F $\frac{\text { EasyChair Preprint }}{\text { № } 10961}$

On Nicolas Criterion for the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

On Nicolas Criterion for the Riemann Hypothesis

Frank Vega
GROUPS PLUS TOURS INC., 9611 Fontainebleau Blvd, Miami, FL, 33172, US

Abstract

The Riemann hypothesis is the assertion that all non-trivial zeros have real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. There are several statements equivalent to the famous Riemann hypothesis. In 1983, Nicolas stated that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq x} \frac{q}{q-1}>e^{\gamma} \cdot \log \theta(x)$ holds for all $x \geq 2$, where $\theta(x)$ is the Chebyshev function, $\gamma \approx 0.57721$ is the EulerMascheroni constant and \log is the natural logarithm. In this note, using Nicolas criterion, we prove that the Riemann hypothesis is true.

Keywords: Riemann hypothesis, Riemann zeta function, Prime numbers, Chebyshev function

2000 MSC: 11M26, 11A41, 11A25

1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of

[^0]twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. In mathematics, the Chebyshev function $\theta(x)$ is given by
$$
\theta(x)=\sum_{q \leq x} \log q
$$
with the sum extending over all prime numbers q that are less than or equal to x, where \log is the natural logarithm. Leonhard Euler studied the following value of the Riemann zeta function (1734).

Proposition 1.1. It is known that[1, (1) pp. 1070]:

$$
\zeta(2)=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

where q_{k} is the k th prime number.
Proposition 1.2. For $x \geq 3$ we have [2, Lemma 6.4 pp. 370]:

$$
\left(\prod_{q>x} \frac{q^{2}}{q^{2}-1}\right) \leq \exp \left(\frac{2}{x}\right) .
$$

We say that $\operatorname{Nicolas}(x)$ holds provided that

$$
\prod_{q \leq x} \frac{q}{q-1}>e^{\gamma} \cdot \log \theta(x)
$$

where $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. Next, we have the Nicolas Theorem:

Proposition 1.3. Nicolas (x) holds for all $x \geq 2$ if and only if the Riemann hypothesis is true [3, Theorem 3 (b) pp. 376].

In number theory, $\Psi(n)=n \cdot \prod_{q \mid n}\left(1+\frac{1}{q}\right)$ is called the Dedekind Ψ function, where $q \mid n$ means the prime q divides n. For $x \geq 2$, a natural number M_{x} is defined as

$$
M_{x}=\prod_{q \leq x} q
$$

We define $R(n)=\frac{\Psi(n)}{n \cdot \log \log n}$ for $n \geq 3$.
Proposition 1.4. Unconditionally on Riemann hypothesis, we know that (4, Proposition 3. pp. 3]:

$$
\lim _{x \rightarrow \infty} R\left(M_{x}\right)=\frac{e^{\gamma}}{\zeta(2)} .
$$

Putting all together yields a proof for the Riemann hypothesis.

2. Central Lemma

The function f was introduced by Nicolas in his seminal paper [3, Theorem 3 pp. 376]:

$$
f(x)=e^{\gamma} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1-\frac{1}{q}\right) .
$$

This is a key Lemma.

Lemma 2.1. The Riemann hypothesis is true when

$$
\exp \left(\frac{2}{\sqrt{x}}\right) \geq f(x)
$$

for large enough x.

Proof. When the Riemann hypothesis is false, then there exists a real number $b<\frac{1}{2}$ for which there are infinitely many natural numbers x such that
$\log f(x)=\Omega_{+}\left(x^{-b}\right)$ [3, Theorem 3 (c) pp. 376]. According to the Hardy and Littlewood definition, this would mean that

$$
\exists k>0, \forall y_{0} \in \mathbb{N}, \exists y \in \mathbb{N}\left(y>y_{0}\right): \log f(y) \geq k \cdot y^{-b}
$$

That inequality is equivalent to $\log f(y) \geq\left(k \cdot y^{-b} \cdot \sqrt{y}\right) \cdot \frac{1}{\sqrt{y}}$, but we note that

$$
\lim _{y \rightarrow \infty}\left(k \cdot y^{-b} \cdot \sqrt{y}\right)=\infty>2
$$

for every possible positive value of k when $b<\frac{1}{2}$. In this way, this implies that

$$
\forall y_{0} \in \mathbb{N}, \exists y \in \mathbb{N}\left(y>y_{0}\right): \log f(y)>\frac{2}{\sqrt{y}}
$$

Hence, if the Riemann hypothesis is false, then there are infinitely many natural numbers x such that $\log f(x)>\frac{2}{\sqrt{x}}$. So, if we have

$$
\frac{2}{\sqrt{x}} \geq \log f(x)
$$

for large enough x, then the Riemann hypothesis cannot be false. By Reductio ad absurdum, the proof is done.

3. Main Theorem

This is the main theorem.

Theorem 3.1. The Riemann hypothesis is true.

Proof. The Riemann hypothesis is true when

$$
\exp \left(\frac{2}{\sqrt{x}}\right) \geq f(x)
$$

for large enough x by Lemma 2.1. That is equivalent to

$$
\exp \left(\frac{2}{\sqrt{x}}\right) \cdot\left(\prod_{q \leq x} \frac{q^{2}}{q^{2}-1}\right) \cdot R\left(M_{x}\right) \geq e^{\gamma} .
$$

We know that

$$
\exp \left(\frac{2}{\sqrt{x}}\right) \cdot\left(\prod_{q \leq x} \frac{q^{2}}{q^{2}-1}\right) \gg \zeta(2)
$$

where \gg means "much greater than" by Propositions 1.1 and 1.2. Moreover, we know that

$$
R\left(M_{x}\right) \sim \frac{e^{\gamma}}{\zeta(2)} \text { when }(x \rightarrow \infty)
$$

by Proposition 1.4. Consequently, the inequality

$$
\exp \left(\frac{2}{\sqrt{x}}\right) \cdot\left(\prod_{q \leq x} \frac{q^{2}}{q^{2}-1}\right) \cdot R\left(M_{x}\right) \geq e^{\gamma}
$$

necessarily holds for large enough x.

References

[1] R. Ayoub, Euler and the zeta function, The American Mathematical Monthly 81 (10) (1974) 1067-1086. doi:10.2307/2319041.
[2] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357-372. doi:10.5802/jtnb.591.
[3] J.-L. Nicolas, Petites valeurs de la fonction d'Euler, Journal of Number Theory 17 (3) (1983) 375-388. doi:10.1016/0022-314X(83)90055-0.
[4] P. Solé, M. Planat, Extreme values of the Dedekind ψ function, Journal of Combinatorics and Number Theory 3 (1) (2011) 33-38.

[^0]: Email address: vega.frank@gmail.com (Frank Vega)

