with threshold hampers the anomaly detection
framework performing on-line. Let’s say that the threshold is
set to 10%, which means that samples higher than top 10% of
anomaly scores are classified as botnets. Then, we have to wait
until all samples in testing dataset complete to get the anomaly
scores because we must sort every anomaly scores. Therefore,
this method is limited to being used in timely manner, which
means that it is not practical.

Instead, we suggest a more efficient method using the
estimated probability distribution of reconstruction errors. In
training phase, we collect reconstruction errors from normal
and abnormal instances. Then, we find the distribution and
its parameters to represent the distribution of reconstruction
errors of abnormal and normal, respectively, by exploring
various types of distributions and selecting the minimum sum
of squared estimate errors (SSE). We call the distribution with
the smallest SSE as the best-fit PDF. We search for the best-
fit PDF among many different candidates such as gamma
distribution, generalized logistic distribution, fold cauchy dis-
tribution, Mielke distribution and beta distribution, among
others. In testing phase, the estimated PDF can be utilized to
obtain likelihood to belong to each distribution. Comparing
the likelihood values of the two different distributions, we



assume that each sample of the test data set belongs to the
distribution with greater likelihood. Utilizing best-fit PDFs at
the training stage does not require the information of network
traffic dataset as well as provide the botnet detection system
that can be used in on-line.

IV. EXPERIMENTS

We have experimented several ways to validate reliability
of the proposed method in different aspects. We show the two
aspects from the experiments. The first is to show that the
proposed method has better performance than both Random
Forest and the existing standard VAE, which we call as MLP-
VAE in this paper, in various measures. Second, we explain
how the reconstruction errors are distributed and how to utilize
it in detecting botnets.

A. Evaluation Datasets

We use CTU-13 dataset which is widely used in the latest
studies for botnet detection [15]–[19], [21], [22], [28]. A
botnet scenario is a particular infection of the virtual machines
using a specific malware. Thirteen of these scenarios were
created, and each of them was designed to be representative
of some malware behavior [28]. To compare the results of
MLP-VAE and Random Forest, we reproduced nearly the
same experimental settings with the settings in [16] and [21].
In [16] and [21] which proposes VAE and Random Forest
structures respectively that we select as the baseline, they
prove the robustness of their methods on scenario 1, 2 and
9 of CTU-13 dataset, which consists of only Neris botnet.
The Neris botnet is IRC based bot infecting other machines
by Spam and Click Fraud. In our reproduced experiments, all
methods show similar performance in every metrics, as you
see in Table III. Especially, Random Forest performs very well
on the testing datasets because botnet families in the testing
dataset are already used for training. In other words, Random
Forest method is able to capture dominant features to classify
anomalies. However, when considering the evolving botnets,
the method cannot be validated with being evaluated on dataset
consisting of botnets which are previously identified.

Thus, we determine to follow the dataset separation criteria,
as suggested in [28], in order to test the model in more general
cases. In [28], the authors made the dataset in a way that
none of the botnet families used in the training and cross-
validation datasets should be used in the testing dataset. The
authors state that this way ensures that the detection methods
can generalize and detect new behaviors. By splitting of CTU-
13 data in the suggested way, we can mimic the real situation
where the operations of botnet changes over time in terms of
protocols and attack types. Compared to the restricted dataset
(scenario 1, 2, 9), various types of botnets that have IRC-
based, P2P-based and HTTP-based communication methods
and conduct attacks such as Spam, Click Fraud, Port Scan,
DDos and FastFlux are included in the dataset we use for the
experiments. The description of dataset is in Table II.

TABLE II: CTU-13 Dataset

Dataset Scenario
Training&Validation 3,4,5,7,10,11,12,13

Testing 1,2,6,8,9

B. Data Pre-processing

The CTU-13 dataset consists of NetFlow files which are
composed of source and destination IP addresses and ports,
time, protocol, duration, number of packets, number of bytes,
state, and service. We process the data to use the aggregated
flows statistic, which is the way many existing works adopt
in order to obtain flow-based features [15]–[19], [21]. We
group NetFlow data at every time interval of T , and aggregate
features within every group based on the source IP addresses
to get flow-based features. With the processing method, we can
detect IP address showing malicious behavior in a particular
time window. Many existing works experimentally find the
most appropriate time window T , which is crucial in that while
too small time window might not capture traffic characteristics
over a longer period of time, too large time window cannot
provide timely detection in waiting the end of the window [2],
[15], [16], [18], [19], [21], [28]. We did experiment as chang-
ing the duration of windows to find the ideal value for the
statistical aggregation. We then sort the entire data within the
time window by the time of the source IP connection group,
because the RNN model is sensitive to the order of the inputs.
For RVAE, we use the network traffic connections collected
within N windows as the sequential inputs to the model. You
can see it in the data processing part of Fig. 2. In the case of
Fig. 2, 60-second duration of three windows are used.

In terms of source/destination ports and destination IP
addresses, we count the number of unique records with con-
nected source IP addresses in the time window. In addition, for
the source IP addresses, we count the number of connections
with the source IP addresses in the time window. For service,
state, and protocol, we count the number of different values
in each category with the source IP addresses in the time
window. Finally, we normalize the numerical values to be
between 0 and 1. As a result, the number of features used in
this experiment is smaller compared to the number of features
used in [21] and [16].

C. Experimental Setting

For splitting datasets for training, validation and testing, we
followed the suggested separation criteria, as we mentioned
in the section IV-A. The architecture of MLP-VAE follows
what is used in [16], [# of features → 512 → 512 → 1024
→ 100]. For RNN architecture, we use 2-layer bidirectional
GRU. We use the 512 dimensions of hidden states, and 100
dimensions of latent variable as MLP-VAE. We also apply
ReLU activation [29] to MLP-VAE as well as RVAE. The
Kullback-Leibler annealing method is set so that the weight
multiplied to KLD increases linearly for 500 gradient updates
for RVAE. We train for 500 epochs with Adam optimizer and



128 batch-size. Also, learning rate is set as 0.01 for both
VAE models. We use the 5 different evaluation metrics to
validate our performance; Area Under the Receiver Operating
Characteristics (AUROC), Area Under the Precision-Recall
Curve (AUPRC), Precision, Recall and F1 score which are
common metrics for anomaly-based IDS. We save the model
showing the best value of AUPRC in 5-fold cross validation
sets. The source code is written with the PyTorch1 library.

D. Baseline

We compared our experimental results to the reproduced
results from the MLP-VAE and Random Forest. In terms of
MLP-VAE, the experimental results are based on the same
data processing method with the same optimizer, learning rate
and the size of latent variable from our experiment.

V. RESULTS AND DISCUSSION

We did experiments to validate the proposed method in
different aspects. For quantitative validation, we compare the
performance of our proposed method with other methods
on different metrics. For qualitative validation, we plot the
distribution of the reconstruction errors of normal and botnets
cases. Moreover, we plot estimated the best-fit PDF. We
validate our detection method utilizing the best-fit PDF as we
describe it in the section III-B. To compare methods in various
metrics with the same processing and detection method, we
reproduce MLP-VAE and Random Forest in [16] and [21],
respectively. While the value in the literature [16] is 0.936,
our reproduced value of AUROC with MLP-VAE is 0.966.
Even if there may be a slightly different experimental setup,
the reproduced results show that our implementation is still
valid according to a bit higher result than the result of the
original paper.

Results comparison among methods In Table III, Random
Forest method shows the nearly perfect performance in every
metric, even though VAE models show the comparable per-
formance. It is because that the training/testing dataset which
are based on scenario 1, 2, 9 share the same characteristics.
Random Forest is effective in finding dominant features in
these characterized datasets. However, as we mention in the
section IV-A, validating the models on the characterized
datasets is not what we focus on in this paper.

In Table IV, we show the results from the training and
testing on the generalized dataset that we mentioned in the
section IV-A. In this experiment, we pre-processed our data by
using 60-second duration of window and using three windows.
While both training and testing datasets that we use in Table III
consist of only Neris botnet, the testing dataset and training
dataset we use in Table IV consist of each different botnets:
Rbot, Virut, Sogou, and NESIS.ay are used for training,
and Neris, Menti, and Murio are used for testing. Because
each botnet shows different characteristics, there is an overall
performance degrade with Random Forest, which is affected
by the dominant features of the training dataset. Nonetheless,

1https://pytorch.org

TABLE III: Results comparison-Trained and tested on scenario
1,2 and 9

Model Recall Precision F1 AUPRC AUROC
RVAE 0.978 0.957 0.967 0.960 0.966

MLP-VAE 0.974 0.959 0.966 0.959 0.966
Random Forest 1.000 0.998 0.999 1.000 1.000

TABLE IV: Results comparison-Trained and tested on the
datasets in Table II

Model Recall Precision F1 AUPRC AUROC
RVAE 0.969 0.892 0.929 0.972 0.975

MLP-VAE 0.944 0.891 0.917 0.967 0.962
Random Forest 0.424 0.982 0.592 0.888 0.901

VAE methods validate its reliability by showing the robust
performance with the generalized dataset. In addition, we find
that RVAE method outperforms MLP-VAE method overall
based on the same features and the same size of latent variables
on both datasets, as you see in Table III and Table IV. It can be
concluded that the botnets of network traffic flow data should
be detected utilizing sequential and periodic patterns.

Probability Density Function of reconstruction errors As
shown in Fig. 3, the distribution of the reconstruction errors
of botnet samples can be distinguished from the distribution
of the normal sample reconstruction errors. As we only
use non-malicious samples for training, we expect that the
reconstruction errors of malicious samples are larger than that
of the non-malicious samples. Comparing medians of those
two distributions, we intuitively notice that the median of the
distribution of non-malicious reconstruction errors is larger
than the median of the distribution of botnet reconstruction
errors, even if the estimated PDF function may not perfectly
represent the samples in the testing dataset, as the best-fit PDF
is determined with the validation dataset.

Especially, you can find a group of botnet samples which
have the smaller reconstruction errors compared to the other
botnet samples in Fig. 3b. We focus on the samples whose
reconstruction errors are smaller than 4. We find that 66%
of the samples of the scenario 6 labeled as botnet show the
reconstruction errors less than 4, while only 0.0% – 4.0% of
samples show reconstruction errors less than 4 in the other
scenarios (1,2,8,9). The scenario 6 utilizes proprietary com-
mand control channels unlike other scenarios most of which
use IRC, HTTP and P2P communication methods [28]. The
samples of the group having small reconstruction errors show
low values for DNS, smtp, ssl, the number of IP addresses, the
number of ports, and the number of different IP addresses in
the time window. These characteristics mainly represent non-
malicious samples other than the botnet samples. We conclude
that the general nature which can be found in the scenario 6
makes dozens of samples belonging to the scenario obtain the
smaller reconstruction errors.

Duration of window In order to propose the right duration
of window, our experiments have been done with changing the



(a) duration of window : 5s

(b) duration of window : 60s

(c) duration of window : 300s

Fig. 3: Distribution of reconstruction error

duration of window to 5 seconds, 60 seconds and 300 seconds,
as you see in Table V. In general, the results of 60-second
duration of window are higher than those of other duration
lengths. We infer that as we use a long duration, the number
of source IP addresses which belongs to the same time window

TABLE V: Results comparison

Window Recall Precision F1 AUPRC AUROCduration(s)
5 1.000 0.865 0.928 0.791 0.881
60 0.969 0.892 0.929 0.972 0.975

300 0.998 0.537 0.699 0.905 0.972

increases, which aggravates the vanishing gradients problem
in a long-term sequence. On the other hand, too short duration
cannot provide efficient length to represent the patterns of the
time windows with statistically aggregated values. Therefore,
it is crucial to decide the appropriate duration of the time
window. From our experiments, 60-second duration is the most
suitable, as you can find in Table V quantitatively and Fig. 3
qualitatively. In particular, the precision with the 300 seconds
duration is low relative to the others. As shown in Fig. 3c,
the PDF of the botnet instances contains the large part of the
distribution of the non-malicious instances, which is followed
by the low precision. Comparably, as shown in Fig. 3b, as
most of the botnet samples can be represented by the best-fit
PDF, the PDF of the botnet reconstruction errors is the most
clearly distinct from the PDF of non-malicious reconstruction
errors with the 60-second duration.

In addition, we highlight that the types of best-fit PDF
vary depending on the duration of windows. As shown in
Fig. 3, while the best-fit PDF for the botnets with the 60
seconds window is generalized logistic distribution, the best
distribution for the botnets with the 5 seconds window is fold
cauchy. Also, the best estimated PDF for the botnets with the
300 seconds window is Mielke distribution. This shows that
setting the duration of window has a significant effect on the
performance of the anomaly detection system.

VI. CONCLUSION

In this paper, we validate RVAE anomaly detection method
taking into account for the sequential and periodic nature for
the network traffic flow data. The study is of significance to
providing the applicable solution for the botnet detection sys-
tem, especially in an online manner. Moreover, as the proposed
method is validated on various scenarios of botnet operation,
including the botnets which are not used for training, it can
be concluded that the proposed method is robust in detecting
previously unseen botnets.

For future studies, we plan to study some improvements
in the proposed method. First, fuzzy logic can be adapted to
improve the anomaly detector utilizing PDF. It can provide
more logical and systematic way of using PDFs for anomaly
detection than comparing likelihoods from two distributions.
In addition, it is potential to improve performance of the
anomaly detector if the method to cope with some cases of
botnets having the small reconstruction errors from the normal
cases is developed. The common characteristics of the cases
of botnets, which use a proprietary protocol, can be utilized to
develop such a method. Moreover, the various VAE or RVAE



architecture can be adapted to improve its anomaly detection
performance.
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