
EasyChair Preprint
№ 10000

Model Based Interpolation for Uninterpreted
Functions and Integer Linear Arithmetic

Nikolaj Bjorner, Arie Gurfinkel, Sharon Shoham and Yakir Vizel

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 7, 2023

Model Based Interpolation for Uninterpreted Functions and

Integer Linear Arithmetic

Nikolaj Bjørner, Arie Gurfinkel, Sharon Shoham, and Yakir Vizel

Microsoft Research and University of Waterloo and TAU and Technion

Abstract

Interpolants are central for symbolic model-checking and synthesis of invariants in pro-
gram verification. Over the past couple of decades several methods have been developed
for extracting interpolants from proofs. They benefit from close proof theoretic connec-
tions between interpolants and proofs, but require a theorem prover to produce proof
objects in a format the interpolation procedure understands. It adds a dependency be-
tween interpolation procedures and proof formats of the automated theorem prover. Can
the dependency on proof objects be relaxed for interpolant generation? Model-based inter-
polation generation relies on exchanging models of formulas and unsatisfiable cores. We
develop an algorithm for model-based interpolation for the theory of quantifier-free integer
linear arithmetic with uninterpreted functions. The setting extends previous results for
linear real arithmetic and uninterpreted functions, but in contrast to the linear real case
cannot rely on uniform interpolation.

1 Introduction

Algorithms for computing interpolants have received significant attention in the past, almost,
two decades thanks to their use in symbolic model checking [30]. A reverse interpolant of an
unsatisfiable formula A[x, y] ∧ B[x, z], where formulas A,B share some vocabulary x, is a for-
mula I[x], such that A[x, y]⇒ I[x] and B[x, y]⇒ ¬I[x], for every x, y, z. Proof based methods
rely on solvers that generate proof objects in a form where they are suitable for computing an
interpolant [29, 4, 2, 19]. These methods require a deep integration with proof generation. Gen-
erally, the dependency on proof objects is a source of brittleness as interpolation extraction has
to evolve in lock step not only new proof formats, but also new ways proof rules are combined.
In this paper we take as starting point model-producing solvers to infer interpolants. Model
producing solvers are routinely used for propositional interpolants in symbolic model check-
ers [5]. Our quest is an extension to a quantifier-free combination of uninterpreted functions
and linear integer arithmetic, EUFLIA, where models enjoy a similar straight-forward interface
as propositional logic: they assign values to terms.

Interpolation procedure. An interpolation procedure is shown in Algorithm 1. It assumes
that A ∧ ¬B ≡ ⊥. Initially, I := ⊥. In each iteration, a new cube is added as a disjunct to
I. The procedure maintains the invariant B ⇒ ¬I and it terminates when A ⇒ I. As long as
A ∧ ¬I is satisfiable, a model M |= A ∧ ¬I is extracted and used to compute a model-based
projection proj of A. The projection proj has two requirements. First, to ensure progress
proj∧¬I is satisfiable. Thus, proj is not already blocked by ¬I. Second, every satisfying model
of proj can be extended to a satisfying model of A. Therefore it must be the case that B ∧ proj
is unsatisfiable with an unsatisfiable core core. Then I is updated as follows: I := I ∨ core.

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

Algorithm 1: Interpolation procedure.

I := ⊥
while A ∧ ¬I is SAT do

Let M |= A ∧ ¬I
proj := Project(A,¬I,M)
core := GetUnsatCore(B, proj)
I := I ∨ core

end while
return I

Beyond Propositional Interpolation We examine using model producing solvers for in-
terpolating the theory of uninterpreted functions, EUF, the theory of integer linear arithmetic,
LIA, and their combination, EUFLIA. Both EUF and LIA admit uniform interpolation, That is,
given a formula A[x, y] there is a strongest formula I[x], such that A[x, y]⇒ I[x]. Then, when-
ever A[x, y]∧B[x, z] is unsat, it is also the case that B[x, z]⇒ ¬I[x]. Model producing solvers
can be used to compute these uniform interpolants. Musuvathi and Gulwani [16] considered
the combination EUFLRA of EUF and linear real arithmetic, and presented a procedure that
computes a uniform interpolant given a EUFLRA formula. For the combination EUFLIA there
is generally not a finite uniform interpolant. General conditions for when uniform interpolants
exist in combinations of theories have recently been investigated in [13].

Example 1. Let A be the formula p(a)∧ s < a < t, where s, t are shared integer symbols and p
is a shared predicate, and let B1 be the formula ¬p(s+1)∧s+2 ≃ t. Then a reverse interpolant
of A and B1 is ¬B1. But there is no finite quantifier-free formula based on projecting a from A
that can act as a uniform interpolant. For instance, setting B2 to ¬p(s+1)∧¬p(s+2)∧s+3 ≃ t,
then ¬B1 cannot be used as interpolant but ¬B2 can.

Thus, the combination of EUFLIA cannot be a simple composition of interpolation for EUF
and LIA. Our model-based interpolation procedure only requires to interface with models and
uses unsatisfiable core reduction. It does not take dependencies on proofs. It comes at the cost
of requiring multiple rounds of satisfiability checks and the justification for correctness is not
straight-forward. In light of the benefits and despite the drawbacks, the model-based approach
has been our method of choice in fulfilling a frequent Z3 user request, which is to re-expose
interpolation. The main technical contributions develop a model-based interpolation procedure
for EUFLIA and as a main result we show that there is a terminating procedure that relies on
only a model-producing oracle for computing interpolants.

A Combined Procedure by Example Before presenting the various components relevant
for the result, let us illustrate a model-based interpolantion procedure on an example. The
example is used in [6] where a proof-based interpolation procedure is developed.

Example 2.

A : s ≤ 2a ≤ t ∧ f(a) ≃ q
B : t ≤ 2b ≤ s+ 1 ∧ f(b) ̸≃ q

The conjunction A ∧ B is unsat. We compute an interpolant I over the shared vocabulary
Σs = {f, s, t}. Initially, I is ⊥.

2

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

1. Assume we are given a model [s = a = t = q = 0, f(0) = 0] |= A. Consistent with
this interpretation, we can eliminate a from the arithmetic inequalities in A, producing a
solution (witness) a 7→ t div 2 (t divided by 2) based on the upper bound 2a ≤ t, together
with the constraints s ≤ t ∧ even(t), where even(t) is a shorthand for 2 | t (2 divides t).
The witness term is then substituted for a in the term f(a) that appears in the EUF literal
of A. The resulting projection of A is s ≤ t ∧ even(t) ∧ f(t div 2) ≃ q.

2. By construction, B is unsatisfiable in conjunction with the projection above. The projec-
tion forms a core for B (i.e., its conjunction with B is unsatisfiable): since s ≤ t implies
that t ≤ 2b ≤ t + 1, and since even(t), b must be t div 2 leading to a contradiction on
whether f(t div 2) ≃ q. So I is set to I ← (s ≤ t ∧ even(t) ∧ f(t div 2) ≃ q).

3. Next, assume M |= A ∧ ¬I, for M = [s = a = q = 0, t = 1, f(0) = 0]. It is no longer
consistent with M to have even(t) as part of the projection of the arithmetic inequalities,
but we can solve for a in A as follows a 7→ t div 2, this time with the projection s <
t ∧ f(t div 2) ≃ q of A.

4. The literals s < t ∧ f(t div 2) ≃ q form a core for B because t ≤ s + 1, thus, t = s + 1,
which implies that 2b = t. If t is odd, then 2b must be odd, a contradiction. If t is
even, b = t div 2, hence f(t div 2) ̸≃ q, which contradicts f(t div 2) ≃ q. The core
(s < t ∧ f(t div 2) ≃ q) is added to I.

5. A new model [s = a = q = 0, t = 2, f(0) = 0, f(1) = 1] |= A ∧ ¬I is used to compute a
projection of A. First, from the literals f(t div 2) ̸≃ q, f(a) ≃ q of A ∧ ¬I satisfied by
the model we extract the disequality a ̸≃ t div 2, which we have to solve for together with
the other arithmetic constraints in A in order to ensure that the projection of A would be
consistent with ¬I (to ensure progress). Next, from the upper bound 2a ≤ t in A together
with a ̸≃ t div 2, we compute the solution a 7→ (t − 2) div 2 together with the inequality
s ≤ t− 2 implied by s ≤ 2a in A, obtaining the projection s ≤ t− 2∧ f((t− 2) div 2) ≃ q.

6. These literals are inconsistent with B as well since B requires t ≤ s+ 1. The core for B
is (s+ 2 ≤ t), and is added to I.

7. A ∧ ¬I is no longer satisfiable. The final computed interpolant is

(s ≤ t ∧ even(t) ∧ f(t div 2) ≃ q)∨ (s < t ∧ f(t div 2) ≃ q)∨ (s+ 2 ≤ t)

2 Equalities and Uninterpreted Functions

In this section we present a procedure for generating uniform interpolants for conjunctions of
equalities and disequalities in EUF. The idea is to use models to identify partitions of terms.
We show how an arbitrary partition of terms that satisfy the theory of EUF can be projected
onto a shared signature. The projection preserves all equalities over the shared signature, and
enough disequalities to satisfy all disequalities in the original formula.

We consider many-sorted EUF . In the following let Σs,Σp be disjoint signatures. By con-
vention, the signature Σs is used for shared constants and functions, and Σp is used for private
functions and constants. Constants are simply nullary functions. We use s⃗, p⃗ for constants from
Σs,Σp, respectively. We write Σps for Σs ∪Σp. We denote by TΣv the set of all terms over Σv.

3

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

In the sequel, assume L = E ∧D, where E is a conjunction of equalities from QF UF and D
a conjunction of disequalities, both over the signature Σps. We denote by T the set of all sub-
terms of L. We assume that L is ground, thus existentially quantified variables are Skolemized
to constants.

Congruence preserving partitions. Let M be a model that satisfies L. The model M
induces a partition P of T , or an equivalence relation on T , such that terms t and s in T
belong to the same (equivalence) class in the partition iff M(s) = M(t). Since M |= E, the
partition P preserves congruences with respect to the set of equalities E. That is,

1. For every equation s ≃ t in E, the terms t and s belong to the same class.

2. For every term t := f(t1, . . . , tn) and s := f(s1, . . . , sn) in T , if ti and si are in the same
partitions for every 1 ≤ i ≤ n, then t and s are in the same class.

Efficient algorithms for computing a congruence closure [11] of the equalities in L over T .
Congruence closure equates terms t, t′ only if E |= t ≃ t′; we call such terms congruent. Hence,
a congruence closure induces the unique finest partition that is preserved by every model M of
L (i.e., the equivalences it induces are satisfied by every model of L).

Example 3. Suppose we are given the equalities E := y ≃ a ∧ f(y) ≃ b over the shared
signature Σs = {f, a, b}. The set of subterms is T := {a, b, y, f(y)} and the congruence closure
is {{y, a}, {f(y), b}}. However, a model may also interpret a and b to be equal, in which case
it would induce a coarser partition where all terms are in the same class.

In general, we consider congruence preserving partitions induced by models rather than the
finest partition induced by a congruence closure to facilitate combining EUF projection with
an arithmetic projection as we do later. Namely, when EUF is combined with LIA, we need
to consider equalities and disequalities that are consistent with arithmetic constraints. We use
P computed from a model rather than E to refer to a set of equalities. Since P is induced by
a model M |= E, it is always the case that P |= E. We say that t and t′ are P-congruent if
P |= t ≃ t′.

Definition 1 (Representation function). For a congruence preserving partition P over T de-
fined using the signature Σps, and for Σs ⊆ Σps, define a representation function, repP as a
partial mapping from terms in T to equivalence class representatives in TΣs

. Fix an arbitrary
order (· ≺ ·) on terms (to ensure uniqueness). The mapping is defined inductively as follows,
for t′ ∈ T .

� If there exists t ∈ T ∩ TΣs
such that t, t′ are in the same partition then repP(t

′) is the
≺-minimal such t.

� Otherwise, if there exists t := f(t1, . . . , tn) ∈ T \ TΣs
such that t, t′ are in the same parti-

tion, f ∈ Σs, and for every i, rep(ti) is defined, then repP(t
′) = f(repP(t1), . . . , repP(tn))

for the ≺-minimal such t.

Note that whenever repP(t
′) is defined, then P |= t′ ≃ rep(t′). In the following, we simply

write rep instead of repP when P is understood from context.

Example 4. Let E := y ≃ b∧ f(y, a) ≃ f(a, y), where Σs = {a, b, f}. Then from a congruence
closure of E we obtain representatives rep(y) = b and rep(f(y, a)) = rep(f(y, a)) = f(a, b).

4

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

The following lemma is helpful in the sequel. In particular, it ensures that a representative
exists for every t′ ∈ T that is P-congruent to a term over Σs, even if the latter is not in T .
Since rep(t′) ∈ TΣs

(whenever it is defined) and P |= t′ ≃ rep(t′), this means that rep(t′) is
defined if and only if P |= t ≃ t′ for some t ∈ TΣs

.

Lemma 1. If P |= t ≃ t′ for t ∈ TΣs
and t′ ∈ T , then (i) each subterm of t is P-congruent to

some term in T , and (ii) rep(t′) is defined.

All proofs in this section are deferred to Appendix A.
We use representatives to project L to the shared vocabulary. The projection consists of

an equality projection and a disequality projection, both computed based on a congruence
preserving partition P.

Definition 2 (Equality Projection). Let M |= L and let P be the partition induced by M over
T . The equality projection rep=M (L) of L onto TΣs

with respect to M is defined as follows: If
t := f(t1, . . . , tn) ∈ T , f ∈ Σs and repP(ti) is defined for each ti, then rep=M (L) contains

f(repP(t1), . . . , repP(tn)) ≃ repP(t).

Note that Definition 2 implies that for every t ∈ T , if t ∈ TΣs
, then rep=M (L) contains

t ≃ rep(t). The base case is where t is a constant, i.e., a 0-ary function, in Σs. Furthermore,
rep=M (L) does not necessarily contain equalities from E that are already over TΣs . For example,
E can be a ≃ b, b ≃ c, but rep=M (L) is a ≃ b, a ≃ c.

Example 5. From the equalities in Example 3 and a model that only equates congruent terms,
we obtain the equality projection E′ := b ≃ f(a).

We next consider the disequalities determined by the partition. Projections for disequalities
are no longer uniquely determined, even in the context of a partition.

Example 6. The disequality g(a, b) ̸≃ g(c, d) for a, b, c, d ∈ Σs and g ∈ Σp implies a ̸≃ c∨b ̸≃ d.

We therefore define a notion of disequality certificate. It is a sufficient set of disequalities
that when preserved by a projection ensure that every model of the projection extends to a
model of the disequalities being certified.

Definition 3 (Disequality Certificate). Let P be a congruence preserving partition of T , and
let D′ ∈ T be a set of disequalities between terms in T that belong to different classes of P.
A disequality certificate, DCertP(D

′), for P and D′ is a set of disequalities closed under the
following rules:

� D′ ⊆ DCertP(D
′).

� For each (t ̸≃ t′) ∈ DCertP(D
′), for every f ∈ Σps, and matching applications f(t1, . . . , tn) ∈

T and f(t′1, . . . , t
′
n) ∈ T , such that f(t1, . . . , tn) is in the same class as t and f(t′1, . . . , t

′
n)

is in the same class as t′, there is an index i, such that ti and t′i belong to different classes,
and (ti ̸≃ t′i) ∈ DCertP(D

′).

Note that a disequality certificate always exists because P is congruence preserving. Con-
gruence ensures the existence of a distinguishing argument for matching function applications
that are disequal according to P. Disequality certificates are not necessarily unique because
there could be several choices for the index ti. We define the function DCertM (D′) for a model
M by using the partition P obtained from M and breaking ties by taking the smallest index i
where ti, t

′
i belong to different sets from P.

5

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

Example 7. Let M |= f(x) ≃ a ∧ f(y) ≃ b ∧ f(z) ≃ b ∧ a ̸≃ b, and P its induced partition,
then DCertP(a ̸≃ b) = {x ̸≃ y, x ̸≃ z, a ̸≃ b}.

Disequality certificates are needed for the original disequalities in D, but also for implicit
disequalities between conflicting terms:

Definition 4 (Conflicting Terms). Terms t, t′ ∈ T are conflicting in P if they belong to different
classes of P and they are both applications of the same function symbol, i.e., there exists f ∈ Σps

such that t = f(t′1, . . . , t
′
n) and t′ = f(t′1, . . . , t

′
n).

Disequalities between conflicting terms may arise even when D is empty, and need to be
taken into account in projections, as demonstrated by the following example.

Example 8. Let E := g(a) = b ∧ g(a′) = b′ for a, b ∈ Σs and g ∈ Σp. Then E implies
a ̸≃ a′ ∨ b ≃ b′. The disequality a ̸≃ a′ will be obtained from a disequality certificate for
g(a), g(a′) in a partition that assigns them to different classes.

Definition 5 (Disequality Projection). Let M |= L, where L = E ∧ D as before, and let P
be the partition induced by M over T . The disequality projection rep̸=M (L) of L onto TΣs with
respect to M is given by

rep̸=M (L) :=

{
repP(t) ̸≃ repP(t

′) | (t ̸≃ t′) ∈ DCertP(D ∪ C),
repP(t), repP(t

′) are both defined

}
where C is the set of all disequalities between conflicting terms in P.

When combined with the equality projection, the disequality projection results in a EUF
model projection:

Definition 6 (EUF Model Projection). Let L = E ∧D be a quantifier-free EUF conjunction
of equalities and disequalities over TΣps

with model M . A EUF model projection onto TΣs
is

defined as repM (L) := rep=M (L) ∧ rep̸=M (L).

Every model satisfying repM (L) can be adapted to a model that satisfies L and the same
set of equalities over TΣs

:

Lemma 2. Let L as above, M |= L, and M ′ |= repM (L). Then, there is a model M ′′, such
that M ′′ |= L and M ′′(t) = M ′(t) for every t ∈ TΣs

.

Note that M ′′ may interpret shared symbols differently than M ′, but both interpret terms
over the shared signature in the same way. For example, suppose that L := p(x), where p is a
shared predicate symbol and x is private. Then repM (L) = ⊤ (regardless of M). In particular,
a model M ′ that interprets p as an empty relation satisfies repM (L), yet it cannot be extended
to a model that satisfies p(x). It can, however, be adapted into a model M ′′ that satisfies p(x)
and agrees with M ′ on equalities between (the empty set of) shared terms by interpreting p as
a nonempty relation that includes the interpretation of x.

Since the set of EUF model projections of L is finite (as there are finitely many representa-
tives for T), we conclude the following.

Theorem 1 (Uniform Interpolation for EUF). Let L be a quantifier-free conjunction of EUF
literals. There is a finite set of conjunctions {Li} over TΣs

, such that

� L |=
∨

i Li.

6

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

� For every quantifier-free φ over Σs, L |= φ if and only if
∨

i Li |= φ.

Example 9. Take the following two formulas from [12]:

A : z1 ≃ a1 ∧ z2 ≃ a2 ∧ z3 ≃ f(a1) ∧ z4 ≃ f(a2) ∧
z5 ≃ a3 ∧ z6 ≃ a4 ∧ z7 ≃ f(a3) ∧ z8 ≃ f(a4)

B : z1 ≃ z2 ∧ z5 ≃ f(z3) ∧ f(z4) ≃ z6 ∧ b1 ≃ z7 ∧ z8 ≃ b2 ∧ b1 ̸≃ b2

The shared symbols Σs are {z1, . . . , z8, f}. The congruence closure over A does not introduce
new equalities, but allows to compute representatives over Σs. Thus,

rep(A) := z8 ≃ f(z6) ∧ z7 ≃ f(z5) ∧ z3 ≃ f(z1) ∧ z4 ≃ f(z2)

For B, DCert(b1 ̸≃ b2) includes z7 ̸≃ z8, and based on the congruence closure over B we obtain:

rep(B) := z7 ̸≃ z8 ∧ z1 ≃ z2 ∧ z5 ≃ f(z3) ∧ f(z4) ≃ z6

They are uniform (reverse) interpolants.

3 Arithmetic and Model-Based Witness Extraction

Linear integer arithmetic (LIA) admits quantifier elimination [32, 31]. This provides a tool for
computing a uniform interpolant. Given a LIA formula Ar[x, y⃗], quantifier elimination produces
a formula (

∨
i Ari[y⃗]) such that (

∨
i Ari[y⃗]) ≡ ∃x . Ar[x, y⃗]. Models can be used as a guide to

produce only the satisfiable Ari [25, 1]. The same procedure can produce witness terms for x,
that can be substituted into the original formula to eliminate x [26, 33]. Quantifier elimination
requires, beyond linear addition and inequalities, the use of a divisibility predicate (d | t) (d
divides t), where d is a positive integer value1 and t is a linear term. Witnesses use terms
(t div d) (the integer floor of t/d). Generally we consider a class of witness terms generated by
the following grammar

w ::= t | w + a | b · w | w div b (3.1)

where a, b are integer values, b is positive and divides the product of all values that appear an
original formula Ar, and t is a term in Ar.

Theorem 2 summarizes the main properties needed for our main results.

Theorem 2. For a formula Ar[x, y⃗] over LIA there is a finite set of projections ⟨wi, Ari⟩, such
that

∃x . Ar[x, y⃗] ≡
∨
i

Ar[wi[y⃗], y⃗] ≡
∨
i

Ari[y⃗] (3.2)

Furthermore, for each i, Ari |= Ar[wi[y⃗], y⃗] |= ∃x . Ar.
Let us assume that Ar is normalized such that all occurrences of x are isolated as l ≤ ax,

bx ≤ u, a | (bx+ s), where x ̸∈ l, u, s, a, b are positive integers. Then the terms wi are generated
by the grammar (3.1).

1We refer to interpreted arithmetic constants as values to distinguish them from uninterpreted arithmetic
constants (or variables).

7

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

Quantifier elimination, extracting witness terms and model-based quantifier elimination for
LIA have been well-studied. A self-contained proof of Theorem 2 is given in Appendix B.

Example 10. To illustrate the equivalence of (3.2) consider the formula ∃a . s ≤ 2a ≤ t from
the introduction. Projection produced the witness pairs ⟨t div 2, s ≤ t∧2 ↑ t⟩ and ⟨t div 2, s < t⟩.
The corresponding equivalences are:

(∃a . s ≤ 2a ≤ t) ≡ s ≤ 2(t div 2) ≤ t ≡ ((s ≤ t ∧ 2 ↑ t) ∨ s < t)

Substituting in witness terms into s ≤ 2a ≤ t results in just one formula because the witness
terms are the same in the two cases. On the other hand, our reference model-based projection
procedure uses two formulas depending on whether t is even or odd.

The shape of witness terms by (3.1) is justified by induction on witness terms produced by
projection, see Appendix B. The important property of the grammar for witness terms is that
it is closed under adding disequalities between witness terms and the variable they replace. For
example, an inequality x ̸≃ (t + a) div b is turned into an inequality x ≥ 1 + (t + a) div b or
x ≤ ((t+ a) div b)− 1 during projection based on how a model M shows disequality between x
and (t + a) div b. The lower or upper bound could be used in a new witness term. Then new
witness term is obtained from an old witness by adding or subtracting an offset.

4 EUFLIA

Theorems 1 and 2 establish that the quantifier free theories EUF and LIA separately admit
uniform quantifier-free interpolation. Their combination, on the other hand, does not enjoy
such a property.

Example 11. Consider the formula A := p(a) ∧ s < a < t from Example 1, where s, t, p are
shared and a is private. Independent of the model M satisfying A, a projection of s < a < t
takes the shape ⟨s + 1, s + 1 < t⟩. Substituting the witness s + 1 into p(a) produces the joint
projection p(s + 1) ∧ s + 1 < t for A. It is not a uniform interpolant, nor is it an interpolant
w.r.t. B := ¬p(s+1)∧ s+2 ≃ t. Recall that for both EUF and LIA uniform interpolants were
obtained by the (finite) disjunction of model-based projections. This example demonstrates that
for EUFLIA formulas, even though there are still finitely many (joint) projections, they do not
immediately give rise to interpolants.

Nevertheless, as we show here, it is possible to finitely compute interpolants over the com-
bined signature for every (reverse) interpolation problem A⇒ I, B ⇒ ¬I by carefully managing
projections and cores. In the remainder of the section, we formally define joint projections for
EUFLIA (Section 4.2), and show how they can be used to compute interpolants (Section 4.3).
The next section introduces a formal tool, purification, that allows us to treat compound terms
as constant symbols.

4.1 Purification

Purified formulas are of the form L ∧Defs, where L is a conjunction of literals where the only
terms of sort integer are uninterpreted constant symbols and Defs is a conjunction of equalities
v ≃ f(v⃗) that define the arithmetic constant symbol v using constant symbols v⃗ and function f
(which can be uninterpreted or arithmetical). In the sequel, we refer to uninterpreted constants
of sort integer as arithmetic constants. Such constants are considered as both LIA terms and
EUF terms.

8

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

Example 12. A normalized form of f(x) ≃ y+1∧p(g(x)) is v1 ≃ v2∧p(v3)∧v1 ≃ f(x)∧v2 ≃
y + 1 ∧ v3 ≃ g(x).

This format paves the way for theory local decomposition:

Definition 7 (Purified Normal Form). We say that a formula over EUFLIA is in purified
normal form if it is of the form Ar ∧ F , where Ar := LAr ∧DefsAr is a conjunction of literals
and definitions over LIA and F := LF ∧DefsF is a conjunction of literals and definitions over
EUF (potentially including uninterpreted arithmetic constants). The only symbols that may
appear in both Ar and F are (uninterpreted) arithmetic constants.

Example 13. The purified normal form of the Example 12 uses Ar := v1 ≃ v2 ∧ v2 ≃ y + 1,
F := p(v3) ∧ v1 ≃ f(x) ∧ v3 ≃ g(x). Alternatively, the equality v1 ≃ v2 could be part of F , or
be repeated in both F and Ar.

4.2 Joint Projection

The joint projection of EUFLIA combines arithmetic projection (Section 3) with EUF projec-
tion (Section 2). An outline of our method for joint projection of A in EUFLIA is as follows.
Each projection is computed through a sequence:

� Extract a satisfiable conjunction of literals Ar ∧ F that implies A and is purified; such
that Ar uses only arithmetical symbols and F constrains only uninterpreted symbols, and
such that Ar and F both contain enough equalities and disequalities over (uninterpreted)
arithmetic constants to ensure that models for the separate formulas can be combined.
Let M |= Ar ∧ F .

� Project each private arithmetic constant from Ar based on M , producing witness terms
w⃗ and formula Ar′ using the procedure from Section 3.

� Produce F1 by projecting private functions and constants from F based on M using the
procedure from Section 2, except for private arithmetic constants that appear in Ar and
are temporarily added to the shared vocabulary Σs.

� Substitute the resulting witness terms w⃗ for each private arithmetic constant in F1, pro-
ducing F ′.

� The resulting projection of A is Ar′ ∧ F ′.

It is important not to under-constrain Ar when performing projection. For example, suppose
A = Ar ∧ F for F = f(x) ≃ a ∧ f(y) ≃ b ∧ a ̸≃ b, where x, y are arithmetic constants. The
constraint x ̸≃ y is entailed by F . If it is not included in Ar when x, y are projected, it could
result in the witness 0 for both x and y and resulting in a joint projection of A that is not
satisfiable. A similar phenomenon may happen with equalities. To ensure that projections
of Ar do not contradict F we therefore strengthen Ar with equalities and disequalities over
arithmetic constants that appear in both Ar and F based on a model M .

Definition 8 (EUF completion). Let M |= Ar ∧ F , and let D′ be the set of all disequalities
in F together with disequalities between conflicting terms in the partition induced by M on the
terms of F (see Definition 4). Let a⃗ denote the private arithmetic constants that appear in both
Ar and F . The EUF completion of Ar w.r.t. M and F , denoted UM (Ar, F), consists of the
following equalities and disequalities over a⃗:

9

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

� {ai ̸≃ aj | t ̸≃ t′ ∈ DCertM (D′) ∧M(ai) = M(t) ∧M(aj) = M(t′)}, and

� {ai ≃ aj |M(ai) = M(aj)}.

EUF completion provides a sufficient condition for solutions from projecting Ar not to
contradict F .

Lemma 3 (Theory Combination). Let M |= Ar ∧ F and let ⟨w⃗, Ar′⟩ be a projection of Ar ∧
UM (Ar, F). Then w⃗ ≃ a⃗ is satisfiable with F .

We can now formalize the definition of Joint Projection that was sketched in the outline.

Definition 9 (Joint Projection). Given a formula A and a model M |= A such that A := Ar∧F
is in purified normal form, with private arithmetic constants a⃗, let ⟨w⃗, Ar′⟩ be witness terms
and a projection onto Σs for Ar ∧ UM (F,Ar) and M based on Theorem 2 and let F1 be a
projection onto Σs ∪ a⃗ for F and M using Theorem 1, and let F ′ := F1[w⃗]. Then Ar′ ∧ F ′ is a
joint projection of A based on M .

Lemma 4 (Projection preserves satisfiability). Let M |= Ar ∧ F and let Ar′ ∧ F ′ be a corre-
sponding joint projection. Then Ar′ ∧ F ′ is satisfiable. Further, if M ′ |= Ar′ ∧ F ′, then there
exists a model M ′′ such that M ′′ |= Ar ∧ F , and M ′′(t) = M ′(t) for every term t ∈ TΣs

.

4.3 Interpolation for EUFLIA

We generate interpolants for EUFLIA following the recipe of Algorithm 1. At a high level we
iteratively compute model-based projections proj1, proj2, . . . of A, and accumulate their cores
core1, core2, . . . for B as disjuncts in I. As illustrated by Example 11, a naive implementa-
tion does not work. A summary of sufficient criteria for ensuring progress, and ultimately
termination is:

Consistent projections Projections of A need to be consistent with ¬I. Ensuring this re-
quires strengthening A before projection.

Minimal cores Projection of A and core extraction w.r.t B produces minimal cores corei[w⃗i],
obtained from corei [⃗a] by substituting witnesses w⃗i for a⃗.

Finite basis The cores corei [⃗a] (before witness terms are substituted) are drawn from the
finite set of projections of A.

Distinct witnesses An unbounded sequence of cores contains an unbounded set of necessarily
distinct witness terms: they contain different offset values and can therefore not be equal.

Essential witnesses Uses of f(wij) in projections are essential : replacing f(wij) with a fresh
variable and projecting makes the projection consistent with B.

Finite arithmetic projections There is a finite set of distinct other occurrences of wij (not
inside an uninterpreted function) in arithmetical literals.

Projections that are consistent with ¬I are needed to ensure progress. The idea with forcing
enough distinct wij is that B cannot block an arbitrary number of different f(wij). It only
contains a finite set of subterms with f . If there is an unbounded number of distinct wij then
for some core literal the occurrence of f(wij) is indistinguishable from a fresh variable when
it comes to B. If the occurrences of f(wij) are essential and indistinguishable from a fresh

10

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

variable, corei cannot be a minimal core. This is a contradiction. The other possible scenario
for an infinite set of distinct wij is when they occur exclusively in arithmetic constraints. We
describe an approach to ensure this does not happen either. We now examine conditions for
enforcing the above criteria.

4.3.1 Consistent Projections and Distinct Witnesses

In contrast to the theories EUF and LIA in isolation, Example 11 illustrates that projecting
A with respect to models of A ∧ ¬I may produce projections that are inconsistent with ¬I,
hindering progress of the interpolation procedure. To avoid that problem, we track equalities
between arithmetic constants from a⃗ and witness terms w⃗ during projection. For this purpose
we define

Definition 10 (Witness Protection Set). For a model M of
∧

i ¬corei select one literal that is
satisfied by M from each clause ¬corei. The set of these literals is called Ls. For a sequence
of witness terms w⃗i for private arithmetic constants a⃗ among the selected literals define the
witness protection set D as

D :=
∧
i,j

{aj ̸≃ wij | wij ∈ w⃗i, f(wij) a subterm in Ls,M(aj) ̸= M(wij)}.

Example 14. For A and proj := p(s+1)∧s+1 < t from Example 11, a model M ′ |= A∧¬proj
must be such that M ′(a) ̸= M ′(s + 1), introducing the disequality a ̸≃ s + 1 to the witness
protection set. When we apply the second projection on A∧ a ̸≃ s+1 rather than on A, we are
guaranteed to obtain a different projection, e.g., proj2 := p(s+ 2) ∧ s+ 2 < t.

Adding the witness protection set when computing projections ensures progress of Algo-
rithm 1, while also ensuring that models of the projection can be adapted to models of A ∧ ¬I
where ¬I =

∧
i ¬corei[w⃗i].

Lemma 5 (Witness Protection). Let M |= A∧
∧

i ¬corei[w⃗i], where ¬corei [⃗a] is a negated core
based on projections from A and ¬corej [w⃗j] for j < i and uses only subterms from Σsa. Assume
Ar′ ∧F ′ is a projection with respect to M of A∧D, where D is a witness protection set. Then
satisfiability of B ∧Ar′ ∧ F ′ implies satisfiability of B ∧A ∧

∧
i ¬corei[w⃗i].

Due to the witness protection sets, the projections computed by Algorithm 1 may introduce
new terms. This makes the sequence of projections potentially infinite. For example, in the
case of A := p(a) ∧ s < a < t, iteratively computing projections can yield the infinite sequence
{p(s+ i)∧ s+ i < t}i∈N, which is in line with the property that a uniform interpolant does not
exist for A.

Next we establish that for every B only a finite set of terms need to be introduced. Thus,
considering cores with respect to B ensures that Algorithm 1 terminates.

Example 15. For A := p(a) ∧ s < a < t and B := ¬p(s+ 1) ∧ s+ 2 ≃ t, the core of the first
projection proj1 := p(s+1)∧ s+1 < t is core1 := p(s+1), and the core of the second projection
proj2 := p(s+2)∧s+2 < t is core2 := s+2 < t, yielding the interpolant I := p(s+1)∨s+2 < t.

We first formally define the projections and core sequences produced by the interpolation
algorithm and establish partial correctness.

Definition 11 (Projection/Core Sequences). Let A1 := Ar∧F be a EUFLIA formula, and for
i ≥ 1,

11

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

� Mi a model of Ai,

� Di a witness protection set for Ai (based on Mi and witness terms w⃗1, . . . , w⃗i−1),

� A′
i a projection of A1 ∧Di (based on Mi),

� corei ⊆ A′
i, and

� Ai+1 := Ai ∧ ¬corei.

Then A′
1, A

′
2, . . . is a projection sequence and core1, core2, . . . its corresponding core sequence.

They are defined together so we refer to the sequences as a projection/core sequence.

Lemma 4 directly implies that the projections are always contradictory with B provided
A ∧B is unsatisfiable. Thus, a terminating sequence of cores produces a correct interpolant.

Corollary 1 (Partial Correctness). If a projection and core sequence terminates with Ak un-
satisfiable, where the sequence of cores is core1, . . . , corek, then I := core1 ∨ core2 ∨ . . . ∨ corek
forms a reverse interpolant such that A⇒ I and B ⇒ ¬I.

Next we set out to establish termination of the interpolation algorithm. The set of witness
terms are not directly limited, but if a projection/core sequence produces an infinite set of
witness terms, it contains an infinite subset of distinct witnesses.

Lemma 6 (Term Diversification). For an infinite sequence of witness terms w⃗1, w⃗2, . . ., origi-
nating from a projection/core sequence, there is an index 0 ≤ j < |w⃗| into the tuple w⃗, such that
w1j , w2j , w3j , . . . contains an infinite subset that has distinct values under every interpretation.

Recall that witness terms are substituted for private symbols in A. We consider the special
case where a private symbol a occurs under f(a); generalization to nested terms and multi-arity
functions is straight-forward. Then following substitution the projection contains terms of the
form f(wk). These terms may collide with terms in B in the sense that f cannot be given an
interpretation on f(wk) independently of satisfying B. But when B is quantifier free formula
over EUFLIA, this situation is only possible for a finite set of witness terms. Lemma 7 formulates
a condition that ensures interpretations of f(wk) can eventually be defined independently of B.

Lemma 7 (Compactness). Let B be a satisfiable quantifier-free formula over EUFLIA, t be
a fixed term, and w1, . . . , wk, . . . be an infinite set of necessarily distinct witness terms. There
exists a k such that B ∧ t ≃ f(wk) is satisfiable.

It is important that B is quantifier free. If B is quantified, the compactness lemma no longer
holds. For example B could be ∀x . f(x) ̸≃ 0.

4.3.2 Finite Basis

The construction of the witness protection set from Lemma 5 contributes with arithmetic
inequalities for projection. They are based on a finite set of terms t and a finite set of base
projections of the original formulaA. The projections are computed by using successively tighter
bounds for variables. Projection incorporates these tighter bounds by producing witness terms
with increasing offsets, but over a fixed basis of projections.

12

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

4.3.3 Essential witnesses

The point of generating distinct witness terms was to ensure that the interpretation of f(wij)
is eventually unconstrained by B and can therefore be treated as a fresh variable. Fresh vari-
ables can be projected recursively, such that cores do not depend on f(wij). Cores are not
automatically independent of f(wij).

Example 16. Let A := a ≃ f(x) ≃ b and B := a ̸≃ b. Each new projection in the sequence
a ≃ f(wi) ∧ f(wi) ≃ b, with wi := i, is unsatisfiable with B, while the negated cores ¬(a ≃
f(wi) ∧ f(wi) ≃ b) remain satisfiable with A, resulting in an infinite projection (and core)
sequence.

Example 17. A := 4 ↑ (2f(a) + s) and B := 4 ↑ (s+ 3), where a is a private variable. Every
instantiation 4 ↑ (2f(wi) + s) is contradictory with B. The consequence 2 ↑ s of A already
contradicts B.

One way to deal with non-essential witnesses is to augment each projection that contains
f(wij) with a projection where these occurrences are treated as fresh variables. If f(wij) is
non-essential, the projection that does not contain f(wij) is used for the core. We therefore
establish termination only for essential projection/fair core sequences, where

Definition 12 (Essential Projection/Fair Core Sequences). An essential projection/fair core
sequence A′

i does not contain an infinite number of non-essential witness terms and does not
infinitely avoid all minimal cores.

4.3.4 Finite arithmetic projections

The witness protection set D from Definition 10 is constructed by selecting terms that occur
under uninterpreted functions and used by a projection. If the witness terms f(wij) remain
essential for an unbounded set of wij , we noted that occurrences of f(wij) could be treated
as fresh variables and themselves be projected paving way for cores without f(wij). Without
occurrences of f(wij) the witness protection set D does not contain disequalities aj ̸≃ wij .

We have now detailed relevant criteria for termination and claim:

Corollary 2 (Total Correctness). If A∧B is unsatisfiable, then every essential projection/fair
core sequence terminates with a set of cores, core1, . . . , corek, and I := core1∨core2∨ . . .∨corek
forms a reverse interpolant such that A⇒ I and B ⇒ ¬I.

5 Related work

Interpolation is essential for most infinite-state model checking algorithms. It is used for pred-
icate discovery in predicate abstraction, lemma generalization in IC3-style algorithms, and
construction of bounded safety proofs in Interpolation-based Model Checking (IMC). Efficient
interpolation generation has received ample attention from the research community, ranging
from the basic problem of interpolation construction, to interpolation modulo additional struc-
tural constraints (e.g., quantifier-free, strength, allowed numerical coefficients, etc.)

Starting from the pioneering work of McMillan [27, 28] most interpolation algorithms are
proof-based. An automated theorem prover is required to produce a refutation proof that is
traversed to extract the interpolant. This is feasible, if an interpolant can be constructed in
polynomial time in the size of the proof.

13

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

While theoretically attractive, proof-based interpolation comes with its own hurdles. First,
it requires efficient proof logging. Second, proof calculi may not support feasible interpola-
tion [29]. Thus, interpolation generation might be as complex as satisfiability checking. While
interpolation is a widely requested feature, it is supported only by very few efficient SMT
solvers: MathSAT5 [8], and SMTInterpol [7] support interpolation for EUFLIA, Princess
supports interpolation for LIA and handles functions by translation into predicates [3], and
OpenSMT [21] supports interpolation for EUFLRA.

Finally, a tight coupling between proofs, interpolation, and solving heuristics is a source of
brittleness. Any change to the core solver might lead to proof calculi that are difficult to in-
terpolate, breaking interpolation in potentially fundamental ways. A proof-based interpolation
procedure [29] has been deprecated form Z3 for this reason. In contrast, we present a proof-less
procedure that combines proof search and interpolation, uses only the conventional SMT solver
interface, and only requires support for unsat cores.

Quantifier elimination provides an easy way to interpolate LRA. Thus, given two LRA
formulas A∧B, an interpolant can be computed by finding an unsat core Â of A and existentially
eliminating all local symbols from Â. Proof-based procedures further use refutation proofs of
A ∧ B ⊢ ⊥ to speed up quantifier elimination. EUF does not admit quantifier elimination,
but admits uniform interpolation. A uniform interpolation procedure similar to LRA, uses
so called cover instead of quantifier elimination [16]. EUFLRA is the most widely supported
interpolating combined theory. Cimatti et al. [9] provide a great overview of this and other
similar combinations in the context of SMT. The recent exposition [13] establishes that the
combination of two convex theories have uniform interpolation and notes that the combination
of EUF with integer difference logic does not have uniform interpolants similar to our example.

Interpolation for LIA is more complex. First, LIA, under its usual signature, does not
admit quantifier elimination. One approach, e.g., [28, 29, 23], is to avoid this issue by allow-
ing interpolants to be quantified. Another, is to extend the signature to include divisibility
predicates as in [3] and in our paper. Unfortunately, this might lead to interpolants that are
exponential in the size of the proof. Other extensions to the signature are possible. For ex-
ample, [15] suggests adding ceiling function instead of divisibility predicates. Interpolation for
EUFLIA is complicated even further since it does not admit quantifier elimination nor uniform
interpolation, even in the signature extended with divisibility predicates. A detailed overview
of a proof-based interpolation for EUFLIA is given in [6]. While many tools claim to support
EUFLIA interpolation, the degree of that support is hard to evaluate. Interpolation for many
other theories can be reduced to that of EUFLIA [23]. In fact, we hope to report on extend-
ing our procedure to extensional arrays in future work using a reduction approach and taking
inspiration from [20, 14].

Interpolation is naturally reduced to finding solutions for satisfiability of recursion-free Con-
strained Horn Clauses (CHC) [17]. This is currently the suggested method of computing in-
terpolants in Z3. Recursion-free (and recursive) CHCs are handled by Spacer [24] engine
of Z3 that supports CHC over the combined theory of LIA and Arrays. Spacer constructs
quantifier free interpolants for LIA, but quantified interpolants for the combination of LIA and
Arrays [18]. This is sufficient to encode interpolation for EUF, but not for EUFLIA.

6 Summary

We presented a first fully model-based interpolation procedure for EUFLIA. In future work
we hope to explore integrating the procedure with combinations of quantifiers and theories,
noteworthy, arrays, algebraic data-types, non-linear arithmetic and bit-vectors. Model-based

14

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

methods allow to dispense with proof objects, but a good integration requires an engine that
finds sufficiently general models to avoid enumerating superfluous cubes.

References

[1] N. Bjørner and M. Janota. Playing with quantified satisfaction. In A. Fehnker, A. McIver,
G. Sutcliffe, and A. Voronkov, editors, 20th International Conferences on Logic for Programming,
Artificial Intelligence and Reasoning - Short Presentations, LPAR 2015, Suva, Fiji, November
24-28, 2015., volume 35 of EPiC Series in Computing, pages 15–27. EasyChair, 2015.

[2] M. P. Bonacina and M. Johansson. On interpolation in automated theorem proving. J. Autom.
Reasoning, 54(1):69–97, 2015.

[3] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An interpolating sequent calculus for
quantifier-free presburger arithmetic. J. Autom. Reasoning, 47(4):341–367, 2011.

[4] R. Bruttomesso, S. Rollini, N. Sharygina, and A. Tsitovich. Flexible interpolation with local
proof transformations. In L. Scheffer, J. R. Phillips, and A. J. Hu, editors, 2010 International
Conference on Computer-Aided Design, ICCAD 2010, San Jose, CA, USA, November 7-11, 2010,
pages 770–777. IEEE, 2010.

[5] H. Chockler, A. Ivrii, and A. Matsliah. Computing interpolants without proofs. In A. Biere,
A. Nahir, and T. E. J. Vos, editors, Hardware and Software: Verification and Testing - 8th In-
ternational Haifa Verification Conference, HVC 2012, Haifa, Israel, November 6-8, 2012. Revised
Selected Papers, volume 7857 of Lecture Notes in Computer Science, pages 72–85. Springer, 2012.

[6] J. Christ. Interpolation Modulo Theories. PhD thesis, Albert-Ludwigs-Universität Freiburg, 2015.

[7] J. Christ, J. Hoenicke, and A. Nutz. Smtinterpol: An interpolating SMT solver. In A. F. Donaldson
and D. Parker, editors, Model Checking Software - 19th International Workshop, SPIN 2012,
Oxford, UK, July 23-24, 2012. Proceedings, volume 7385 of Lecture Notes in Computer Science,
pages 248–254. Springer, 2012.

[8] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The mathsat5 SMT solver. In
N. Piterman and S. A. Smolka, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, volume 7795 of Lecture Notes in Computer Science, pages 93–107. Springer, 2013.

[9] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of craig interpolants in satisfiability
modulo theories. ACM Trans. Comput. Log., 12(1):7:1–7:54, 2010.

[10] L. M. de Moura and N. Bjørner. Model-based theory combination. Electr. Notes Theor. Comput.
Sci., 198(2):37–49, 2008.

[11] P. Downey, R. Sethi, and R. Tarjan. Variations on the common subexpression problem. Journal
of the ACM, 27(4):758–771, 10 1980.

[12] A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli. Ground interpolation for the theory of
equality. In S. Kowalewski and A. Philippou, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, volume 5505 of Lecture Notes in Computer Science, pages 413–427. Springer,
2009.

[13] S. Ghilardi and A. Gianola. Interpolation and uniform interpolation in quantifier-free fragments
of combined first-order theories. Mathematics, 10(3), 2022.

[14] S. Ghilardi, A. Gianola, and D. Kapur. Interpolation and amalgamation for arrays with maxdiff.
In S. Kiefer and C. Tasson, editors, Foundations of Software Science and Computation Structures
- 24th International Conference, FOSSACS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -

15

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

April 1, 2021, Proceedings, volume 12650 of Lecture Notes in Computer Science, pages 268–288.
Springer, 2021.

[15] A. Griggio, T. T. H. Le, and R. Sebastiani. Efficient interpolant generation in satisfiability modulo
linear integer arithmetic. Logical Methods in Computer Science, 8(3), 2010.

[16] S. Gulwani and M. Musuvathi. Cover algorithms and their combination. In S. Drossopoulou,
editor, Programming Languages and Systems, 17th European Symposium on Programming, ESOP
2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4960 of Lecture Notes in
Computer Science, pages 193–207. Springer, 2008.

[17] A. Gupta, C. Popeea, and A. Rybalchenko. Solving recursion-free horn clauses over LI+UIF.
In H. Yang, editor, Programming Languages and Systems - 9th Asian Symposium, APLAS 2011,
Kenting, Taiwan, December 5-7, 2011. Proceedings, volume 7078 of Lecture Notes in Computer
Science, pages 188–203. Springer, 2011.

[18] A. Gurfinkel, S. Shoham, and Y. Vizel. Quantifiers on demand. In S. K. Lahiri and C. Wang, edi-
tors, Automated Technology for Verification and Analysis - 16th International Symposium, ATVA
2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes in
Computer Science, pages 248–266. Springer, 2018.

[19] K. Hoder, L. Kovács, and A. Voronkov. Playing in the grey area of proofs. In J. Field and
M. Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 259–272. ACM, 2012.

[20] J. Hoenicke and T. Schindler. Efficient interpolation for the theory of arrays. In D. Galmiche,
S. Schulz, and R. Sebastiani, editors, Automated Reasoning - 9th International Joint Conference,
IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 549–565. Springer,
2018.

[21] A. E. J. Hyvärinen, M. Marescotti, L. Alt, and N. Sharygina. Opensmt2: An SMT solver for multi-
core and cloud computing. In N. Creignou and D. L. Berre, editors, Theory and Applications of
Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8,
2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 547–553. Springer,
2016.

[22] D. Jovanovic and C. Barrett. Sharing is caring: Combination of theories. In C. Tinelli and
V. Sofronie-Stokkermans, editors, Frontiers of Combining Systems, 8th International Symposium,
FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011. Proceedings, volume 6989 of Lecture
Notes in Computer Science, pages 195–210. Springer, 2011.

[23] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures. In M. Young and
P. T. Devanbu, editors, Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006,
pages 105–116. ACM, 2006.

[24] A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for recursive programs.
In A. Biere and R. Bloem, editors, Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 17–34. Springer,
2014.

[25] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke. Automatic Abstraction in SMT-Based
Unbounded Software Model Checking. In CAV, pages 846–862, 2013.

[26] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthesis. In B. G. Zorn and
A. Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 316–
329. ACM, 2010.

16

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

[27] K. L. McMillan. Interpolation and sat-based model checking. In W. A. H. Jr. and F. Somenzi,
editors, Computer Aided Verification, 15th International Conference, CAV 2003, Boulder, CO,
USA, July 8-12, 2003, Proceedings, volume 2725 of Lecture Notes in Computer Science, pages
1–13. Springer, 2003.

[28] K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1):101–121, 2005.

[29] K. L. McMillan. Interpolants from Z3 proofs. In P. Bjesse and A. Slobodová, editors, Interna-
tional Conference on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA,
October 30 - November 02, 2011, pages 19–27. FMCAD Inc., 2011.

[30] K. L. McMillan. Interpolation and model checking. In E. M. Clarke, T. A. Henzinger, H. Veith,
and R. Bloem, editors, Handbook of Model Checking, pages 421–446. Springer, 2018.

[31] T. Nipkow. Linear quantifier elimination. J. Autom. Reasoning, 45(2):189–212, 2010.

[32] W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. In J. L. Martin, editor, Proceedings Supercomputing ’91, Albuquerque, NM, USA, Novem-
ber 18-22, 1991, pages 4–13. ACM, 1991.

[33] A. Reynolds, T. King, and V. Kuncak. Solving quantified linear arithmetic by counterexample-
guided instantiation. Formal Methods in System Design, 51(3):500–532, 2017.

A EUF

We prove the lemmas where P is obtained from a congruence closure of equalities E. This
reduces the need to additionally refer to P. A version of the proofs for arbitrary partitions is
obtained by sprinking P in opportune places instead of E.

Of Lemma 1. We first establish by induction on the depth of t that each subterm of t has
to be to congruent to some term in T . The base case is where t is a 0-ary function symbol
(representing a constant), and has no subterm. For the induction case, if t ∈ T , the claim holds
trivially (since T is closed under subterms). Otherwise, assume t is of the form f(t1, . . . , tn)
and that E |= t ≃ t′ for some term t′ ∈ T , i.e., t is congruent to some term in T . Suppose some
subterm ti is not congruent to any term in T . We can then create an interpretation of f that
distinguishes f(t1, . . . , tn) from every term in T , while still satisfying E. This contradicts the
assumption that E |= t ≃ t′ for some t′ ∈ T .

We now show that rep(t′) is defined, again by induction on the depth of t. If t ∈ T , the
claim holds trivially. Otherwise, t = f(t1, . . . , tn) where f ∈ Σs, and ti ∈ TΣs , and by Item i,
E |= ti ≃ t′i for some t′i ∈ T . Therefore, by the induction hypothesis rep(t′i) is defined for every
i, and hence so is rep(t′).

Lemma 8. Let E be a set of equalities over Σps, and let E′ := rep(E). If E |= t ≃ t′ for
t ∈ TΣs

, t′ ∈ T then E′ |= t ≃ rep(t′).

Note that by Lemma 1, rep(t′) is necessarily defined for t′ as in the lemma.

Of Lemma 8. Let E′ be given as rep(E). We establish the lemma by induction on the depth
of t. Assume the hypothesis of the lemma: E |= t ≃ t′. Let t be of the form f(t1, . . . , tn),
where f ∈ Σs and ti ∈ TΣs , and assume, by Lemma 1(i), that for every ti, E |= ti ≃ t′i for some
t′i ∈ T . By Lemma 1(ii), rep(t′i) is defined. Hence, E |= ti ≃ rep(t′i) (since E |= t′i ≃ rep(t′i)).
Then the equivalence class for t′ must contain a term congruent to f(rep(t′1), . . . , rep(t

′
n)).

Otherwise, create an interpretation of f that distinguishes t from t′, which would contradict
our hypothesis. Thus, E′ contains the equality f(rep(t′1), . . . , rep(t

′
n)) ≃ rep(t′), and therefore

the equality f(t1, . . . , tn) ≃ rep(t′) can be derived from E′.

17

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

Of Lemma 2. We constructM ′′ fromM ′ by first ensuringM ′ andM ′′ agree on all terms in TΣs .
For equalities in P (recall that these are equalities over T) that are not implied by rep=M (L),
we update, if necessary, M ′ for symbols in Σp to enforce them, while still satisfying D.

This is done as follows. Let ≡M ′ be the equivalence relation over TΣs
induced by M ′. Let

R be the minimal congruence relation on TΣs ∪ T such that P ∪ ≡M ′ ⊆ R (we abuse notation
and view P as a relation over terms). For the sake of the proof, we extend the definition
of repP(t) to terms in TΣs

\ T , and define repP(t) for such terms to be t. (Thus, the only
terms for which repP(t) may be undefined are terms in T \ TΣs

.) We first claim that the
only equalities in R \ (P ∪ ≡M ′) are t1 ≃ t2 such that (i) repP(t1) and repP(t2) are both
defined, and (ii) (repP(t1), repP(t2)) is already in ≡M ′ . To prove this, we recall that we can
obtain R by an algorithm that merges classes based on transitivity (i.e., when they have a
common term) and subsequently based on congruence. Applications of the transitivity rule
on P ∪ ≡M ′ preserve the claim by induction on the length of the derivation. The base case
consists of applying transitivity directly on P ∪ ≡M ′ , where the proof relies on the property
that if (t, t′) ∈ P and t ∈ TΣs

then repP(t
′) is defined (Lemma 1). The induction step is trivial.

Next, we consider equalities obtained by merging classes based on the congruence rule (starting
from the classes derived by the transitivity rule, as above). We show that the congruence rule
cannot merge any (new) classes. Assume to the contrary that congruence merges the classes
of t = f(t1, . . . , tn) and t = f(t′1, . . . , t

′
n), and let these classes be the first to be merged by

congruence. If at least one of t, t′ is in TΣs
, then f is shared, and (repP(ti), repP(t

′
i)) ∈≡M ′

for every i, hence the same congruence is already applicable w.r.t. ≡M,′ . If t, t′ are both in
T \ TΣs , then they are conflicting terms in P, and their witness arguments ti, t

′
i must have

been merged by transitivity. However, this means that repP(ti) and repP(t
′
i) are defined, and

(repP(t1), repP(t2)) ∈≡M ′ , in contradiction to the fact that M ′ is a model of rep̸=M (L), which
includes the disequality repP(t1) ̸≃ repP(t2).

The above claim implies that projecting R to TΣs
yields ≡M ′ , i.e., the only equalities that

are added are over terms not in TΣs
. The interpretation of Σp in M ′′ is determined based on R.

Since P |= E and P ⊆ R, we have that M ′′ |= E . Finally, we can verify that all disequalities

in D are satisfied. First, disequalities in rep̸=M (D) are not compromised, since R introduces no

new equalities over TΣs . Second, every disequality in DCertM (D), but not in rep ̸=M (D), will
not be in R since R only adds equalities between terms that have representatives.

Of Theorem 1. We are given L a conjunction of equalities and disequalities over Σps. From
definition 6 construct a UF model projection Li := rep(E) ∧ repMi

(D), given a model Mi such
that Mi |= L. There are only finitely many possible repMi

(D) because the set of terms T over
L is finite. We can now check that the resulting formulas Li := rep(E) ∧ repMi

(D) satisfy
the conditions of the lemma. The first condition follows directly because each model of L is
responsible for constructing some Li that is satisfied by that model. This also automatically
establishes that

∨
i Li |= φ implies L |= φ. So assume that L |= φ. We want to establish that

Li |= φ for every Mi. That is, rep(E) ∧ repMi
(D) |= φ for every model Mi |= L. Lemma 2

established that a model M ′ of rep(E) ∧ repMi
(D) ∧ ¬φ can be adapted to a model M ′′ of

E ∧D that agrees with M ′ on all symbols in ¬φ (since φ is quantifier-free). This contradicts
the assumption that L |= φ.

B Arithmetic

of Theorem 2. We prove this property constructively by introducing model-based witness ex-
traction, Mbw, for a set of literals satisfied by a given model M . The result of Mbw from a

18

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

model M is a witness term t[y⃗] and another set of literals that is satisfied by M and implies
Ar[t[y⃗], y⃗]. The definition of Mbw, provided in Figure 1, partitions models of Ar into a finite set
of equivalence classes corresponding to generated projections. This ensures that the disjunction
of generated projections is equivalent to ∃x . Ar[x, y⃗].

Mbw(M,x,⊤) = ⟨0,⊤⟩
Mbw(M,x, ax ̸≃ t ∧ L) = Mbw(M,x, t+ 1 ≤ ax ∧ L) if M(ax) > M(t)

Mbw(M,x, ax ̸≃ t ∧ L) = Mbw(M,x, ax ≤ t− 1 ∧ L) if M(ax) < M(t)

Mbw(M,x,
∧
i

ti ≤ aix) = ⟨(t0 + a0 − 1) div a0,
∧
i

ait0 ≥ a0ti⟩

if M(ait0) ≥M(a0ti),∀i
Mbw(M,x,

∧
j

bjx ≤ sj) = ⟨s0 div b0,
∧
j

bjs0 ≤ b0sj⟩

if M(bjs0) ≥M(b0sj),∀j

Mbw

(
M,x,

∧
i ti ≤ aix ∧∧
j bjx ≤ sj

)
=

〈 (t0 + a0 − 1) div a0,∧
i tia0 ≤ t0ai

∧
∧

j resolve(M, t0 ≤ a0x, bjx ≤ sj)

〉
ifM(t0/a0) ≥M(ti/ai),∀i.

Mbw(M,x,

n∧
i=1

di | (aix+ ti) ∧ L) = ⟨dp+ u, L′ ∧
n∧

i=1

di | (aiu+ ti)⟩

where

⟨p, L′⟩ = Mbw(M,x′, L[u+ d · x′/x]),

d = lcm(d1, . . . , dn), u = M(x) mod d

Figure 1: Rules for Model-based witness extraction.

The predicate resolve(M, t ≤ ax, bx ≤ s) is defined by the cases:

bt+ (a− 1)(b− 1) ≤ as if (a− 1)(b− 1) ≤M(bt− as)
bt ≤ as ∧ a|(t+ d) ∧ b(t+ d) ≤ as) if b ≥ a, d := M(−t) mod a
bt ≤ as ∧ b|(s− d) ∧ bt ≤ a(s− d) ow (a > b, d := M(s) mod b)

Intuitively, resolve ensures that the lower and upper bounds for x are sufficiently separated. The
corresponding resolution rule for linear real arithmetic is of course much simpler: resolve(M, t ≤
x, x ≤ s) = t ≤ s when x is a variable of sort Real. We do not consider the case of mixed integer
real linear arithmetic in this paper. For integer arithmetic we distinguish the cases where s and
t are far apart and the case where they are close and x has to align with the values allowed by
the coefficients a, b.

Model-based witness extraction extends to a set of variables, e.g., let ⟨wx, L
′⟩ := Mbw(M,x,L), ⟨wy, L

′′⟩ :=
Mbw(M,y, L′), and w′

x := wx[y 7→ wy], then Mbw(M,xy, L) := ⟨w′
xwyy, L

′′⟩. It can be applied
to formulas in negation normal form by setting L to be a subset of literals that are true in M
and imply the negation normal form formula.

19

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

C Combination

of Lemma 4 - idea. A model of the projection is adapted to a model of the original formula by
setting the interpretation of eliminated symbols a⃗ to the values of the corresponding witness
terms w⃗. It is adapted also to an interpretation of private uninterpreted symbols that satisfies
the same partition as the model M used to compute the projection (as in Lemma 2). To
establish that M ′ can be adapted to satisfy the original formula note that EUF completion
ensures that w⃗ preserves equalities and disequalities required for satisfying F ′, and that Ar′ is
not under-constrained with respect to F . Conversely, F ′ is not under-constrained with respect
to Ar since it is computed based on the partition induced by M and the witness terms w⃗. Thus,
it is consistent with all equalities and disequalities enforced by Ar′ and therefore also Ar.

of Lemma 5 - idea. By the way projection formulas are created from a model M , a model of the
projection Ar′ ∧ F ′ evaluates subterms over Σs in ¬corei[w⃗i] according to M . The non-shared
arguments to functions satisfy the same disequalities as M . Note that corei was obtained from
literals that occur in projections of A and corej , for j < i. In particilar, since D is implied by
the projection it satisfies the disequalities from D. An uninterpreted function f(aj) that occurs
in corei [⃗a] with argument aj ∈ a⃗ is then given an interpretation for f(wij). The argument wij

is distinct from variables in a⃗ whenever M requires it and therefore the interpretation of f at
f(wij) is unconstrained by a⃗ and can be adjusted to follow how M satisfied each ¬corei[w⃗i].
The same argument applies to nested occurrences of uninterpreted functions, such as f(g(aj)),
and to functions of arity greater than one.

of Lemma 6. Assume we are given an infinite projection/core sequence A′
i/corei. A model

Mi |= Ai, must satisfy the negation of at least one literal in each core. This is either the
negation of a literal from Ar′i or the negation of a literal from F ′ or an equality aj ≃ wij . The
literals from Ar′i can only be blocked finitely because they are either derived from atoms in Ar or
they are obtained from blocking comparison between lower and upper bounds to an eliminated
symbol a. An infinite sequence therefore has to contain blocked term partitions. There is a
finite set of partitions over the original set of terms so an infinite sequence must involve witness
terms. It therefore follows from Lemma 5 and Definition 11 that for an infinite sequence of
projections there is an aj with an unbounded number of different wij . The sequence cannot
converge on a fixed set of witness terms because each core corei blocks the same projection
at later stages. Theorem 2 ensures that the set of witness terms are based on a finite set of
bounds in Ar and differ only by a constant offset. So among an infinite set of syntactically
different witness terms wij there is some fixed term t based on Ar and coefficients b⃗i and a⃗i
(not to be confused with the private arithmetic constants), such that wij is formed using the

grammar (3.1) with t as the base case and b⃗i for the multipliers and divisors and a⃗i for the

offsets. It follows that the set {a⃗i} is infinite (the set {⃗bi} came from a finite set of least common
multiples, so is finite). Therefore wij contains an infinite set of distinct terms.

of Lemma 7. We show a stronger claim. Let αk be defined as f(wk) ≃ t ∧
∧

i<k f(wi) ̸≃ t.
Then there is a k ≥ 1, such that every model M |= B can be modified to a model M ′ |= B ∧αk

by only changing the interpretation of f on M(wk).
Every model M |= B determines the graph of f relevant to satisfiability of B. The size of

this graph can be bounded by the number of subterms of B, which we denote |B|, because the
evaluation of B only depends on how M behaves on the fixed set of ground terms in B. The
graph of f outside of these values can be changed at will without affecting M |= B. Therefore,

20

MBI for UFLIA Bjørner, Gurfinkel, Shoham, Vizel

if the graph of f cannot be adjusted to satisfy f(wk) ≃ t, then it is because all models for B
determine the graph of f on wk. However, each model of B determines the graph of f on at
most |B| terms. Since all wi are distinct, there has to be some k ≤ |B| + 1, such that when
M |= B, the graph can be adjusted such that B ∧ αk is satisfied by M ′ that differs at most
from M by the interpretation on wk.

D An Implementation

An implementation of our algorithm is available with z3 on https://github.com/z3prover/z3.
It computes the advertised interpolants over EUFLIA on instances collected from the literature
and SMTInterpol regressions. It works directly on arbitrary formulas and uses dual propagation
to extract small implicants. In contrast to the presentation, our implementation does not use a
witness protection transformation, but instead relies directly on the current cubes for the next
interpolant. We conjecture that this approach is equivalent to applying witness protection. It
does not ensure essential witnesses. The implementaiton uses model-based projection facility
for LIA, already used by the SPACER solver. In contrast to SPACER, it does not (yet) leverage
proof traces and Farkas lemma to weaken cores. A thorough evaluation is beyond the scope of
this paper: the value of interpolation procedures is best evaluated in context of their use, which
has dominantly been in symbolic model checking.

There is currently no SMTLIB2 standard for interpolation, and our format relies on adding
a command, get-interpolant. In contrast to other formats, ours does not rely on enabling
proof producing traces. An example, illustrating the input format is provided below.

(declare-const s Int) (declare-const t Int)
(declare-const a Int) (declare-const b Int)
(declare-const q Int) (declare-fun f (Int) Int)
(get-interpolant

(and (<= s (* 2 a)) (<= (* 2 a) t) (= (f a) q))
(and (<= t (* 2 b)) (<= (* 2 b) (+ s 1)) (not (= (f b)))))

Our sample experiments with the EUFLIA interpolation implementaiton bears witness to
how the number of cubes produced during interpolation is highly sensitive to how models
enumerate partitions. Z3 uses a congruence closure algorithm for pure EUF, so the partitions
are optimal in the sense of coarseness for conjunctions of EUF formulas. For arithmetical terms,
on the other hand, the procedure has to rely on the partition imposed by a current model.
The more equalities and disequalities that are used by projection, the stronger the projection
becomes and the more cubes are enumerated for the intepolant. Possible optimizations for for
reducing the number of cubes includes freedom intervals [10] used by Z3’s model-based theory
combination approach. Dejan Jovanovich and Clark Barrett [22] developed several conditions
for tempering equality sharing for theory combinations, and ideas related to these techniques
may well be very suitable for tuning a model-based interpolation procedure.

21

https://github.com/z3prover/z3

	Introduction
	Equalities and Uninterpreted Functions
	Arithmetic and Model-Based Witness Extraction
	EUFLIA
	Purification
	Joint Projection
	Interpolation for EUFLIA
	Consistent Projections and Distinct Witnesses
	Finite Basis
	Essential witnesses
	Finite arithmetic projections

	Related work
	Summary
	EUF
	Arithmetic
	Combination
	An Implementation

