
EasyChair Preprint

№ 778

Towards the automatic optimization of geometric

multigrid methods with evolutionary computation

Jonas Schmitt, Sebastian Kuckuk and Harald Köstler

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 10, 2019

TOWARDS THE AUTOMATIC OPTIMIZATION OF GEOMETRIC
MULTIGRID METHODS WITH EVOLUTIONARY COMPUTATION ∗

JONAS SCHMITT †

In collaboration with: Sebastian Kuckuk, Harald Köstler

Abstract. For many linear and nonlinear systems that arise from the discretization of partial
differential equations the construction of an efficient multigrid solver is a challenging task. Here
we present a novel approach for the optimization of geometric multigrid methods that is based on
evolutionary computation, a generic program optimization technique inspired by the principle of
natural evolution. A multigrid solver is represented as a tree of mathematical expressions which
we generate based on a tailored grammar. The quality of each solver is evaluated in terms of
convergence and compute performance using automated Local Fourier Analysis (LFA) and roofline
performance modeling, respectively. Based on these objectives a multi-objective optimization is
performed using strongly typed genetic programming with a non-dominated sorting based selection.
To evaluate the model-based prediction and to target concrete applications, scalable implementations
of an evolved solver can be automatically generated with the ExaStencils code generation framework.
We demonstrate our approach by constructing multigrid solvers for Poisson’s equation with constant
and variable coefficients.

Key words. geometric multigrid, automatic program optimization, genetic programming, evo-
lution strategy, code generation, local Fourier analysis

1. Introduction. Solving the linear or nonlinear systems that arise from the
discretization of partial differential equations (PDEs) is an outstanding challenge.
The huge number of unknowns in many of these systems necessitates the design of
efficient and scalable solvers. Unfortunately, the optimal solution method highly de-
pends on the system itself and it is therefore infeasible to formulate a single algorithm
that works efficiently in all cases. Multigrid methods are a class of asymptotically
optimal solution algorithms for (non-)linear systems. Although in the last decades
great effort has been put into the design of efficient multigrid methods, for many im-
portant cases, such as the Navier-Stokes or the Schrödinger equation, this task is still
not fully solved. Within this paper we propose a novel approach for the automatic
optimization of multigrid solvers through the use of evolutionary computation. Our
approach builds on the work by Mahmoodabadi and Köstler [15], in which it was first
demonstrated how genetic programming (GP) [12] can be used to optimize the itera-
tion matrices of stationary iterative methods. In contrast to [15], where the iteration
matrix was assembled explicitly, we represent iterative methods as symbolic expres-
sions, which are independent of the size of the linear system. For this purpose we
propose a new formal grammar for the automatic generation of multigrid expressions.
We furthermore show how we can automatically obtain convergence and performance
estimates for geometric multigrid solvers on rectangular grids of arbitrary size and
how based on these metrics a multi-objective optimization can be performed using
genetic programming and evolution strategies (ES) [1]. In addition, the evolved multi-
grid solvers are emitted in form of a domain specific language (DSL) specification and
the ExaStencils code generation framework is employed to automatically generate a

∗This work is supported by the German Research Foundation (DFG), as part of the Priority
Programme 1648 “Software for Exascale Computing” in the project under Contract RU 422/15-2.
†Friedrich-Alexander-Universität Erlangen-Nürnberg, (jonas.schmitt@fau.de, https://www.cs10.

tf.fau.de/person/jonas-schmitt).

1

mailto:jonas.schmitt@fau.de
https://www.cs10.tf.fau.de/person/jonas-schmitt
https://www.cs10.tf.fau.de/person/jonas-schmitt

2 JONAS SCHMITT

scalable implementation on the target platform. Our approach is therefore similar to
the work by Thekale et al [22], where the optimal number of full multigrid cycles was
optimized based on a cost model, but aims to achieve more generality by consider-
ing the construction of multigrid expressions as program optimization task. Finally,
we demonstrate our approach by solving Poisson’s equation in two dimensions with
constant and variable coefficients.

2. A Formal Grammar for Generating Multigrid Solvers. The task of
constructing a multigrid solver for a certain problem is typically performed by a
human expert with profound knowledge in numerical mathematics. To automate this
task, we first need a way to represent arbitrary multigrid solvers in a formal language
that we can then use to automatically construct different instances on a computer.
The rules of this formal language must ensure that only valid solver instances can
be defined, which means that we can both automatically determine their convergence
and runtime behavior. Additionally, we want to enforce that the generated method
works on a hierarchy of grids, which requires the availability of inter-grid operations
that allow to obtain approximations of the same operator or grid on a finer or coarser
level. Consider the general system of linear equations defined on a grid with spacing
h

(2.1) Ahu
h = fh.

Each step of an arbitrary multigrid method can be written in the following form:

(2.2) uhi+1 = uhi + ωBh(fh −Ahuhi),

where uhi and fh are the current approximate solution and right-hand side, respec-
tively, ω ∈ R the relaxation factor and Bh an operator defined on the given level h.
For example, with the splitting Ah = Dh − Uh − Lh, we can define the Jacobi

(2.3) uhi+1 = uhi +D−1h (fh −Ahuhi)

and the lexicographical Gauss-Seidel method

(2.4) uhi+1 = uhi + (Dh − Lh)−1Uh(fh −Ahuhi).

If we assume the availability of a prolongation operator PH , a restriction operator
Rh and an approximation for the inverse of Ah on the coarser grid, a coarse grid
correction can be defined as

(2.5) uhi+1 = uhi + PHA
−1
H Rh(fh −Ahuhi).

Furthermore, we can substitute uhi in (2.5) with (2.3) and obtain a two grid with
Jacobi pre-smoothing

(2.6) uhi+1 = (uhi +D−1h (fh−Ahuhi)) +PHA
−1
H Rh(fh−Ah(uhi +D−1h (fh−Ahuhi))).

By repeatedly substituting subexpressions we can automatically construct a single
expression for any multigrid solver. If we take the set of possible substitutions as
a basis, we can define a list of rules according to which we can generate such an
expression. We specify these rules in the form of a context-free grammar, which is
described in figure 2.1 for three multigrid levels. Figure 2.1a contains the produc-
tion rules while figure 2.1b describes their semantics. Each rule defines the set of

TOWARDS THE AUTOMATIC OPTIMIZATION OF GEOMETRIC MULTIGRID 3

〈S〉 |= iterate(〈ch〉, ω, 〈P〉)
〈ch〉 |= apply(〈Bh〉, 〈ch〉) | residual(Ah, 〈sh〉)
〈sh〉 |= iterate(〈ch〉, ω, 〈P〉) | iterate(coarse-grid-correction(P2h, 〈c2h〉, ω), 1, λ)

〈sh〉 |= (uh0 , f
h
0 , λ, λ)

〈Bh〉 |= 〈Bh〉 + 〈Bh〉 | 〈Bh〉 · 〈Bh〉 | − 〈Bh〉 | 〈Dh〉 | Ah
〈Dh〉 |= 〈Dh〉 + 〈Dh〉 | 〈Dh〉 · 〈Dh〉 | − 〈Dh〉 | inverse(〈Dh〉) | diagonal(〈Bh〉)
〈c2h〉 |= apply(〈B2h〉, 〈c2h〉) | coarse-cycle(A2h, u

2h
0 , apply(Rh, 〈ch〉))

〈s2h〉 |= iterate(〈c2h〉, ω, 〈P〉) | iterate(apply(P4h, 〈c4h〉), 1, λ)

〈c4h〉 |= apply(A−14h , apply(R2h, 〈c2h〉))
〈P〉 |= red-black partitioning | λ

(a) Syntax

function iterate((u, f , δ, pred), ω, P)
ũ← u+ ω · δ with P
return (ũ, f , λ, pred)

function apply(B, (u, f , δ, pred))
δ̃ ← B · δ
return (u, f , δ̃, pred)

function residual(A, (u, f , λ, pred))
δ ← f −Au
return (u, f , δ, pred)

function coarse-cycle(AH , uH0 , (uh, fh, δH , predh))
uH ← uH0
fH ← δH

δ̃H ← fH −AHuH0
predH ← (uh, fh, δH , predh)
return (uH , fH , δ̃H , predH)

function coarse-grid-correction(PH , (uH , fH , δH , predH), ω)
(uh, fh, δh, predh) ← predH

δ̃h ← PH · (uH + ω · δH)
return (uh, fh, δ̃h, predh)

(b) Semantics

Fig. 2.1: A formal grammar for the generation of multigrid solvers with a hierarchy
of three levels.

expressions by which a certain production symbol, denoted by 〈·〉, can be replaced.
To generate an expression, starting with the symbol 〈S〉, this process is recursively
repeated until the produced expression contains only terminal symbols or the empty
string λ. The construction of a multigrid solver comprises the recursive generation of
cycles on multiple levels. Consequently, we must be able to create a new system of
linear equations on a coarser level, including a new initial solution, right-hand side

4 JONAS SCHMITT

and system matrix.1 Moreover, if we decide to finish the computation on a certain
level, we must be able to restore the state of the next finer level, i.e. the current
solution and right-hand side, when applying the coarse grid correction. The current
state of a multigrid solver on a certain level with grid spacing h is represented as
a tuple (uh, fh, δh), where uh represents the current iterate, fh the right-hand side
and δh a correction expression. To restore the current state on the next finer level,
we additionally include a pointer pred to the corresponding state tuple. According
to figure 2.1a the construction of a multigrid solver always ends when the tuple (uh0 ,
fh0 , λ, λ) is reached. This tuple contains the initial solution and the right-hand side
on the finest level and therefore corresponds to the original system of linear equa-
tions that we aim to solve. Here we have neither yet computed a correction, nor do
we need to restore any state and hence both δh and pred contain the empty string.
To conclude, it must be mentioned that this grammar comprises certain restrictions
on the structure of the generated solver. Even though we can not preclude that it
is possible to generate improved multigrid methods without these restrictions, this
work only represents a first step towards the automatic generation and optimization
of these methods and we do not claim to consider all possible variations, but instead
focus on the classical multigrid formulation, as presented in [7, 3, 23]. Since we have
shown how it is possible to generate expressions that represent arbitrary multigrid
solvers using the formal grammar defined in figure 2.1, the remainder of this paper
focuses on the evaluation and optimization of the resulting algorithms based on this
representation.

3. Multi-Objective Optimization with Evolutionary Computation. The
fundamental requirement for the optimization of an iterative method is to have a way
to evaluate both its rate of convergence and performance on a computer. As we
want to fully automate this process, we must be able to perform all steps from the
generation of a solver to its evaluation without requiring any human intervention. In
general there are two possibilities to automatically evaluate an algorithm. Assuming
there exists a code generator that is able to generate machine instructions from a
high-level algorithm, one could first translate it to this representation, then employ
the generator to emit an executable and finally run it to evaluate both objectives. The
main disadvantage of this approach is that, depending on the runtime of the code
generator, this can be time consuming. The second possibility is to use predictive
models to obtain an approximation for both objectives in significantly less compute
time. This work focuses on the automatic optimization of geometric multigrid solvers
on rectangular grids. In this case, we can represent all matrices as one or multiple
stencil codes and there exist models that allow us to predict the quality of a multigrid
solver with respect to both objectives. Although, as it can not be expected that these
predictions are always accurate, we still employ code generation to evaluate the best
solver of each optimization run.

3.1. Convergence estimation. The quality of an iterative method is first and
foremost determined by its rate of convergence, i.e. the number of iterations that is
required until the residual approaches zero. One iteration of an arbitrary multigrid
solver can be expressed in the general form

(3.1) uhi+1 = Mhu
h
i + gh,

1Note that we choose the initial solution uh0 = 0 on all levels.

TOWARDS THE AUTOMATIC OPTIMIZATION OF GEOMETRIC MULTIGRID 5

where Mh is the iteration matrix, uhi the solution vector in iteration i on the finest
level, i.e. the current iterate, and gh a vector that is obtained by transforming the
right-hand side fh. Essential for the convergence of stationary iterative methods is
the spectral radius ρ of the iteration matrix Mh defined by

(3.2) ρ(Mh) = max
1≤j≤n

|λj(Mh)|,

where λj(Mh) are the eigenvalues of Mh. Assume uh∗ is the exact solution of the
system, the error ehi = uhi − uh∗ in iteration i then satisfies,

(3.3) ehi = M i
he
h
0 ,

where M i
h is the ith power of Mh. The convergence factor of this sequence is the limit

(3.4) ρ = lim
i→∞

(∥∥ehi ∥∥∥∥eh0∥∥
)1/i

,

which is equal to the spectral radius of the iteration matrix Mh [19]. In general, the
computation of the spectral radius is of complexity O(n3) for Mh ∈ Rn×n. Although
if we restrict ourselves to geometric multigrid solvers on rectangular grids, we can
employ local Fourier analysis (LFA) to obtain an estimate for ρ [24]. LFA considers
the original problem on an infinite grid while the boundary conditions are neglected.
Recently LFA has been automated through the use of software packages [24, 18]. LFA
Lab2 is a library for the automatic local Fourier analysis of constant and periodic
stencils [2] on rectangular grids. To automatically estimate the convergence factor of
a multigrid solver using this tool, we first need to obtain the iteration matrix. Using
the grammar described in the last section, we always generate expressions of the form
of equation 2.6 from which we can extract the iteration matrix through a number of
simple transformations. First we replace all occurrences of the initial solution uh0 with
the unit matrix and those of the right-hand side fh0 with the zero matrix, then we
remove all obsolete subexpression, i.e. the ones that become the zero matrix. Both can
be accomplished in a single bottom up traversal of the corresponding expression tree.
Finally, we transform the resulting expression, which represents the iteration matrix
of our multigrid solver, to an LFA Lab expression, for which we can automatically
estimate the spectral radius.

3.2. Performance estimation. A popular yet simple model for estimating the
performance of an algorithm on modern computer architectures is the roofline model
[25]. Based on the operational intensity of a compute kernel, i.e. the ratio of floating
point operations to words loaded from and stored to memory, it gives an estimate
for the maximum achievable performance, which is either limited by the memory
bandwidth or the compute capabilities of the machine. The basic roofline formula is
given by

(3.5) P = min(Pmax, I · bs),

where P is the attainable performance, Pmax the peak performance of the machine,
i.e. the maximum achievable amount of floating point operations per second, I the
arithmetic intensity of the kernel and bs the peak memory bandwidth, i.e. the amount

2LFA Lab: https://github.com/hrittich/lfa-lab

https://github.com/hrittich/lfa-lab

6 JONAS SCHMITT

of words that can be moved from and to main memory per second. Within a geo-
metric multigrid solver each kernel either represents a matrix-vector or vector-vector
operation, where each vector corresponds to a rectangular grid and each matrix to one
or multiple stencil codes. If we explicitly represent the stencil code of each operation,
the computation of the operational intensity is straightforward.

3.3. Optimization. In case we want to find the optimal geometric multigrid
solver for a certain problem, first the question about the size of the search space
arises. With a sufficiently small search space one could attempt to simply enumer-
ate all possible solutions. The infeasibility of this approach becomes obvious when
looking at the grammar in figure 2.1. Assume our goal is to find a multigrid solver
that operates on three levels, but the only allowed operation on the coarsest level is
the application of a direct solver. Besides the start symbol 〈S〉 and the production
resulting in the application of a direct solver on the coarsest level, each non-terminal
symbol produces at least two alternatives. Now assume we perform on average twenty
productions per level. This means we must consider more than 240 alternatives that
must be all evaluated with respect to both objectives, which is already infeasible on
a standard desktop computer. In practice this number will be even larger, especially
if we consider more levels. Furthermore, we need to choose a value for all occurrences
of the relaxation parameter ω, which yields an additional continuous optimization
problem. In case the search space is too large to be directly enumerated, a remedy is
to use heuristics that aim to search efficiently through the space of possible solutions
and still find the global or at least a local optimum. Evolutionary algorithms are a
class of search heuristics inspired by the principle of natural evolution that have been
successfully applied to numerous domains [13]. All of these methods have in common
that they evolve a population of solutions (called individuals) through the iterative
application of so-called genetic operators. The exact implementation of each genetic
operator depends on the class of problem, i.e. the structure of the solution. Within
this work we consider two different optimization problems. First of all, we want to
find the list of productions that, according to the context-free grammar presented in
section 2, leads to the optimal multigrid solver. The class of evolutionary algorithms
that evolve expressions according to a context-free grammar are summarized under
the term genetic programming [17, 12]. To evolve a Pareto front of multigrid solvers
with respect to both objectives, we employ strongly typed genetic programming [16]
with a non-dominated sorting based selection [4]. Because the computation of the
spectral radius significantly slows down for expressions consisting of more than two
levels, we split each optimization into multiple runs. Starting on the three coarsest
levels, we perform the optimization assuming that we can obtain the correct solution
on the coarsest level. During this process the value 1 is chosen for each relaxation
factor ω that occurs within an expression. After we have evolved a Pareto front of
multigrid expressions, we choose the best individual with respect to its estimated
time-to-solution

(3.6) T =
ln ε

ln ρ
· t

among those with a spectral radius ρ < 0.1. Here t is the estimated runtime of
one iteration and ε the error reduction until convergence, i.e. the ratio between the
maximum tolerable and initial error, for which we choose ε = 10−20. In the second
step, we turn our attention to the list of relaxation factors in order to improve the
convergence of the best individual evolved in the first step, which corresponds to a

TOWARDS THE AUTOMATIC OPTIMIZATION OF GEOMETRIC MULTIGRID 7

single-objective continuous optimization problem3, which we solve using a covariance
matrix adaptation evolution strategy (CMA-ES) [9]. The resulting individual is then
employed as direct solver for the performance estimation on the next two levels.
We repeat this procedure until the optimization on the finest level is finished. By
recursively deploying the best individual of a run as direct solver for the next run, a
single multigrid expression is obtained which operates on the complete range of levels.
We implement our optimization approach in the Python programming language using
the framework DEAP [6] for the implementation of the evolutionary algorithms.4

3.4. Code Generation and Evaluation. In order to evaluate the solver whose
components have been evolved within multiple stages of optimization according to the
metric defined in equation 3.6, we employ the ExaStencils code generation framework
[14], which was specifically designed for the generation of geometric multigrid im-
plementations that run on parallel and distributed systems. To employ the code
generation capabilities of this framework, we transform the evolved multigrid expres-
sion to an algorithmic representation, which we then emit in form of a specification
in ExaStencil’s DSL [20]. Based on this specification the framework generates a C++
implementation of the solver, including a default application, which we finally run to
measure both its runtime t̃ and convergence factor

(3.7) ρ̃i =

∥∥fh −Ahuhi ∥∥∥∥fh −Ahuhi−1∥∥
per iteration i on the target platform. We then obtain an approximate for the asymp-
totic convergence factor

(3.8) ρ̃ =

(
n∏
i=1

ρ̃i

)1/n

,

where n is the number of iterations until convergence.

4. Evolving Solvers for Poisson’s Equation. For our experiments we con-
sider the steady-state heat equation with Dirichlet boundary conditions on a unit
square, which is given by

(4.1)
−∇ · (a∇u) = f in Ω ,

u = g on ∂Ω .

where Ω = (0, 1)d, ∇ · v : Rd → R is the divergence of v and ∇u : R → Rd is
the gradient of u. The function a : Rd → R describes the thermal conductivity of
the material. We discretize equation 4.1 using finite differences on a two-dimensional
cartesian grid with a step size of h to obtain the system of linear equations Ahu

h = fh.
Our goal is to evolve optimal multigrid methods for solving this system. For this
purpose we consider two different cases which are summarized in table 4.1. To obtain
a Pareto front of multigrid expressions, we perform a multi-objective optimization
for 100 generations using genetic programming (GP) with a (µ + λ) ES [1] with
µ = λ = 1000, an initial population of 10µ and the non-dominated sorting procedure
presented in [5]. This means that in each generation we create λ individuals based

3The choice of these values will only affect the convergence of the method.
4EvoStencils: https://github.com/jonas-schmitt/evostencils

https://github.com/jonas-schmitt/evostencils

8 JONAS SCHMITT

Table 4.1: Test cases

(a) Poisson 2D with constant coefficients

f(x, y) = π2 cos(πx)− 4π2 sin(2πy)

a(x, y) = 1

g(x, y) = cos(πx)− sin(2πy)

(b) Poisson 2D with variable coefficients

f(x, y) = 2κ((x− x2) + (y − y2))

a(x, y) = eκ(x−x
2)(y−y2)

g(x, y) = 1− e(−κ)(x−x
2)(y−y2)

on an existing population of size µ and then select the best µ individuals for the
next generation from the combined set. The fitness of each individual consists of two
objectives, the spectral radius of its iteration matrix, estimated with LFA, and its
runtime on the target platform, an Intel Xeon E3-1275 v5 (Skylake) machine with a
clock frequency of 3.6 GHz, four cores and a peak memory bandwidth of 34, 1 GB/s,
estimated with the roofline model. To estimate the spectral radius in the case of
variable coefficients, we approximate the coefficient function with a constant stencil
at the center of the domain. Individuals are selected for crossover and mutation
using a dominance-based tournament selection as described in [5]. New individuals
are created by either crossover with a probability of 0.7, whereby we employ single-
point crossover with a probability of 0.2 to choose a terminal as crossover point or
by mutation, through replacement of a certain subexpression with a new randomly
created expression. To optimize the relaxation parameters of a multigrid solver, we
employ a (1 + λ) CMA-ES [10] with λ = 50 and 200 generations. Additionally, we
restrict the set of productions for the generation of operator expressions to 〈Bh〉 |=
inverse(diagonal(Ah)), which means that we only allow Jacobi- or red-black Gauss-
Seidel-type smoothers. Without this restriction we were not able to consistently
predict the convergence behavior of the resulting multigrid methods in the given cases.
The optimization is performed with a step size of h = 1/2l on each level l. For both
cases we use a level range of l ∈ [0, 8].5 The results of the optimization for Poisson with
variable coefficients are summarized in table 4.2. Each row contains the average and
minimum of the spectral radius ρ, the runtime t and additionally the minimal time-to-
solution T according to equation 3.6 before and after the optimization of the relaxation
parameters ω. Figure 4.1 contains a plot of the average value of both objectives in the
two GP-optimization runs on the four finest levels. Moreover, in table 4.3 we compare

Table 4.2: Optimization results for Poisson 2D with variable coefficient.

l ∈ mean(ρ) min(ρ) mean(t) min(t) min(T) min1+λ(T)

{1, 2} 8.09× 10−3 1.08× 10−9 2.11× 10−3 1.32× 10−3 5.27× 10−3 5.27× 10−3

{3, 4} 1.21× 10−2 1.13× 10−5 1.35× 10−2 4.74× 10−3 6.41× 10−2 5.05× 10−2

{5, 6} 4.68× 10−2 2.91× 10−2 0.215 4.62× 10−2 1.81 1.26

{7, 8} 5.40× 10−2 4.01× 10−2 3.17 0.719 27.78 24.46

the predicted convergence rate ρ and runtime t for the evolved multigrid solver with
the measured values of ρ̃ and t̃ when running the generated implementation. For

5This means that l = 0 is the coarsest possible level.

TOWARDS THE AUTOMATIC OPTIMIZATION OF GEOMETRIC MULTIGRID 9

0 10 20 30 40 50 60 70 80 90 100
Generation

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ec

tra
l R

ad
iu

s

Average Spectral Radius
Average Runtime

0.0

0.1

0.2

0.3

0.4

0.5

Ru
nt

im
e

(m
s)

(a) l ∈ {5, 6}

0 10 20 30 40 50 60 70 80 90 100
Generation

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ec

tra
l R

ad
iu

s

Average Spectral Radius
Average Runtime

0

1

2

3

4

5

Ru
nt

im
e

(m
s)

(b) l ∈ {7, 8}

Fig. 4.1: Average Fitness for Poisson 2D with variable coefficients.

comparison, we also measure both metrics for a standard V-Cycle with two pre- and
post-smoothing steps of red-black Gauss-Seidel (V22). In all cases we employ one
thousand steps of red-black Gauss-Seidel as a direct solver on the coarsest grid. Even
though the generated implementations do not achieve the predicted convergence rates
and runtimes, our approach is able to evolve competitive multigrid solvers, whereby
in case of Poisson with variable coefficients convergence is achieved faster than with a
V22-cycle, although at the price of a slightly higher runtime. All evolved solvers are
of type V-Cycle, though a variety of different smoothing steps is employed on each
level.

Table 4.3: Measurement based evaluation.

Case ρ t ρ̃ t̃ ρ̃(V 22) t̃(V 22)

(a) 0.0405 1.69 0.144 10.71 0.0929 10.33

(b) 0.0405 1.70 0.168 27.15 0.186 22.53

5. Conclusion. In this work we have presented a novel approach for the auto-
matic optimization of geometric multigrid methods based on a tailored context-free
grammar for the generation of multigrid solvers and the use of evolutionary algorithms
guided by a model-based prediction for the convergence and compute performance.
Even though we have demonstrated by solving Poisson’s equation that our approach
in principle works, there is still room for improvement and extensions. Instead of
considering a case that is well researched and for which efficient solution methods are
available, a more challenging task would be the solution of partial differential equa-
tions where a functioning geometric multigrid solver has not been developed, which
is for instance the case for many nonlinear PDEs. Furthermore, we aim to improve
the accuracy of our model-based convergence prediction through an evaluation over
the complete range of levels and of its compute performance through the use of the
Execution-Cache-Memory (ECM) model [8]. Finally, one could consider different al-
gorithms for the optimization of programs generated by our multigrid grammar, such
as reinforcement learning [21] or Monte Carlo tree search [11] based techniques.

10 JONAS SCHMITT

REFERENCES

[1] H.-G. Beyer and H.-P. Schwefel, Evolution strategies–a comprehensive introduction, Natu-
ral computing, 1 (2002), pp. 3–52.

[2] M. Bolten and H. Rittich, Fourier analysis of periodic stencils in multigrid methods, SIAM
Journal on Scientific Computing, 40 (2018), pp. A1642–A1668.

[3] W. L. Briggs, S. F. McCormick, et al., A multigrid tutorial, vol. 72, Siam, 2000.
[4] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen, et al., Evolutionary algorithms

for solving multi-objective problems, vol. 5, Springer, 2007.
[5] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization: Nsga-ii, in International Conference on
Parallel Problem Solving From Nature, Springer, 2000, pp. 849–858.

[6] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, DEAP:
Evolutionary algorithms made easy, Journal of Machine Learning Research, 13 (2012),
pp. 2171–2175.

[7] W. Hackbusch, Multi-grid methods and applications, vol. 4, Springer Science & Business
Media, 2013.

[8] G. Hager, J. Treibig, J. Habich, and G. Wellein, Exploring performance and power proper-
ties of modern multi-core chips via simple machine models, Concurrency and Computation:
Practice and Experience, 28 (2016), pp. 189–210.

[9] N. Hansen, S. D. Müller, and P. Koumoutsakos, Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (cma-es), Evolutionary
computation, 11 (2003), pp. 1–18.

[10] C. Igel, N. Hansen, and S. Roth, Covariance matrix adaptation for multi-objective opti-
mization, Evolutionary computation, 15 (2007), pp. 1–28.

[11] L. Kocsis and C. Szepesvári, Bandit based monte-carlo planning, in European conference on
machine learning, Springer, 2006, pp. 282–293.

[12] J. R. Koza, Genetic programming as a means for programming computers by natural selection,
Statistics and computing, 4 (1994), pp. 87–112.

[13] J. R. Koza, Human-competitive results produced by genetic programming, Genetic Program-
ming and Evolvable Machines, 11 (2010), pp. 251–284.

[14] C. Lengauer, S. Apel, M. Bolten, A. Größlinger, F. Hannig, H. Köstler, U. Rüde,
J. Teich, A. Grebhahn, S. Kronawitter, et al., Exastencils: advanced stencil-code
engineering, in European Conference on Parallel Processing, Springer, 2014, pp. 553–564.

[15] R. G. Mahmoodabadi and H. Köstler, Genetic programming meets linear algebra: How
genetic programming can be used to find improved iterative numerical methods, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO
’17, New York, NY, USA, 2017, ACM, pp. 1403–1406.

[16] D. J. Montana, Strongly typed genetic programming, Evolutionary computation, 3 (1995),
pp. 199–230.

[17] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic programming, Published
via http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008,
http://www.gp-field-guide.org.uk. (With contributions by J. R. Koza).

[18] H. Rittich, Extending and Automating Fourier Analysis for Multigrid Methods, PhD thesis,
University of Wuppertal, June 2017.

[19] Y. Saad, Iterative methods for sparse linear systems, vol. 82, siam, 2003.
[20] C. Schmitt, S. Kuckuk, F. Hannig, H. Köstler, and J. Teich, Exaslang: a domain-specific

language for highly scalable multigrid solvers, in Domain-Specific Languages and High-
Level Frameworks for High Performance Computing (WOLFHPC), 2014 Fourth Interna-
tional Workshop on, IEEE, 2014, pp. 42–51.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.
[22] A. Thekale, T. Gradl, K. Klamroth, and U. Rüde, Optimizing the number of multigrid

cycles in the full multigrid algorithm, Numerical Linear Algebra with Applications, 17
(2010), pp. 199–210.

[23] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid, Elsevier, 2000.
[24] R. Wienands and W. Joppich, Practical Fourier analysis for multigrid methods, Chapman

and Hall/CRC, 2004.
[25] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance

model for multicore architectures, Communications of the ACM, 52 (2009), pp. 65–76.

http://www.gp-field-guide.org.uk

	Introduction
	A Formal Grammar for Generating Multigrid Solvers
	Multi-Objective Optimization with Evolutionary Computation
	Convergence estimation
	Performance estimation
	Optimization
	Code Generation and Evaluation

	Evolving Solvers for Poisson's Equation
	Conclusion
	References

