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Abstract--In this article, we present a survey of DVFS (Dynamic 

Voltage/Frequency) techniques for improving power efficiency of 

Graphic Processing Unit. We incorporate just those study that 

analyze Graphic Processing Unit (GPU) power consumption and 

methods for energy efficiency of Graphic Processing Unit. Further 

we only focus on the key idea of different DVFS experimental 

techniques and methodology  
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I.  INTRODUCTION 

The Requirement of information processing and computation 

are growing rapidly. Due to this demand, researchers have 

moved from Serial computing platform i.e. SISD to high 

performance platforms such as multi-core processors, field 

programmable gate arrays, Graphic Processing Units (GPUs), 

etc. Graphic Processing units (GPUs) have been increasingly 

used for high performance computation (HPC) due to their 

unmatched computational energy. All supercomputer used 

Graphic Processing Unit to achieve unmatched computational 

energy [1]. 

Manufacturer increases the no. of core processors for high 

performance which results in more power consumption of 

Graphics Processing Units (GPUs). They devour much power 

when contrasted with Central Processing Units (CPU). Power 

consumption of Graphic Processing  

Units have remarkable influence on their reliability and 

productive performance. (Ashish Mishra 2015). From recent 

years many high-performance computing use the power of 

Graphic  

Processing Units (GPUs). For example Titan consumes 8.2 HW 

of power [2]. Tianhe-IA consume electricity bill of $2.5 million 

[1]. Power consumption forces researchers to find methods that 

reduce consuming power of Graphics  

Processing Units. Because of these reasons understanding of the 

Graphics Processing Unit (GPU) is significantly important for 

researchers to propose an efficient solution to overcome the 

power consumption challenges.  

In last few years, several researchers have produced different 

techniques and methodology to reduce the energy utilization of 

Graphic Processing Unit (GPU). Based on their approach for 

improving energy efficiency DVFS is the best energy 

                                                           
 

management approaches [3]. It is effective either in energy 

saving and enhancing execution.  Jiao et al [4]. Studied 

memory/frequency scaling on NVIDIA GTX 280 and observed 

that power efficiency depend upon application characteristics, 

scaling down Graphics processing unit core frequency would 

save power utilization. Ma et al [5] developed online energy 

management framework to perform dynamic memory and 

frequency scaling and, Central Processing Unit and Graphics 

Processing Uni workload division. Results on NVIDIA  

GeForce8800, framework could save about 6.1% system energy 

(CPU+GPU) and about 14%  

GPU power. Ge et al applied Dynamic voltage and frequency 

technique on both GPU and Kepler K20c CPU. They 

discovered that scaling Graphics Processing Unit frequency 

higher could not utilize greater power. Sethia et al [6] developed 

a runtime Graphics processing unit core and memory frequency 

system known as Equalizer. The equalizer either enhance the 

performance or conserve energy. The author categorized 

Equalizer into two mode; energy saving mode and high 

performance mode. Equalizer could save 15% energy in energy 

efficiency mode.   

Graphics processing unit performance models based on Graphic 

Processing Unit pipeline architecture. GPU pipeline analysis 

[7] [8] [9] [10] is consider as GPU frequency scaling. Nath et al 

[10] designed a Graphics Processing Unit performance model 

to evaluate the GPU performance when frequency is scaled. 

Statistical methods is another approach which depend on GPU 

DVFS performance counters. Abe et al [11] built statistical 

performance models which apply on real GPU hardware, their 

prediction errors were high. Regarding the survey on Graphics 

Processing Unit DVFS power models, one common approach 

depend on statistical methods and other one relies on empirical 

methods [8]. Empirical methods depends upon binary code 

analysis and require break up of Graphics Processing Unit 

(GPU) micro architecture. These approach is device-specific. 

Statistical method is another approach which depend on 

hardware performance counters. This method designed to 

create an energy efficiency model either by regression method 

[12] or machine learning approaches [13]. 

Regression methods easier to implement but for the modern 

GPU devices, these methods failed to capture the non-linearity, 

while the advance neural network(ANN) approaches suit the 
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complicated data dependencies results in high complexity 

output models, with still prediction accuracy is relatively low.   
Fig.1. 

TAXONOMY 

The article is categorized into different sections. Section 2 

provide technical framework comparing Graphic Processing 

Unit (GPU) energy efficiency methods with other methods. 

Section 3 describe comparative analysis of energy efficiency 

method. Section 4 provide conclusion and future research.  

In this article, we present a survey of DVFS (Dynamic 

Voltage/Frequency) techniques for improving power efficiency 

of Graphic Processing Unit. We incorporate just those study 

that analyze Graphic Processing Unit (GPU) power 

consumption and methods for energy efficiency of Graphic 

Processing Unit. Further we only focus on the key idea of 

different DVFS experimental techniques and methodology.  

II.  GPU ARCHITECTURE 

A GPU contain L2 cache and multiple stream 

processor as shown in block diagram of NVIDIA Maxwell 

GTX 980. Stream multiprocessor and L2 cache are linked with 

GPU memory unit. The memory unit contains multiple dynamic 

RAMs, via the memory controller.  

 NVidia introduced different generations of GPUs as shown in 

the table. The micro-architectures of NVIDIA GPUs from 2006 

are similar except Tesla. Cache system of Tesla is different 

from other generations of GPU. It’s essential to examine the 

effect of the GPU cache on the application execution and power 

utilization [14].  

 

 

A. GPU DVFS 

DVFS is a method used for lowering power consumption of 

GPUs via scaling the frequency and voltage at run time. DVFS 

can also be used to decrease the frequency and voltage of 

processors during low workload or inert periods of GPU. 

Power consumed by GPU is given in the equation [15].  

P ∝  λ*C*V^2 

Where P is Energy consumed by GPU, C is Capacitance, λ is 

Clock frequency and V is Supply Voltage. Thus, energy 

consumed by decreasing voltage or frequency or both. 

Decreasing the frequency might also take extra time to 

accomplish the task. Thus almost no energy will be saved. 

Therefore, wise DVFS methods are required to enhance the 

power performance of graphics processing units.  

Micro-

architecture  

Year  Compute 

Capability (X)  

Kepler  2012  3.00   

Fermi  2009  2.00   

Pascal  2016  6.00   

Maxwell  2014  5.00   

Tesla  2006  1.00   
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III.  DVFS CHARACTERIZATION  

 

There are various ongoing studies on GPU DVFS, which can 

be carried out either by simulations or experiments. The 

experimental research are related to scaling the frequency and 

voltage of Graphics Processing unit in reality while the 

simulation research related to scaling the voltage/frequency in 

on simulators. Like GPUWattch. Both experiment and 

computer simulation techniques suggest that the dynamic 

voltage/frequency is effective in power consumption. 

A.  Experimental studies 

Jiao et al [4]. Studied core frequency and memory scaling on 3 

applications of GTX 280 GPU. The applications are the hybrid 

fast Fourier transform, memory-intensive dense matrix 

transpose and compute-intensive dense matrix multiply. They 

observed that power efficiency was depend upon application 

characteristics, scaling down GPU core frequency could save 

power.   

Ma et al [5] developed online energy management framework 

to perform dynamic core and frequency/memory scaling and, 

Central Processing Unit and Graphics Processing Uni workload 

division. Results on NVIDIA GeForce8800, framework could 

save about 6.1% system energy (CPU+GPU) and about 14% 

GPU power 

Ge et al applied Dynamic frequency and voltage technique on 

both Graphics processing unit and Kepler K20c CPU. They 

discovered that scaling Graphics Processing Unit frequency 

higher could not utilize greater power   

Mei et al [16] scaled the core frequency, the core voltage and 

the memory of the Fermi GTX560 GPU. We concluded that the 

effect of Graphics processing unit DVFS relies upon the 

application qualities. The ideal setting to utilize the least power 

was a combination of proper Graphic Processing Unit memory 

frequency and core voltage. Results on NVIDIA Fermi GPU, 

saved about 20% power consumption with 4% performance 

loss.  

Mei et al [18] presented GPU voltage and frequency scaling on 

Fermi as well as Maxwell GPU. They presented the influence 

of scaling the core voltage and frequency and also the effect of 

scaling the memory frequency on 24 Kernels. Mei et al 

observed 21% power consumption on Fermi GTX-560 GPU. 

They concluded that optimal setting relies on the application 

characteristics also Mei et al applied the same voltage and 

frequency approach on Maxwell GTX-980 GPU. The authors 

also observed that increasing the memory frequency conserve 

more energy in case of Maxwell GPU but not in the case of 

Fermi GTX GPU.  

 

B.  Simulation Studies: 

Leng et al [19] devised GPUWattch, that may simulate the 

cycle level Graphics Processing unit core voltage and core 

frequency scaling, based totally at the Fermi GTX481. Leng et 

al configured the numerous GPU core voltage and core 

frequency settings in keeping with the 46 nm prediction 

technology version, and simulated both slow off-chip and 

prompt on-chip DVFS. Results on slow off-chip DVFS saved 

about 13% energy consumption and 14% energy consumption 

in prompt on-chip dynamic voltage frequency scaling with 

2.9% performance loss.  

Sethia et al [6] designed a runtime GPU system known as 

Equalizer. Equalizer either enhance the performance or 

conserve energy. The author categorized Equalizer into two 

approach; energy saving approach and high performance 

approach. Equalizer save 14.5% energy in energy efficiency 

mode.                                                                                                 

Gopireddy et al [20]. Designed an architecture and their 

simulation saved about 48% power consumption as compared 

to conventional architecture with normal dynamic voltage 

frequency scaling. 

IV.  RUNTIME POWER MODELS 

Regarding the survey on Graphics Processing Unit (GPU) 

DVFS power modeling, one common approach relies on 

statistical methods and other one relies on empirical methods 

[8].  

Empirical methods depends upon binary code analysis and 

require break up of Graphics Processing Unit (GPU) micro 

architecture. These approach is device-specific. Another 

approach is statistical method which relies on hardware 

performance counters. This method used to create power model 

either by machine learning [12] approaches or regression [13]. 

A.   Empirical Method:  

Isci and Margaret introduced the empirical power modeling 

method to measure power consumption in Pentium IV. It 

decomposed entire motherboard into independent hardware sub 

components. In every segment, they calculated maximum 

energy intake.  

Empirical energy modeling equations is shown in equation A.   

E= E0 + E1*r1 +………. + En*rn 

Where E0 , E1,………, En are the maximum energy utilization of 

an independent hardware sub component and r0, r1,………..rn  are 

access rates and E0 is constant.  

Hong and Kim used the same strategy for NVIDIA Fermi 

GTX281. They determined the access rates and execution 

cycles of separate graphics processing unit components. The 
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access rate depended on binary PTX code analysis and 

execution cycle depended upon pipeline architecture. After that 

they created a set of micro-benchmarks to search for E0, E1…En 

that provide minimal error among the measured energy. They 

also designed power increment model for the fact that Graphics 

Processing Unit power consumption rise when the chip 

temperature increase. The designed suite of micro-benchmarks 

achieved 2.5% error prediction and GPGPU kernel achieved 

9.2% error prediction.   

Leng et al [21] refined the Hong and Kim empirical power 

architecture with massive amount of micro-benchmarks to 

control the power error prediction of NVIDIA GTX280 GPU.  

Leng et al model has exceptional performance and the model 

assumed by many analysts [6] [22]. Some researchers identified 

that Leng et al model is device-specific and difficult to scale the 

parameters when applying on other NVIDIA Graphics 

Processing Unit.  

Sen and wood [22] designed an energy efficient power model 

that particularly depended upon the processing time of each 

core. Sen and Wood energy model was similar to GPU-Wattch.  

B.  Statistical Method: 

Many researchers designed statistical power modeling method 

to measure power consumption. They used software program to 

monitor the signals of the GPU application and trained the 

model based on the signals. This methodology treats the 

Graphics processing unit micro architecture as a black box and 

looks for connections between the GPU runtime energy 

utilization and micro architecture. 

Traditional regression power modeling equations is shown in 

equation B. 

E= O0 + O1*I1 +………. + On*In 

Where O0, O1… On are output variables and I0, I1…In are Input 

variables.  

Abe et al [11] designed regression model for three different 

GPUs. They set 3 different core and memory frequency for 

Kepler GPU, Tesla GPU and Fermi GPU as a model input, 

additionally they select ten best performance counter. The 

prediction error differed from 16% to 24% relying on the GPUs. 

The latest models have higher prediction error.  

Song et al [13] used Advance Neural Network techniques of 

two hidden layers [13]. They trained their model with this 

technique and their version executed better prediction accuracy 

than linear regression. Wu et al [23] trained the runtime power 

model with Advance Neural Network and k-means algorithm. 

They applied k-means technique to cluster the identical scaling 

behavior kernels. Then applied Advance Neural Network 

technique of two hidden layers on each cluster. The prediction 

error was 11%.  

Regression methods easier to implement but for the modern 

GPU devices these methods failed to capture the non-linearity, 

while the advance neural network approaches better suit the 

complicated data dependencies, with still prediction accuracy is 

relatively low.  

Apart from the above studies, in 2018 J. Guerreiro et al 

(Guerreiro, et al. 2018) proposed the methodology using 35 

applications from different benchmarks Rodinia, CUDA SDK, 

SHOC etc. on Maxwell Titan X and Titan XP GPU. 

Experimental results showed that the proposed methodology 

attain 20% energy saving and as high as 36%, also predict the 

optimal operating frequency of memory  subsystems and 

graphics. The methodology is shown in the fig. The fig shows 

procedure to classify the dynamic voltage and frequency impact 

on the performance of GPU applications. The proposed 

methodology based on synthetic benchmarks, followed by a 

training set of Classifier. J. Guerreiro et al applied hierarchical 

clustering to define the class of benchmarks. Then applied 

Neural Network technique on each classifier. After the 

classifier is trained it is possible to classify any application into 

specific class that specify the dissimilarities in performance. 

 

 

Fig.2. 

 

 

V.  COMPARATIVE ANALYSIS 

The following table shows that energy efficiency and 

performance depend upon benchmarks and GPU device. 

Dynamic Voltage frequency techniques designed either to 

increase performance or energy efficiency or both.   
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Author Method Benchmarks Energy 

improvement 

Performance 

improvement 

GPU 

Ma et al Experiment Online 
management system 

6%(CPU+GPU) 

11% GPU 

Not specified NVIDIA 
GeForce8800 

Ge et al Experiment 

(Liner relation) 

Traveling salesman 
problem 

Matrix multiplication 
Finite state machine 

Not  specified Not specified Kepler K20c 
GPU 

Mei et 
al(2013) 

Experiment 

(Application 

Dependent) 

37 applications 20% 4% 

degradation 

Fermi GTX560Ti 

GPU 

Abe et al Experiment 

 

dense matrix 

multiply (various matrix 
sizes) 

28% (small matrix 

size) 

Not specified NVIDIA Fermi 

GTX480 

Abe et al Experiment 33 popular 
applications 

75% for recent kepler 

GTX-680 

Not specified for other 

GPU 

 

30% degradation GTX460/GTX48
0 Tesla GTX285, 

Fermi, and 
Kepler 

GTX680 

Jiao et al Experiment 

(Application 

Dependent) 

27 kernels from Rodinia 
benchmark and the 
CUDA SDK 

 

34.5% Not specified Kepler GTX640 

GPU 

Mei et 
al(2017) 

Experiment 

(Application 

Dependent) 

24 Kernels 21% Not Specified Fermi GTX-560  
Maxwell GTX-
980 

Leng et a Simulation 

GPUWattch 

GPUWattch 14.4% 3% degradation Fermi GTX480 

Sethia et al Simulation 

GPUWattch 

compute-intensive, 

memory-intensive, and 
cache sensitive, 

15% Not specified Not specified 

Gopireddy et 
al 

Simulation 

Scal Core 

/ 48% Not specified Not specified 

Leng et al Empirical method 
power modeling 

large amount of micro-
benchmarks 

14.4% 3% performance 

loss 

Fermi 
GTX480 

Hong and 
Kim 

Empirical method 
power modeling 

5 memory bandwidth-limited 
benchmarks. 

25.85% Not specified GTX280 GPU 

Abe et al Statistical method 
regression model 

10 benchmarks Fermi 40% 

Tesla 13% 

Prediction error 

15% to 23.5% 

Kepler GPU,   
Tesla GPU and 
Fermi GPU 

Song et al Statistical method 
ANN of two 
hidden layers 

49 kernels in the SDK 
Rodinia and the CUDA 
benchmark suite 

Not Specified 4.7% NVIDIA Fermi 

C2075 

Wu et al Statistical method 

ANN+K-mean 

Clustering 

12+ applications Not Specified 10% prediction error Not Specified 

Guerreiro et al Statistical method 

Hierarchical 
clustering+ ANN 

35 applications from 
Rodinia, CUDA SDK, 
SHOC 

36% Not specified Maxwell Titan 
X and Titan 
Xp 
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VI.  DISCUSSION:  

In the above table we present the comparison of different DVFS 

technique that we described in section 4. The power 

consumption in GPU is considered as a hard issue to resolve. 

The power consumption in GPU faces a lot of challenges. We 

highlighted various DVFS techniques such as experimental 

research, simulation research, GPU runtime power models, etc. 

that is used to lower the power consumption of different GPU 

devices. The researchers suggested that DVFS techniques is 

product specific. So, different researchers work on different 

FPU models. For Maxwell Titan X and Titan XP Guerreiro et 

al model is best because the experimental results showed that 

the proposed methodology attain 20% energy saving and as 

high as 36%,  also predict the optimal operating frequency of 

memory subsystems and graphics. If we use Fermi GTX-560 

and Maxwell GTX-980 then Mei et al models is best. As the 

proposed methodology saved up to 21% power consumptions. 

Similarly Hong and Kim proposed the methodology and their 

experimental results for Fermi GTX280 GPU showed that 

model could save 25.85% power consumption. For Kepler GPU 

and Tesla GPU devices, Abe et al statistical model can save 

40% and 13% power consumptions respectively. Abe et al also 

scaled the GPU core and memory frequency on Kepler 

GTX680, Tesla GTX285, Fermi GTX460 and Fermi GTX480 

with multiple applications noticeably, they determined that, for 

the Kepler GTX680, the default frequency configuration was 

not ideal, as for the Tesla GTX285. They could safe 75% 

system power with 30% performance loss. We also noted that 

many researchers perform experiment but their models have 

different prediction errors. For example Wu et al experimental 

results showed 10% prediction error and Song et al 

experimental results showed .7% prediction error. 

 

VII.  CONCLUSION:  

In this paper we discuss the various GPU dynamic voltage and 

frequency techniques for power efficiency. We discuss the up 

to date GPU DVFS approaches and their performance and 

effect on energy consumption. We classify the research on 

DVFS into different methodology such as experimental and 

simulation methodology. We also discuss nonlinear power 

modeling approaches, like Advance Neural Networks and 

linear regression techniques. Applying proper voltage and 

frequency we can conserve energy.  
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