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Abstract—Pedestrian detection in low-light environment is an
essential part for autonomous driving in all-day and all-weather
situations. A current trend is utilizing multispectral information
such as RGB and infrared images to detect pedestrians. Despite
its efficacy, such an approach suffers from underperformance in
dealing with varied object scales due to its limited feature fusion
on semantic levels. To address the above problem, we propose a
novel multi-layer fusion network called as MLF-FRCNN. In this
network, multi-scale feature maps are created from RGB and
infrared channels from each backbone block. A feature pyramid
network module is further introduced to facilitate predictions on
multi-layer feature maps. The experimental results on the KAIST
Dataset reveal that our method achieves a runtime performance
of 0.14s per frame and an average precision of 91.2% which
outperforms state-of-the-art multispectral fusion methods. The
effectiveness of our approach in dealing with scaled objects in
low-light environment is further proven by ablation studies.

Index Terms—pedestrian detection, multispectral multi-layer
fusion, low light condition

I. INTRODUCTION

With its wide application in autonomous driving, vision-
based pedestrian detection has become a research focus in
recent years. Given images captured in real-world traffic
scenarios, the task of pedestrian detection is to distinguish
between pedestrians and background and to locate individual
pedestrian instances with bounding boxes. Though significant
progress has been made over the past few decades, it’s still
a challenging task to design a robust pedestrian detector
especially adapted to all-day and all-weather situations.

Current pedestrian detection approaches mostly utilize RGB
images, which may not work well under low-light conditions,
such as in the nighttime. Infrared images are regarded as
solutions to overcome the above limitations. Since a long-
wavelength infrared camera captures radiated heat from ob-
jects, infrared images can show clear human bodies even in
low-light environment. However, they lost visual details which
can be provided by RGB images [1]. Thus, RGB and infrared
images provide complementary information about the target of
interest. By fusing the information effectively, the precision of
pedestrian detection can be enhanced.
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Fig. 1. Halfway Fusion model [3] for multispectral pedestrian detection.
Detection results are shown at the top with green bounding boxes, while red
bounding boxes denote the ground truth. Obviously, it manifests difficulty in
detecting small pedestrians.

Hence, conventional detection approaches such as Faster
R-CNN [2] have been adapted to multispectral inputs for
pedestrian detection. However, existing fusion methods are
commonly based on Halfway Fusion [3], which concatenates
separate feature extractor for RGB and infrared images at fixed
level and makes predictions on single-layer feature maps, as
shown in Fig. 1 [3]. Due to the limited fusion level, this kind
of methods manifests difficulty in detecting pedestrians with
greatly varied scales.

To address the above problem, in this work, we propose
a novel multi-layer fusion network based on Faster R-CNN
for pedestrian detection in low-light environment, denoted as
MLF-FRCNN. Our contributions are summarized as follows:
• To deal with pedestrian instances with greatly varied



sizes, we create multi-scale feature maps by fusing each
block of feature extractor network for both RGB and in-
frared channels. Additionally, a feature pyramid network
(FPN) [4] is introduced to facilitate predictions on multi-
layer feature maps.

• We train and test our MLF-FRCNN on the KAIST
Multispectral Pedestrian Dataset [5]. Experimental results
under both daytime and nighttime light conditions reveal
that an average precision (AP) of 91.2% is achieved
by our MLF-FRCNN, which outperforms state-of-the-art
fusion methods with a similar framework. Moreover, our
method performs particularly well in the reasonable night
and the small-scale settings, with an AP gain of 5.1% and
28.8%, respectively.

• We conduct further experiments to demonstrate the ef-
fectiveness of our proposed fusion method in compari-
son with single-modal approaches. Moreover, by training
MLF-FRCNN only on the day subset and test its trans-
ferring ability during nighttime, we further reveal the fact
that MLF-FRCNN is able to learn the adaptive fusion of
RGB and infrared information according to illumination
by the mixed training under different light conditions.

II. RELATED WORKS

A. Pedestrian Detection Based on RGB Images

Inspired by the success of convolutional neural networks
(CNNs) in object detection tasks, pedestrian detection methods
based on CNNs have been proposed in the past few years. The
early studies to apply CNNs to pedestrian detection mostly
utilized two-stage detectors of R-CNN series due to its robust-
ness. Though Faster R-CNN has become a general network
for object detection, the original version performed poorly
when directly applied to pedestrian detection. Zhang et al. [6]
indicated that the reason of the under-performance was low
resolution of pedestrian instances and lack of guiding strategy.
Appel et al. [7] achieved better performance by adding boosted
forest on the top of feature maps extracted by region proposal
network (RPN), represented as RPN+BF. It was proven in [8]
that the performance of Faster R-CNN for pedestrian detection
can be greatly improved by appropriate adjustments, such as
designing a specific RPN scale for pedestrians. Li et al. [9]
designed two sub-networks adapted to large-scale and small-
scale pedestrians respectively, in order to suppress the decrease
of precision caused by large variance of scales. Zhang et
al. [10] studied different kinds of attention models, including
self-attention, attention based on bounding boxes or on body
parts. They revealed that the greatest effectiveness can be
obtained by attention on body parts.

There are also a few researches on pedestrian detection
using one-stage detectors. Liu et al. [11] proposed Asymptotic
Localization Fitting (ALF), which improves detection results
by gradually stacking a series of predictors in SSD [12].
Lin et al. [13] proposed a graininess-aware deep feature
learning method, which introduced fine-grained information
and utilized an attention mechanism to better distinguish

human bodies. An anchor-free method was proposed in [14]
to determine central points and scales of the pedestrian points
at a high-level semantic abstraction. However, one-stage ap-
proaches are generally inferior to two-stage approaches on
pedestrian detection precision.

Related researches also improved the training mode of net-
works. Mao et al. [15] proposed the joint learning of pedestrian
targets and additional features. This multi-task training mode
made use of prior information of given features to improve the
performance during prediction stage without additional inputs.
Brazil et al. [16] tried to enhance the detection precision
through the joint supervision of pedestrian detection and
semantic segmentation. The experimental results revealed that
weak annotations of semantic segmentation can boost the pre-
cision improvement. Xu et al. [17] utilized infrared images as
supervision for RGB input during training process while used
only RGB images to extract cross-modal representations in
prediction stage. However, the aforementioned methods using
separate RGB images for detection suffer from significant
underperformance in low-light environment.

B. Pedestrian Detection Based on Fusion of RGB and Infrared
Images

Due to the robustness of infrared images in low-light
environment, there is a growing research interest in pedes-
trian detection utilizing RGB and infrared images. The re-
lease of multispectral pedestrian datasets such as KAIST [5],
UTokyo [18], CVC-14 [19], etc. boosted researches on fusion
of RGB and infrared images. ACF+T+THOG [5] is the initial
baseline of the KAIST Dataset, which was extended from
traditional aggregated channel features (ACF) [20] to infrared
channels. Based on two-stage R-CNN series, Choi et al. [21]
generated region proposals using RPN on RGB and infrared
images separately and obtained final results using support
vector regression (SVR). Liu et al. [3] studied four different
fusion models based on Faster R-CNN, in which features or
detection results from separate RGB and infrared channels
were fused in different stages. Their experiment proved that the
Halfway Fuison model achieved the best performance. König
et al. [22] extended RPN+BF [7] to multispectral pedestrian
detection and proposed fusion RPN+BF. Li et al. [1] proposed
Multispectral Simultaneous Detection and Segmentation R-
CNN (MSDS-RCNN), which combined the detection task
and the semantic segmentation task in both region proposal
stage and detection head stage. As for one-stage detectors,
the Halfway Fusion method was transferred to YOLOv3 [23]
framework by Geng et al. [24]. Their comparative experiment
showed that dual-modal Faster R-CNN outperformed dual-
modal YOLOv3 in low-observable pedestrian detection.

Considering the advantage of RGB images during daytime
and infrared images during nighttime, illumination information
was introduced to guide the fusion. Guan et al. [25] proposed
an illumination-aware network for pedestrian detection. On the
one hand, the illumination was learned from feature maps.
On the other hand, the whole network was divided into
two sub-networks to learn pedestrian features during daytime



Fig. 2. Architecture of the proposed MLF-FRCNN.

and nighttime separately. The final result was obtained by
weighting the output of the sub-networks according to the
learned illumination. Li et al. [26] proposed Score Fusion II by
adding novel fusion models to the work [3], which performs
with minor gap to Halfway Fusion. Based on Score Fusion
II they proposed the further improved network IAF R-CNN
with an illumination-aware weighting mechanism. Since most
multispectral pedestrian datasets only provide hard 0-1 labels
of day/night, there is a lack of illumination details for training
in this kind of methods.

Inspired by the feature pyramid method in object de-
tection networks, fusion on multi-layer feature maps was
proposed to adapt to varied scales of pedestrians. Chen et
al. [27] designed a fused deconvolutional single-shot de-
tector (MFDSSD), which extracted features from RGB and
infrared images separately and fused them to generate strong
representations for pedestrians. Another multispectral feature
fusion network (MSFFN) is proposed by Song et al. [28],
in which dual-modal features were fused after separately
passing through the backbone and FPN module. However, their
MSFFN can not integrate dual-modal information between
multi-scale feature layers and becomes more complex. Our
method is similar to MSFFN but differs from it by fusing
features in backbone before sending them to the shared FPN
module. By doing this, we achieve a comparative approach
with reduced complexity.

III. PROPOSED METHOD

In this work, we boost the performance of pedestrian
detection in low-light environment by designing a novel multi-
layer fusion network based on Faster R-CNN, called as MLF-
FRCNN. As shown in Fig. 2, MLF-FRCNN is composed
of two parallel feature extractors, an FPN, an RPN and a
detection head. The fusion network accepts RGB and infrared
images as inputs and yields pedestrian detection results on
both modalities.

A. Backbone
The backbone of MLF-FRCNN consists of two parallel

ResNet50s (i.e., the ResNet50-V and ResNet50-T) [29], which
extract features from RGB and infrared (thermal) images
separately. We make a few adjustments on ResNet50 by
reducing the feature stride and removing the max-pooling layer
to better detect small pedestrian instances.

To process multispectral information, features from RGB
and infrared channels are concatenated after each of the 4
blocks in ResNet50 (left side of Fig. 2). Then we obtain fused
features on 4 layers of different scales, which are later sent
to the FPN module. Such multi-layer fusion overcomes the
limitation of fusion in a single stage, in which features only
at a fixed semantic level are extracted. Multi-layer fusion can
help the network learn to adaptively fuse complementary infor-
mation from RGB and infrared features at different semantic
levels. With the full use of information from RGB and infrared
images, the network should be more robust to illumination
variations, which is verified in experiments.



B. Fusion Module

The multi-scale fusion learning in MLF-FRCNN is done by
an FPN module (right side of Fig. 2). In this module, it first
reduces the channel number of fused features extracted from
the backbone to 256 through a 1×1 convolutional layer on
each feature layer. Then the fused features on the upper layer
are upsampled and added to the lower layer stage by stage.
After that, a 3×3 convolutional layer is introduced to extract
features again to avoid the aliasing effect [4].

The FPN module is introduced into MLF-FRCNN due to
two reasons. Firstly, the FPN can reduce the sensitivity of
the network to different scales of pedestrians by combin-
ing detailed location information on the lower layers with
abundant semantic information on the upper layers. Secondly,
by utilizing the 1×1 convolutional layer in the beginning,
FPN reduces the number of parameters and enhances the
computational efficiency.

C. Detection Module

The MLF-FRCNN consists of a region proposal network
(RPN) and a detection head, which are similar with Faster R-
CNN. The RPN generates region proposals based on anchors
on each feature layer. The detection head further makes pre-
dictions of class labels and bounding boxes on these proposals.
Considering the aspect ratio of typical pedestrians, we discard
the anchor ratio of 0.5 to facilitate the training and predicting
speed [3].

The network is trained with a joint loss defined as:

Ltotal = Lrpn + Ldet, (1)

where Ltotal denotes the total loss; Lrpn is RPN loss; Ldet is
the detection head loss.

The RPN loss is defined as:

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ),

(2)
where Ncls denotes the total sample number of a batch and Nreg
corresponds to the number of positive samples; The predicted
object probability on anchor i is indicated by pi while p∗i
denotes its binary objectness label; ti = [tix, tiy, tiw, tih]
denotes the offset of the predicted bounding box relative to
anchor i with center coordinates (x, y) and size (w, h) while
t∗i represents its ground truth; The binary cross entropy loss of
classification Lcls is calculated by (3) while Lreg is the smooth
L1 loss of localization calculated by (4); Weight λ is set to 1
to balance above two losses.

Lcls(pi, p
∗
i ) = −[p∗i log pi + (1− p∗i ) log(1− pi)] (3)

Lreg(ti, t
∗
i ) =

∑
j∈{x,y,w,h}

smoothL1
(tij − t∗ij) (4)

The detection head loss Ldet is defined in a similar way as
Lrpn.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset: We conduct experiments on the KAIST Mul-
tispectral Pedestrian Dataset [5] because it provides a great
number of aligned RGB-infrared image pairs with a resolu-
tion of 640×512 captured in various traffic scenarios during
daytime and nighttime. The KAIST Dataset was divided into
training and test videos. Following Liu et al. [3], we sample
image pairs from training videos in every 2 frames and
exclude the ones where no proper pedestrian exists as the
training set, among which 3698 were captured during daytime
and 2328 during nighttime. 2252 image pairs are sampled
from test videos with a sampling rate of 1:20 as the test
set, among which 1455 were captured during daytime and
797 during nighttime. We utilize the reasonable day/night,
the small-scale and the all-scale settings on the test set for
experiments. The reasonable setting contains fully visible or
partially occluded pedestrians whose heights are larger than
55 pixels as defined in [5], while the small-scale and the all-
scale settings contain pedestrians whose heights are smaller
than 55 pixels and pedestrians of all scales, respectively. Since
the original annotations contain some problematic bounding
boxes, we utilize the improved annotations of the test set
provided by [3] as well as the sanitized annotations of the
training set provided by [1].

2) Evaluation Metric: As a common metric in pedestrian
detection, we use AP50 to evaluate the detection performance
in our experiments. In AP50 metric, a predicted bounding box
is judged as true positive (TP) if its Intersection over Union
(IoU) with a ground truth is over 50%. Unmatched predicted
bounding boxes and unmatched ground truths are judged as
false positives (FP) and false negatives (FN), respectively. The
precision and the recall are calculated by TP/(TP + FP) and
TP/(TP + FN), respectively. Finally, AP50 is calculated by
averaging the precision at equally spaced recalls between 0
and 1, which can be obtained by changing the threshold of
classification scores.

3) Training Details: During the training process, in RPN,
an anchor is set as positive if it has the maximum IoU or an
IoU over 0.7 with a ground truth. Conversely, an anchor is
set as negative if its IoU with all ground truths are under 0.3.
While in the detection head, a region proposal is set as positive
if its IoUs with a ground truth is over 0.5, and otherwise
negative. We randomly sample 256 anchors per image with
a ratio of 1:1 between positive and negative samples in RPN
to compute the loss while for the detection head we use
512 proposals per image with a positive-to-negative ratio of
1:3. The proposed MLF-FRCNN model is initialized by a
Faster R-CNN model with ResNet50+FPN pre-trained on the
MS COCO dataset [30]. All other layers are initialized by
the ”Kaiming Uniform” method [31]. The entire model is
implemented by PyTorch [32]. The batch size for training is set
to 4. The optimizer is stochastic gradient descent (SGD) [33]
with a momentum of 0.9 and a weight decay of 0.0005. The
initial learning rate is set to 0.005 with a warm-up strategy.



Fig. 3. The variations of the loss and the learning rate during the training
process.

TABLE I
EXPERIMENTAL RESULTS OF MLF-FRCNN WITH DIFFERENT BACKBONES

ON THE KAIST TEST SET IN THE REASONABLE SETTING.

Backbone AP50 Prediction Time
VGG16 [34] 88.0% 0.10s/frame

ResNet18 [29] 77.5% 0.09s/frame
ResNet34 [29] 78.8% 0.10s/frame
ResNet50 [29] 91.2% 0.14s/frame

To avoid gradient explosion, we divide the learning rate by
5 after the second, the third as well as the sixth epoch and
finish training after 8 epochs. The variations of the loss and the
learning rate during the training process are shown in Fig. 3.

B. Comparison of Different Backbones

We first conduct experiments on MLF-FRCNN with differ-
ent backbones. The experimental results on the KAIST test set
in the reasonable setting are shown in Table I, from which we
can find out that ResNet50 [29] achieves the highest AP at the
cost of only 0.04s extra prediction time per frame compared
with the second highest VGG16 [34]. We attribute this to the
residual structure which allows deep layers to capture more
complex features while avoids vanishing gradient. Therefore,
we select ResNet50 as the backbone of MLF-FRCNN in
following experiments.

C. Comparison with State-of-the-arts

Here we evaluate the proposed MLF-FRCNN on the KAIST
test set mentioned in section IV-A1, in comparison with
state-of-the-art fusion methods based on Faster R-CNN, as
shown in Table II. We can find out that our MLF-FRCNN
achieves the highest AP of 91.2% in the reasonable setting
and also outperforms other fusion methods in three of the
following four settings. Although our method performs with
0.9% inferior to the MSDS-RCNN [1] in the reasonable day

setting, it performs particularly well in the reasonable night
and the small-scale settings, with an AP gain of 5.1% and
28.8%, respectively. This indicates that the proposed MLF-
FRCNN yields much better adaptability to light conditions
and pedestrian scales. Moreover, MLF-FRCNN shows a fast
prediction speed with 0.14s per frame and much less pa-
rameters with 251MB while the MSDS-RCNN has a much
larger model of 3482MB. It’s also worth mentioning that IAF
R-CNN and MSDS-RCNN add illumination information and
semantic segmentation as additional supervision, respectively.
Our approach only conducts detection task without additional
supervision and already outperforms above methods in most
situations. A further improvement in AP is also conceivable by
integrating illumination or semantic information in our model.

D. Ablation Studies

To prove the effectiveness of our multi-layer fusion method,
we train and test single-modal (only with RGB or infrared
images as input) Faster R-CNN with FPN module in the
reasonable day/night settings. We also train MLF-FRCNN
only on the day subset and test its transferring ability. The test
results are shown in Table III and the precision-recall curves
are plotted in Fig. 4.

We can find out that the model only with RGB input
performs relatively better during daytime while the model only
with infrared input performs relatively better during nighttime.
By fusion of RGB and infrared images, we achieve the best
performance during both daytime and nighttime. In the reason-
able night setting, our MLF-FRCNN outperforms RGB-based
Faster R-CNN (with FPN) by 36.4% in AP and infrared-based
one by 3.1% in AP, respectively. The effectiveness of proposed
fusion method in low-light environment is demonstrated.

We can also see that MLF-FRCNN trained only on the day
subset performs even worse than infrared-based Faster R-CNN
(with FPN) by 12.8% in AP in the reasonable night setting. We
believe that it’s because MLF-FRCNN tends to learn a fusion
mode dominated by RGB features without training images
captured in low-light environment. When transferred to the
night scene, the model can’t take great advantage of infrared
features. From this we further conclude that MLF-FRCNN is
able to learn adaptive fusion of RGB and infrared information
according to illumination by the mixed training under different
light conditions.

E. Qualitative Detection Results

Fig. 5 shows the comparison of detection results on three
RGB-infrared image pairs under different light conditions sam-
pled from the KAIST test set. The first column shows ground
truths. The other four columns show detection results of RGB-
based Faster R-CNN (with FPN), infrared-based one, Halfway
Fusion FRCNN [3] and our MLF-FRCNN, respectively. Green
bounding boxes denote detection results while red bounding
boxes denote ground truths. Obviously, it can be seen that
the proposed MLF-FRCNN achieves more accurate detection
especially in low-light environment.



TABLE II
EXPERIMENTAL RESULTS OF MLF-FRCNN COMPARED WITH STATE-OF-THE-ART FUSION METHODS BASED ON FASTER R-CNN ON THE KAIST TEST

SET.

Methods AP50 Prediction TimeReasonable Reasonable Day Reasonable Night Small-Scale All-Scale
ACF+T+THOG [5] (baseline) 64.2% 68.9% 54.9% 14.9% 38.8% 0.13s/frame
Halfway Fusion FRCNN [3] 83.2% 83.2% 83.8% 38.5% 59.1% 0.16s/frame

Fusion RPN+BF [22] 86.2% 86.3% 85.9% 33.1% 54.3% 0.80s/frame
IAF R-CNN [26] 87.2% 89.0% 83.7% 33.2% 56.2% 0.21s/frame
MSDS-RCNN [1] 90.6% 91.0% 89.9% 46.2% 63.8% 0.15s/frame

MLF-FRCNN (ours) 91.2% 90.1% 95.0% 75.0% 78.0% 0.14s/frame

TABLE III
ABLATION STUDIES OF MLF-FRCNN.

Input Training AP50
RGB Infrared Day Night Reasonable Reasonable Day Reasonable Night
X X X 76.1% 83.3% 58.6%

X X X 81.9% 76.9% 91.9%
X X X 82.1% 88.0% 79.1%
X X X X 91.2% 90.1% 95.0%

(a) Reasonable (b) Reasonable Day

(c) Reasonable Night

Fig. 4. The precision-recall curves of RGB-based Faster R-CNN (with FPN), infrared based one, MLF-FRCNN trained only on the day subset and MLF-
FRCNN with full set training. The settings of tested set are: (a) Reasonable; (b) Reasonable Day; (c) Reasonable Night.



(a) Ground Truth (b) RGB Single-Modal (c) Infrared Single-Modal (d) Halfway Fusion (e) Our MLF-FRCNN
FRCNN FRCNN FRCNN [3]

Fig. 5. The comparison of detection results on three RGB-infrared image pairs under different light conditions sampled from the KAIST test set. The first
column shows (a) Ground Truth. The other four columns show detection results of (b) RGB Single-Modal FRCNN; (c) Infrared Single-Modal FRCNN; (d)
Halfway Fusion FRCNN [3]; (e) Our MLF-FRCNN. Green bounding boxes denote detection results while red bounding boxes denote ground truths.



V. CONCLUSION

In this paper, we propose a novel multi-layer fusion net-
work, namely MLF-FRCNN, for pedestrian detection in low-
light environment. In this approach, we deploy feature maps
extracted from RGB and infrared channels in different back-
bone blocks to extract multi-scale features. Additionally, an
FPN module is further introduced to facilitate predictions
on multi-layer feature maps. The experimental results on
the KAIST Multispectral Pedestrian Dataset reveal that the
proposed MLF-FRCNN outperforms state-of-the-art fusion
approaches and especially effective in detecting pedestrians
with greatly varied scales. The results also prove that MLF-
FRCNN can fuse RGB and infrared information adaptively
according to illumination, which is valuable for autonomous
driving in all-day and all-weather situations. For the future
research, we plan to add extra supervision like illumination and
semantic segmentation in our model and transfer our multi-
layer fusion method to the latest high-performing object detec-
tion framework to further improve the detection performance.
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