F $\frac{\text { EasyChair Preprint }}{\text { № } 11415}$

New Criterion for the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

New Criterion for the Riemann Hypothesis

Frank Vega

To my mother

Abstract

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. Let $\Psi(n)=n \cdot \prod_{q \mid n}\left(1+\frac{1}{q}\right)$ denote the Dedekind Ψ function where $q \mid n$ means the prime q divides n. Define, for $n \geq 3$; the ratio $R(n)=\frac{\Psi(n)}{n \cdot \log \log n}$ where \log is the natural logarithm. Let $N_{n}=2 \cdot \ldots \cdot q_{n}$ be the primorial of order n. There are several statements equivalent to the Riemann hypothesis. We state that if for each large enough prime number q_{n}, there exists another prime $q_{n^{\prime}}>q_{n}$ such that $R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)$, then the Riemann hypothesis is true. In this note, using our criterion, we prove that the Riemann hypothesis is true.

Mathematics Subject Classification (2010). Primary 11M26; Secondary 11A41, 11A25.
Keywords. Riemann hypothesis, prime numbers, Riemann zeta function, Chebyshev function.

1. Introduction

The hypothesis was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. In recent years, there have been several developments that have brought us closer to a proof of the Riemann hypothesis. For example, in 2014, Michael Atiyah and Peter Sarnak proposed a new approach to the problem that has been the subject of much research. Furthermore, there are many approaches to the Riemann hypothesis based on analytic number theory, algebraic geometry, non-commutative geometry, etc.

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{q \leq x} \log q
$$

with the sum extending over all prime numbers q that are less than or equal to x, where \log is the natural logarithm.

Proposition 1.1. We have [9, pp. 1]:

$$
\theta(x) \sim x \quad \text { as } \quad(x \rightarrow \infty)
$$

We know the following inequalities:
Proposition 1.2. For $r \geq 0$ and $-1 \leq x<\frac{1}{r}$ [6, pp. 1]:

$$
(1+x)^{r} \leq \frac{1}{1-r \cdot x}
$$

Proposition 1.3. For $x>-1$ [6, pp. 1]:

$$
\log (1+x) \leq x
$$

Leonhard Euler studied the following value of the Riemann zeta function (1734) [1].

Proposition 1.4. We define [1, (1) pp. 1070]:

$$
\zeta(2)=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

where q_{k} is the k th prime number (We also use the notation q_{n} to denote the nth prime number). By definition, we have

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

where $\pi \approx 3.14159$ is a well-known constant linked to several areas in mathematics such as number theory, geometry, etc.

The number $\gamma \approx 0.57721$ is the Euler-Mascheroni constant which is defined as

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(-\log n+\sum_{k=1}^{n} \frac{1}{k}\right) \\
& =\int_{1}^{\infty}\left(-\frac{1}{x}+\frac{1}{\lfloor x\rfloor}\right) d x
\end{aligned}
$$

Here, $\lfloor\ldots\rfloor$ represents the floor function. Franz Mertens discovered some important results about the constant B (1874) [7].

Proposition 1.5. Mertens' second theorem is

$$
\lim _{n \rightarrow \infty}\left(\sum_{q \leq n} \frac{1}{q}-\log \log n-B\right)=0
$$

where $B \approx 0.26149$ is the Meissel-Mertens constant [7].
In number theory, $\Psi(n)=n \cdot \prod_{q \mid n}\left(1+\frac{1}{q}\right)$ is called the Dedekind Ψ function, where $q \mid n$ means the prime q divides n.

Definition 1.6. We say that Dedekind $\left(q_{n}\right)$ holds provided that

$$
\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right) \geq \frac{e^{\gamma}}{\zeta(2)} \cdot \log \theta\left(q_{n}\right)
$$

A natural number N_{n} is called a primorial number of order n precisely when,

$$
N_{n}=\prod_{k=1}^{n} q_{k}
$$

We define $R(n)=\frac{\Psi(n)}{n \cdot \log \log n}$ for $n \geq 3$. Dedekind $\left(q_{n}\right)$ holds if and only if $R\left(N_{n}\right) \geq \frac{e^{\gamma}}{\zeta(2)}$ is satisfied.

Proposition 1.7. Unconditionally on Riemann hypothesis, we know that [10, Proposition 3 pp. 3]:

$$
\lim _{n \rightarrow \infty} R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)}
$$

Proposition 1.8. For all prime numbers $q_{n}>5$ [3, Theorem 1.1 pp. 358]:

$$
\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)<e^{\gamma} \cdot \log \theta\left(q_{n}\right)
$$

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John Edensor Littlewood [5]. In 1916, they also introduced the two symbols Ω_{R} and Ω_{L} defined as [4]:

$$
\begin{aligned}
& f(x)=\Omega_{R}(g(x)) \text { as } x \rightarrow \infty \text { if } \limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}>0 \\
& f(x)=\Omega_{L}(g(x)) \text { as } x \rightarrow \infty \text { if } \liminf _{x \rightarrow \infty} \frac{f(x)}{g(x)}<0
\end{aligned}
$$

After that, many mathematicians started using these notations in their works. From the last century, these notations Ω_{R} and Ω_{L} changed as Ω_{+}and Ω_{-}, respectively. There is another notation: $f(x)=\Omega_{ \pm}(g(x))$ (meaning that $f(x)=\Omega_{+}(g(x))$ and $f(x)=\Omega_{-}(g(x))$ are both satisfied). Nowadays, the notation $f(x)=\Omega_{+}(g(x))$ has survived and it is still used in analytic number theory as:

$$
f(x)=\Omega_{+}(g(x)) \text { if } \exists k>0 \forall x_{0} \exists x>x_{0}: f(x) \geq k \cdot g(x)
$$

which has the same meaning to the Hardy and Littlewood older notation. For $x \geq 2$, the function f was introduced by Nicolas in his seminal paper as [8, Theorem 3 pp. 376], [2, (5.5) pp. 111]:

$$
f(x)=e^{\gamma} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1-\frac{1}{q}\right) .
$$

Finally, we have the Nicolas Theorem:
Proposition 1.9. If the Riemann hypothesis is false then there exists a real b with $0<b<\frac{1}{2}$ such that, as $x \rightarrow \infty$ [8, Theorem 3 (c) pp. 376], [2, Theorem 5.29 pp. 131]:

$$
\log f(x)=\Omega_{ \pm}\left(x^{-b}\right)
$$

Putting all together yields a proof for the Riemann hypothesis.

2. Central Lemma

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. However, there exist some implications in case of the Riemann hypothesis could be false. The following is a key Lemma.

Lemma 2.1. If the Riemann hypothesis is false, then there exist infinitely many prime numbers q_{n} such that Dedekind $\left(q_{n}\right)$ fails (i.e. Dedekind $\left(q_{n}\right)$ does not hold).

Proof. The function g is defined as [10, Theorem $4.2 \mathrm{pp} 5$.$] :$

$$
g(x)=\frac{e^{\gamma}}{\zeta(2)} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1+\frac{1}{q}\right)^{-1}
$$

We claim that Dedekind $\left(q_{n}\right)$ fails whenever there exists some real number $x_{0} \geq 5$ for which $g\left(x_{0}\right)>1$ or equivalent $\log g\left(x_{0}\right)>0$ and q_{n} is the greatest prime number such that $q_{n} \leq x_{0}$. It was proven the following bound [10, Theorem 4.2 pp. 5]:

$$
\log g(x) \geq \log f(x)-\frac{2}{x}
$$

By Proposition 1.9, if the Riemann hypothesis is false, then there is a real number $0<b<\frac{1}{2}$ such that there exist infinitely many numbers x for which $\log f(x)=\Omega_{+}\left(x^{-b}\right)$. Actually Nicolas proved that $\log f(x)=\Omega_{ \pm}\left(x^{-b}\right)$, but we only need to use the notation Ω_{+}under the domain of the real numbers. According to the Hardy and Littlewood definition, this would mean that

$$
\exists k>0, \forall y_{0} \in \mathbb{R}, \exists y \in \mathbb{R}\left(y>y_{0}\right): \log f(y) \geq k \cdot y^{-b}
$$

The previous inequality is also $\log f(y) \geq\left(k \cdot y^{-b} \cdot \sqrt{y}\right) \cdot \frac{1}{\sqrt{y}}$, but we notice that

$$
\lim _{y \rightarrow \infty}\left(k \cdot y^{-b} \cdot \sqrt{y}\right)=\infty
$$

for every possible values of $k>0$ and $0<b<\frac{1}{2}$. Now, this implies that

$$
\forall y_{0} \in \mathbb{R}, \exists y \in \mathbb{R}\left(y>y_{0}\right): \log f(y) \geq \frac{1}{\sqrt{y}}
$$

Note that, the value of k is not necessary in the statement above. In this way, if the Riemann hypothesis is false, then there exist infinitely many wide apart numbers x such that $\log f(x) \geq \frac{1}{\sqrt{x}}$. Since $\frac{1}{\sqrt{x_{0}}}>\frac{2}{x_{0}}$ for $x_{0} \geq 5$, then it would be infinitely many wide apart real numbers x_{0} such that $\log g\left(x_{0}\right)>0$. In addition, if $\log g\left(x_{0}\right)>0$ for some real number $x_{0} \geq 5$, then $\log g\left(x_{0}\right)=$ $\log g\left(q_{n}\right)$ where q_{n} is the greatest prime number such that $q_{n} \leq x_{0}$. The reason is because of the equality of the following terms:

$$
\prod_{q \leq x_{0}}\left(1+\frac{1}{q}\right)^{-1}=\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)^{-1}
$$

and

$$
\theta\left(x_{0}\right)=\theta\left(q_{n}\right)
$$

according to the definition of the Chebyshev function.

3. Main Insight

This is the main insight.
Lemma 3.1. The Riemann hypothesis is true whenever for each large enough prime number q_{n}, there exists another prime $q_{n^{\prime}}>q_{n}$ such that

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

Proof. By Lemma 2.1, if the Riemann hypothesis is false and the inequality

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

is satisfied for each large enough prime number q_{n}, then there exists an infinite subsequence of natural numbers n_{i} such that

$$
R\left(N_{n_{i+1}}\right) \leq R\left(N_{n_{i}}\right)
$$

$q_{n_{i+1}}>q_{n_{i}}$ and Dedekind $\left(q_{n_{i}}\right)$ fails. By Proposition 1.7, this is a contradiction with the fact that

$$
\liminf _{n \rightarrow \infty} R\left(N_{n}\right)=\lim _{n \rightarrow \infty} R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)}
$$

By definition of the limit inferior for any positive real number ε, only a finite number of elements of $R\left(N_{n}\right)$ are less than $\frac{e^{\gamma}}{\zeta(2)}-\varepsilon$. This contradicts the existence of such previous infinite subsequence and thus, the Riemann hypothesis must be true.

4. Main Theorem

This is the main theorem.
Theorem 4.1. The Riemann hypothesis is true.
Proof. By Lemma 3.1, the Riemann hypothesis is true if for all primes q_{n} (greater than some threshold), the inequality

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

is satisfied for some prime $q_{n^{\prime}}>q_{n}$. That is the same as

$$
\frac{\prod_{q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}{\log \theta\left(q_{n^{\prime}}\right)} \leq \frac{\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)}{\log \theta\left(q_{n}\right)}
$$

and

$$
\frac{\prod_{q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}{\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)} \leq \frac{\log \theta\left(q_{n^{\prime}}\right)}{\log \theta\left(q_{n}\right)}
$$

which is

$$
\log \log \theta\left(q_{n^{\prime}}\right) \geq \log \log \theta\left(q_{n}\right)+\sum_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)
$$

after of applying the logarithm to the both sides and distributing the terms. That is equivalent to

$$
1 \geq \frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}+\frac{\sum_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}
$$

after dividing both sides by $\log \log \theta\left(q_{n^{\prime}}\right)$. This is possible because of the prime number $q_{n^{\prime}}$ is large enough and thus, the real number $\log \log \theta\left(q_{n^{\prime}}\right)$ would be greater than 0 . We can apply the exponentiation to the both sides in order to obtain that

$$
e \geq \exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right) \cdot\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}
$$

We can take a large enough prime $q_{n^{\prime}}$ such that

$$
\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)} \approx 0
$$

For large enough prime $q_{n^{\prime}}$, we have

$$
e=\left(\log \theta\left(q_{n^{\prime}}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}
$$

since $e=x^{\frac{1}{\log x}}$ for $x>0$. Hence, it is enough to show that

$$
\log \theta\left(q_{n^{\prime}}\right)>\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)
$$

That is equal to

$$
e^{\gamma} \cdot \log \theta\left(q_{n^{\prime}}\right)>e^{\gamma} \cdot \prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right) .
$$

By Proposition 1.8, we know that

$$
e^{\gamma} \cdot \log \theta\left(q_{n^{\prime}}\right)>\prod_{q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right) .
$$

So, we deduce that

$$
1>e^{\gamma} \cdot \prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)^{-1}
$$

which is trivially true since

$$
\lim _{n \rightarrow \infty}\left(e^{\gamma} \cdot \prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)^{-1}\right)=0
$$

This is because of

$$
\left(\log \theta\left(q_{n}\right)\right)^{-1}>\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)^{-1}
$$

We can check that

$$
\lim _{n \rightarrow \infty}\left(e^{\gamma} \cdot\left(\log q_{n}\right)^{-1}\right)=0
$$

is true since

$$
\theta\left(q_{n}\right) \sim q_{n} \text { as }(n \rightarrow \infty)
$$

by Proposition 1.1. Actually, the point here is the statement

$$
\left(\log \theta\left(q_{n}\right)\right)^{-1}>\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)^{-1}
$$

should be true for large enough n which is equal to say that $R\left(N_{n}\right)>1$ holds indeed. By Proposition 1.7, there exists a value of m_{0} so that for all natural numbers $m \geq m_{0}$

$$
\liminf _{m \rightarrow \infty} R\left(N_{m}\right)-\epsilon=\frac{e^{\gamma}}{\zeta(2)}-\epsilon<R\left(N_{m}\right)<\frac{e^{\gamma}}{\zeta(2)}+\epsilon=\limsup _{m \rightarrow \infty} R\left(N_{m}\right)+\epsilon
$$

for every arbitrary and absolute value $\epsilon>0$ by definition of limit superior and inferior due to

$$
\liminf _{m \rightarrow \infty} R\left(N_{m}\right)=\limsup _{m \rightarrow \infty} R\left(N_{m}\right)=\lim _{m \rightarrow \infty} R\left(N_{m}\right)
$$

In this way, it should exist some value of n_{0} so that for all natural numbers $n \geq n_{0}$ we obtain that $R\left(N_{n}\right)>1$ since $\frac{e^{\gamma}}{\zeta(2)}>1$. We would have

$$
1+\epsilon_{1}=\exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right)
$$

and

$$
e \cdot\left(1-\epsilon_{2}\right)=\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}
$$

We only need to prove that

$$
e \geq\left(1+\epsilon_{1}\right) \cdot e \cdot\left(1-\epsilon_{2}\right)
$$

which is the same as

$$
\epsilon_{2} \geq \frac{\epsilon_{1}}{\epsilon_{1}+1}
$$

In addition, we can see that

$$
1-e^{-1} \cdot\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}=\epsilon_{2}
$$

We have

$$
\begin{aligned}
\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}} & =\left(1+\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)-1\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}} \\
& \leq \frac{1}{1-\frac{\left(\prod_{q_{n}<q \leq q_{n}}\left(1+\frac{1}{q}\right)-1\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}} \\
& =\frac{\log \log \theta\left(q_{n^{\prime}}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}
\end{aligned}
$$

by Proposition 1.2, since there always exists a prime number $q_{n^{\prime}}$ such that

$$
-1 \leq\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)-1\right)<\log \log \theta\left(q_{n^{\prime}}\right)
$$

due to q_{n} and $q_{n^{\prime}}$ are large enough. We can show the inequality

$$
\left(\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)-1\right)<\log \log \theta\left(q_{n^{\prime}}\right)
$$

could hold for a large enough prime $q_{n^{\prime}}$ as well. Indeed, we are able to show that is equal to

$$
\left(\sum_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)-\frac{1}{q}\right)<-\left(\sum_{q_{n}<q \leq q_{n^{\prime}}} \frac{1}{q}\right)+\log \log \log \left(\theta\left(q_{n^{\prime}}\right)\right)^{e}
$$

after of applying the logarithm and adding the term

$$
-\left(\sum_{q_{n}<q \leq q_{n^{\prime}}} \frac{1}{q}\right)
$$

to the both sides. By Proposition 1.3, we verify that

$$
0 \geq\left(\sum_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)-\frac{1}{q}\right)
$$

By Proposition 1.5, if we get any large enough prime number $q_{n^{\prime}}$ such that

$$
\log \log \log \left(\theta\left(q_{n^{\prime}}\right)\right)^{e} \geq\left(\sum_{q_{n}<q \leq q_{n^{\prime}}} \frac{1}{q}\right) \approx\left(\log \log q_{n^{\prime}}-\log \log q_{n}\right)
$$

which is

$$
\left(q_{n^{\prime}}\right)^{\frac{1}{1+\log \log \theta\left(q_{n^{\prime}}\right)}} \lesssim q_{n}
$$

then this could be quite good for supporting our claim. As a consequence, we obtain that

$$
1-\frac{e^{-1} \cdot \log \log \theta\left(q_{n^{\prime}}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}<\epsilon_{2} .
$$

Putting all together, we show that

$$
1-\frac{e^{-1} \cdot \log \log \theta\left(q_{n^{\prime}}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)} \geq \frac{\epsilon_{1}}{\epsilon_{1}+1} .
$$

That is equivalent to say that

$$
\begin{aligned}
& \left(1-e^{-1}\right) \cdot \log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right) \\
& \geq \frac{\epsilon_{1}}{\epsilon_{1}+1} \cdot\left(\log \log \theta\left(q_{n^{\prime}}\right)+1-\prod_{q_{n}<q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)\right)
\end{aligned}
$$

could be satisfied. However, the previous inequality truly holds since

$$
\left(1-e^{-1}\right) \gg \frac{\epsilon_{1}}{\epsilon_{1}+1}=1-\frac{1}{\epsilon_{1}+1}
$$

is true as long as $q_{n^{\prime}}$ gets larger in relation to q_{n} under the consideration that ϵ_{1} could be small enough according to the selected value of $q_{n^{\prime}}$. Here, the symbol \gg means "much greater than". Certainly, that would be equivalent to say that

$$
e \gg \epsilon_{1}+1
$$

which is

$$
e \gg \exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right)
$$

since

$$
\epsilon_{1}=\exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right)-1
$$

Now, the proof is done.

5. Conclusion

The Riemann hypothesis's importance remains from its deep connection to the distribution of prime numbers, which are essential in many computational and theoretical aspects of mathematics. Understanding the distribution of prime numbers is crucial for developing efficient algorithms and improving our understanding of the fundamental structure of numbers. Besides, the Riemann hypothesis stands as a testament to the power and allure of mathematical inquiry. It challenges our understanding of the fundamental structure of numbers, inspiring mathematicians to push the boundaries of their field and seek ever deeper insights into the universe of mathematics. Indeed, the Riemann hypothesis has far-reaching implications for mathematics, with potential applications in cryptography, number theory, and even particle physics. Certainly, a proof of the hypothesis would not only provide a profound insight into the nature of prime numbers but also open up new avenues of research in various mathematical fields.

Acknowledgment

Many thanks to Patrick Solé, Michel Planat and Yusnier Viera for their support.

Author's Bibliography

Frank Vega is essentially a Back-End Programmer and Mathematical Hobbyist who graduated in Computer Science in 2007. In May 2022, The Ramanujan Journal accepted his mathematical article about the Riemann hypothesis. The article "Robin's criterion on divisibility" makes several significant contributions to the field of number theory. It provides a proof of the Robin inequality for a large class of integers, and it suggests new directions for research in the area of analytic number theory. This current and original research has been dedicated to his mother.

References

[1] Ayoub, R. Euler and the Zeta Function. The American Mathematical Monthly 1974, 81, 1067-1086. https://doi.org/10.2307/2319041.
[2] Broughan, K., Euler's Totient Function. In Equivalents of the Riemann Hypothesis; Cambridge University Press, 2017; Vol. 1, Encyclopedia of Mathematics and its Applications, pp. 94-143. https://doi.org/10.1017/9781108178228.007.
[3] Choie, Y.; Lichiardopol, N.; Moree, P.; Solé, P. On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 2007, 19, 357372. https://doi.org/10.5802/jtnb. 591.
[4] Hardy, G.H.; Littlewood, J.E. Contributions to the theory of the Riemann zetafunction and the theory of the distribution of primes. Acta Mathematica 1916, 41, 119-196.
[5] Hardy, G.H.; Littlewood, J.E. Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ϑ-functions. Acta mathematica 1914, 37, 193-239.
[6] Kozma, L. Useful Inequalities. Kozma's Homepage, Useful inequalities cheat sheet. http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf, 20112024. Accessed 3 January 2024.
[7] Mertens, F. Ein Beitrag zur analytischen Zahlentheorie. J. reine angew. Math. 1874, 1874, 46-62. https://doi.org/10.1515/crll.1874.78.46.
[8] Nicolas, J.L. Petites valeurs de la fonction d'Euler. Journal of Number Theory 1983, 17, 375-388. https://doi.org/10.1016/0022-314X (83) 90055-0.
[9] Platt, D.J.; Trudgian, T.S. On the first sign change of $\theta(x)-x$. Mathematics of Computation 2016, 85, 1539-1547. https://doi.org/10.1090/mcom/3021.
[10] Solé, P.; Planat, M. Extreme values of the Dedekind Ψ function. Journal of Combinatorics and Number Theory 2011, 3, 33-38.

Frank Vega
NataSquad
10 rue de la Paix
FR 75002 Paris
France
e-mail: vega.frank@gmail.com
Submitted: January 5, 2024.

