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INTRODUCTION 

Ultrasound (US) imaging stands as a valid alternative to 

X-rays based methodologies for navigation and 

intraoperative tracking of vascular probes, thanks to its 

non-ionizing nature. However, US images quality is 

highly operator dependent, being subject to probe’s 

orientation and contact force. In recent years, 

researchers have worked to develop Robotic US 

Systems (RUSS), granting the acquisition of good 

quality real-time US images, without the need of an 

expert operator [1]. Besides, to facilitate US images 

analysis, deep learning strategies have been developed. 

Applications in the field include the automatic 

segmentation of vessels, which is fundamental during 

endovascular procedures.  
 

Intraoperatively, an automatic method to classify 

images based on the presence of vessels and selectively 

segment only vascular images would be valuable. For 

example, during hand-held probe procedures it would 

increase the quality of information feedback. In RUSS, 

it would enable automatic adjustment of probe 

positioning serving as alternative to manual positioning 

by highly trained sonographers. Additionally, a method 

for precisely discriminating the presence of vessels in 

the image plane could increase safety in visual-servoing 

platforms, by preventing possible control instabilities 

generated by imaging artifacts. However, segmentation 

architectures typically assume that the processed image 

contains vessels to be segmented [2], but this is not 

granted in real intraoperative settings especially at the 

beginning of the procedure when the imaging probe is 

not yet optimally positioned. 
 

To address these unmet needs, in this paper we propose 

a multi-task convolutional neural network (CNN) 

architecture able to distinguish between vessel and no 

vessel images, in addition to segmenting them. The goal 

of such architecture is to enable robust and automatic 

US images analysis in real intraoperative settings. 

MATERIALS AND METHODS 

One of the most common deep learning architectures for 

medical image segmentation is U-Net, which is 

characterized by a contracting (encoder) and an 

expansion (decoder) path [3]. To accomplish our goal, 

we built a multi-task architecture, as a modified version 

of U-Net (Fig. 1), by adding a classification branch after 

the contracting path that is able to detect the presence of 

vessels in the image. The classification branch is made 

of flatten layer, dense layer (activated with the rectified 

linear unit), dropout (with 0.5 probability), dense layer 

(activated with the hyperbolic tangent function), 

dropout (with 0.5 probability) and dense layer (activated 

with the softmax function). In our multi-task 

architecture, the contracting path is shared among 

classifier final layers and segmentation decoder, 

minimizing the computational cost. 
 

 
Fig.1 Our multi-task CNN architecture for vessel detection 

and segmentation from US images. The encoder path is shared 

to minimize computation; based on the output class 

probability the input image is further processed for vessel 

segmentation or not. 
 

Our multi-task CNN is fed with images with size 

256x256 pixels and provides as output a 2x1 probability 

vector, representing the class probability (vessel or no 

vessel image), and a 256x256 probability map, 

representing the segmentation output. Classification and 

segmentation branches were trained separately, 

considering categorical cross-entropy (for the 

classification task) and Dice loss (for the segmentation 

task). The Dice loss is defined as 1- Dice Similarity 

Coefficient (DSC), which is computed as two times the 

cardinality of output and ground truth intersection over 

the sum of cardinalities. To tackle overfitting issues 

relevant to the relatively small size of our dataset, we 

decided to exploit transfer learning [4].  
 

We collected two small datasets of common carotid 

artery (CCA) US images available online1: 240 B-mode 
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images (120 with no vessel, 60 with vessels in long axis, 

60 with vessels in short axis) were used to train the 

classifier, 240 B-mode images (120 with vessels in long 

axis, 120 with vessels in short axis) to train the 

segmentation network. Gold-standard (GS) annotation 

was obtained semi-automatically by using GIMP 

environment (GNU Image Manipulation Program 

2.10.28). The images from the datasets had different 

size and were resized to 256x256 pixels. 

Initial CNN weights were retrieved from a state-of-the-

art U-Net architecture trained on US images [5], since 

transfer learning is expected to achieve better 

performances when original and target tasks are similar 

[4]. The encoder layers were frozen and the two datasets 

were used to fine-tune the classification branch and the 

U-Net decoder path. 
 

The multi-task CNN was implemented with TensorFlow 

and Keras libraries and ran on NVIDIA Tesla K80 GPU 

provided by Google Collaboratory. The classifier was 

trained with SGD optimizer (learning rate: 0.001, 

momentum: 0.8). The segmentation branch was trained 

with Adam optimizer with a learning rate of 0.03, 

adapted during learning with an InverseTimeDecay 

routine. Batch size was set to 20 and the maximum 

number of epochs to 100, but early stopping with a 

patience of 10 was used to avoid overfitting. 6-fold 

cross-validation was used for robust testing. For each 

fold, training images were doubled in number by 

applying horizontal flip. Training images were further 

split, after shuffle, into training set (80%) and validation 

set (20%). Supplementary data augmentation 

techniques, as random rotation, zoom and shift, were 

applied online during training. 
 

Architecture performances were evaluated defining 

True Positive (TP), True Negative (TN), False Negative 

(FN) and False Positive (FP) outputs in accord to the GS 

annotation. These were used for the computation of 

standard metrics as: accuracy (defined as TP+TN over 

the sum of all) and F1 score (defined as 2TP over 

2TP+FP+FN) for the classification task; DSC for the 

segmentation task. 

RESULTS 

The average accuracy and F1 score for the classification 

task were 93.54% and 92.06%, respectively, with an 

average computation time on Google Colab of 

5.01±0.61 ms per image (Fig. 2a). The average DSC for 

the segmentation task was higher than 90%, i.e., 

92.22%, with an average computation time of 8.95±1.04 

ms per image, enabling real-time applications (Fig. 2b).     

DISCUSSION 

Deep learning architectures able to perform vessel 

detection and segmentation together, as the one 

proposed here, would be valuable in real life dynamic 

environments, both in hand-held and robot-held probe 

procedures. By exploiting transfer learning, we were 

able to achieve promising segmentation performances 

(DSC equal to 92.22%) with a relatively small dataset 

(i.e., 240 images), compared to a previous work that 

shows CCA segmentation training a U-Net with over 

2000 images [2]. Additionally, the proposed architecture 

allowed real-time deployment. 
 

These preliminary results indicate that such multi-task 

CNN could be efficiently integrated in a robotic 

platform, potentially enabling robust visual-servoing 

procedures for, e.g., catheter navigation or aortic 

screening. Additionally, applications can be enlarged to 

different districts by further fine-tuning the network.  
 

 
Fig. 2 Results in classification and segmentation tasks. a. 

Different B-mode images with the output vessel probability. 

From left to right, a TP long axis view, TP short axis view and 

a TN background images are shown. b. Segmentation results 

on a vessel short axis (first row) and long axis (second row) 

view.  
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