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Abstract. Many AI (or ML) systems have been proposed for clinical decision 

support, providing diagnosis, prognosis or treatment recommendation. It is well 

known that the impact of these systems varies, with benefits such as improved 

decision making or time saved set against any potential harm introduced by the 

AI. The main technique proposed to evaluate impact is an ‘Impact Study’, a form 

of trial of a completed system. Vital though such studies are, they require at least 

a prototype system to be deployed which can be expensive. Meanwhile, the mer-

its of AI predictors are mainly argued using accuracy measures, such as a confu-

sion matrix or an AUC. We argue that the impact of a proposed AI system should 

be modelled during its development, to justify the expense of an Impact Study. 

We show that an Influence Diagram can be used for this and provide a small set 

of models for generic AI systems, with two main findings. First, we show that 

the way that an AI predictor is used – primarily how it interacts with clinical 

decision makers – is at least as important as its predictive accuracy. Indeed, we 

show that different uses of the same predictor vary in impact without any change 

in its accuracy. Secondly, we show that the proposed use of an AI predictor also 

determines the information needed to model its potential impact. Some infor-

mation is always needed on the decision accuracy of existing clinical decision 

makers, but the form and extent of this varies. 

Keywords: Impact analysis, Clinical decision support, Influence diagram, Arti-

ficial Intelligence. 

1 Introduction 

1.1 Is AI for Decision Support Clinically Beneficial?  

Systems based on AI (or ML) for clinical decision-support are developed to improve 

medical care. Such systems usually include a diagnostic or prognostic model built from 

patient data to diagnose diseases, predict the likely course of the disease or optimize 

the delivery of care. Although the terms used vary, it is clearly important to distinguish 

‘prediction’ from the wider ‘decision-support’ system, into which the prediction goes. 

It is well understood that the accuracy of the predictions is not sufficient to ensure 

that a system is clinically useful. The problem has been known at least since 1995 when 
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Wyatt and Altman [1] suggested that for a model to be clinically useful, it should have 

credibility, evidence of generality and accuracy and evidence of clinical effectiveness. 

This introduces a key distinction between accuracy (or validation) and effectiveness 

(or, more commonly, impact). Validation  ([2], [3] and [4]) concerns evidence that the 

model is general, so that it is still accurate in a new context. To show this, prediction 

accuracy is evaluated with data from a place and time different from the original devel-

opment.  

In contrast, the impact of a decision support system concerns whether its use in a 

clinical setting benefits the delivery of care, for example by improving decision-making 

or reducing costs. A 2015 systematic review [5] found that ‘relatively few’ of the pre-

diction rules developed have been evaluated in an impact study, although frameworks 

for these studies have been proposed ([4], [6], [7]). For example, in [7], a four-phased 

framework is proposed. The first phase is to check that the validation has been com-

pleted. The second ‘preparation’ phase assesses the acceptability of the decision-sup-

port system to its users and any potential barriers to the use (both organizational and 

individual). The third phase is an experimental study of changes to clinical care: several 

designs are possible including before and after or cluster randomized. If this is success-

ful, long-term implementation follows. 

The main argument of this paper is to suggest that two aspects of impact can and 

should be considered and used to estimate impact, long before the actual impact is 

measured in the ‘experimental’ phase of an impact study. These aspects are: 

 The way the prediction system will be used for decision support, notably how it 

interacts with clinical decision making, and  

 The hoped-for benefits, whether reductions in costs or workload or better deci-

sion-making.  

The impact study frameworks do not neglect these issues: for example, in [7] an im-

portant aspect of the ‘preparation’ phase ‘is determining how the [prediction system] 

will be integrated into the clinical workflow’. Similarly, it is suggested in [3] that po-

tential impact should be considered (using simulated decisions) before conducting a 

study to assess actual impact. Further, [4] and [6] distinguish predictions designed to 

‘assist’ (or support) decision-making from those that make decisions, with [3] pointing 

out that: “clinicians will not always follow the rule’s recommendations: They may not 

consult the rule at all, they may apply it inaccurately or unreliably, they may deliber-

ately overrule its recommendations, or they may be unable to implement its recommen-

dations for various reasons”.  

We argue that the impact of a decision-support system should be estimated at an 

early stage. We present a method to do this and draw attention to the relationship be-

tween prediction accuracy, proposed used and impact. Accuracy does not determine 

impact independently of use. We also show that any estimate of impact requires some 

estimate of the performance of the existing delivery of care, but again the information 

needed vary with the proposed use of the AI system. 

 

1.2 Outline 
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In section 2, we describe the modelling approach. Section 3 gives models for three 

differing uses. Our conclusions are in the final section. 

2 Approach to Modelling Different Uses of AI system  

2.1 How an AI System Can be Used Clinically 

A prediction system can be ‘integrated into the clinical workflow’ in many different 

ways to form an AI-system clinical decision system. An important distinction is the role 

of the clinical decision-maker (a doctor or nurse for example) versus that of the AI 

system. At one extreme, the decision is fully automated, while at another the AI system 

and the clinician work together. Restricting our attention to diagnosis, Table 1 shows 

three possible uses that we will analyze. These are intended to represent the much wider 

range of real possibilities. 

Table 1. Diagnostic Uses of AI. 

Name Description of Use 

Replace The AI diagnoses all patients, replacing the clinician. 

Filter The AI diagnoses some patients; the clinician sees fewer. 

Assist The AI and the clinician work together. 

The first two uses ‘Replace’ and ‘Filter’ are broadly directive (real examples include 

[8] and [9] ), while the other is assistive. It is notable however, that many papers on 

predictors for clinical use say little about intended use. For example, in a recent collec-

tion of clinical AI systems, most gave only validation results [10]. 

 

2.2 Utility Models 

The impact of introducing an AI system may include both benefit and harm. We can 

model this using a utility model. In section 3, we show such models for the different 

uses. Here we outline the parameters needed in the utility model and the potential areas 

of impact for each type of use. Our assumed parameters are intended only to be indic-

ative; what matters is the forms of information needed to estimate impact and how it 

varies with use. We focus on two areas: 

 Healthcare cost: we assume that the cost of a consultation with a clinician exceeds 

the cost of operating the AI; for simplicity, we assume the latter is zero. The cost of 

a clinical consultation is assumed to be 100 units, although additional costs may 

occur when the opinion of the clinician and the AI system differ. We have not con-

sidered treatment costs beyond the consultation. We also do not distinguish other 

related outcome, such as reduced workload or waiting lists, though this could be 

done. 

 Patient outcome. We assume that the patient outcome depends on the presence of 

the disease and the diagnosis. In general, patient outcome is measured in quality-

adjusted life-year (QALY). According to the National Institute for Health and Care 

Excellence (NICE), QALY is “a measure of the state of health of a person or group 



4 

in which the benefits, in terms of length of life, are adjusted to reflect the quality of 

life”. This measure is used as a currency to compare healthcare interventions and it 

considers both the quantity and quality of life generated by them. The patient out-

come we assume for each diagnosis and state of the disease is shown in Table 2. 

Table 2. Example patient outcomes. 

Disease False  True  

Diagnosis  False  True  False  True  

Patient Outcome  0  -50  -500  5000  

 

The numbers shown in Table 2 are indicative only: the consequences of the different 

errors (false positive and false negative) need to be assessed and can vary greatly in 

different circumstances. Our example gives the harm of a false negative a smaller mag-

nitude than the benefit of a correct positive diagnosis; this might be appropriate when 

the result is a delay to the start of care. Similarly, we have even less harm from a false 

positive. A limitation on the use of utility models is that it might allow a (small) dete-

rioration in the quality of care if compensated for by a sufficient cost reduction whereas 

this might not be permitted by a regulator; we note an example of this below. Table 3 

summarizes the potential areas of benefit for difference AI system uses.  

Table 3.   Summaries of Expected Benefit by Use. 

Name Potential Expected Benefits 

Replace Primarily cost saving, with equivalent patient outcome.  

Filter Cost reduction, by reducing the number of patients to be seen. Outcome 

may also change, however. 

Assist Primarily improved patient outcome; since all patients are still seen and 

the healthcare costs do not reduce (given our assumptions).  

 

2.3 Performance Assumptions 

In this section, we introduce some assumptions about the performance of both the AI 

system and clinician, as it will become clear that we cannot estimate the impact of an 

AI system without knowledge of the performance of an existing clinical care system.  

Disease Prevalence: We assume disease is present in 30% of cases. With the error 

rates, the affects the number of errors of different types possibly impacting benefit. 

Receiver Operating Curve (ROC) and Confusion Matrix. The performance of the 

AI system can be represented by its ROC, showing the tradeoff between sensitivity (or 

true positive rate – TPR) and specificity (or false positive rate – FPR). Fig. 1 shows a 

simulated ROC. The false negative rate (FNR) can be calculated from the TPR and the 

true negative rate (TNR) from the FPR: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 =  1 − 𝐹𝑁𝑅         𝑇𝑁𝑅 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 =  1 − 𝐹𝑃𝑅 
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Every point on the curve represents a possible ‘operating point’, from which a ‘confu-

sion matrix’ can be calculated, for a known prevalence of the disease).  The accuracy 

of decision-making can be summarized in a confusion matrix (see Table 4). We assume 

that the clinician’s confusion matrix is known, as shown for example in Table 4. In 

Section 4, we consider whether such an assumption is plausible. 

Table 4. Confusion Matrices: in General, and for the Clinician (Doctor ‘B’, 30% prevalence) 

  Actual    Actual 

  False True  False True 

Pre-

dicted 

False TN FN  Pre-

dicted 
False 63% 9% 

True FP TP  True 7% 21% 

 

Fig. 1 also shows 5 possible operating points P1-5 for the AI system, all lying on the 

curve. Two points are shown for the clinical decision maker, one (B) above the AI’s 

ROC and the other (A) below.  

 

Fig. 1. Simulated ROC curve for the AI in which Area Under the Curve (AUC) is 84%. 

3 Utility of an AI System in Different Uses 

The utility calculations can be implemented as Hybrid Bayesian networks. Here we use 

the AgenaRisk toolset [11]. 

3.1 Modelling an AI System Replacing a Clinician  

Fig. 2 shows a utility model (as an influence diagram) for an AI system replacing a 

clinician. The diagnosis depends on the use AI as does the healthcare cost. The patient 

outcome depends on the diagnosis and the presence of the disease. The performance of 
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both AI (at the chosen operating point) and clinical decision makers are parameters in 

the model and determine the utility. 

 

Fig. 2. Influence diagram for the case in which the clinician is replaced by the AI. 

If the performance of the clinical decision-maker matches point A in Fig. 1 then it is 

clear that the utility of using the AI system exceeds that of not using it, anywhere be-

tween point P2 and P3, as both the FNR and FPR are reduced. The clinician’s utility 

(at point A) is 833.0; that of the AI systems at point P2 is 835.71 and at P3 is 1017.6. 

The use of AI use could be still beneficial (in terms of utility) if it made a few more 

mistakes than the existing decision maker, this may not be accepted in practice; instead 

it is more likely that the AI developers must show ‘non-inferiority’ of clinical outcome. 

The location of the best operating point depends on the ratio between the disutility of 

false negative and false positive diagnoses. 

Summary of AI System Replacing a Clinician 

The following table summarizes our results for this use of AI. 

Table 5. Summary of Results for an AI System Replacing a Clinician.   

Criteria Finding 

Positive benefit AI performance must dominate the clinician’s 

AI performance ROC curve 

Clinical performance Full confusion matrix 

3.2 Modelling an AI System Filtering Patients Seen by a Clinician 

In a diagnostic problem, an AI system can be used to filter out some cases so that a 

clinician sees fewer cases, saving clinical time (and money). We consider two cases a) 

no disease filter, where the AI only filters out the cases it is confident have no disease 

and b) disease present filter, the opposite. The model shown in Fig. 3 is for case a): the 

variable ‘Doctor Diagnosis Possible’ represents the diagnosis given if the clinician were 



7 

asked. The variable ‘Actual Diagnosis’ represents the final diagnosis: in case when ‘AI 

diagnosis’ is ‘false’ (i.e. no disease) then the Actual Diagnosis is false; if the AI re-

sponse is “Don’t know”, then the doctor’s diagnosis is used as the Actual Diagnosis.  

 

 

Fig. 3. Influence diagram for the case in which the AI filters patients. 

Used in this way, it is possible for the AI system to be of benefit even if its performance 

does not dominate the clinician’s, since we can choose an operating point to minimize 

a certain type of errors. We have therefore compared to AI system to clinician B in Fig. 

1– with better decision performance than assumed for the ‘replace’ case.  

Table 6. Change in Utility when AI Filters Patients Seen by the Clinician. 

Type of 

Filter 

AI System Operation Point 

P1 P2 P3 P4 P5 

(a) No disease -494.3 -385.5 -265.3 -124.9 -17.6 

(b) Disease 225.1 266.6 310.7 358 384.3 

It seemed ‘obvious’ to us that the ‘no disease’ filter would be beneficial, particular 

operated at P5 (to minimize FNR). The AI system simply detects some disease-free 

patients, leaving the rest to the clinician. The model does not support our intuition: the 

problem is that both AI and clinician have an FNR, so together miss more case than 

either operating alone. With the outcome utilities (and prevalence) we have assumed, 

the cost saving does not balance this. Instead, the ‘disease present’ filter has a benefit. 

The results are summarized in Table 7. . 

Table 7.   Summary of Results when AI Filters Patients Seen by the Clinician. 

Criteria Finding 

Positive benefit AI performance can be worse than the clinician’s. 
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Benefit relative costs of FP and FN 

AI performance  ROC  

Clinician information Confusion matrix (but one rate dominates). 

3.3 Modelling an AI Used to Assist a Clinician 

When an AI system is used to assist a clinician with a diagnostic decision, she has 

access to AI system’s predictions before giving a final diagnosis to a patient. If there is 

a conflict, the clinician has a chance to re-evaluate her diagnosis. 

 

 

Fig. 4. Influence diagram for the case in which the AI assist the doctor. 

A model of this situation requires some assumption about how the clinician and AI 

system interact. In the model of Fig. 4, we assume that when the doctor and AI disagree, 

the clinician revises her diagnosis in 50% of the cases in which she was wrong (but 

never when she was right). However, this has an associated cost, which arises whenever 

clinician and system disagree: this is assumed to be the same as the cost of the original 

consultation (100 monetary units) representing extra time and the costs of additional 

tests. Clearly, with these assumptions, costs do not reduce and any impact of using AI 

relates to a better patient outcome. We consider the plausibility of this model of the 

interaction and possible alternatives in the final section. 

The following table shows the increased utility of using the AI at the different oper-

ating points P1 to P5: 

Table 8. Increase in Utility when Clinician Assisted by AI. 

Clinician 
AI System Operation Point 

P1 P2 P3 P4 P5 

A 136.21 167.50 201.60 240.00 266.10 

B 99.3 122.4 146.9 173.2 187.8 
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We note that a) the impact of this use of AI is generally smaller than the two earlier 

cases b) that it has greater impact for less accurate clinician A and c) the impact in-

creases as the operating point of the AI has a lower FNR (eventually, the costs of the 

extra reviews exceed the benefits). The results are summarized in Table 9. 

Table 9. Summary of Results for the Case where AI Assists a Clinician.   

Criteria Finding 

Positive benefit AI can be beneficial even if its performance is worse than the 

clinician’s. 

AI performance  ROC curve.  

Clinician perfor-

mance  

Full confusion matrix. Model of interaction between AI and 

clinician. 

 

Our assumption that the clinician is able to revise some percentage of incorrect deci-

sions may be optimistic, since the cases that are difficult for a clinical decision maker 

may also be hard for an AI system.  

4 Conclusions and Further Work 

Our utility models have shown that the same AI system used in different ways can have 

a very different impact. In some cases, the performance of the AI system must exceed 

that of the clinical decision maker; in other cases, it can still be beneficial with lower 

performance. Making an estimate of impact requires the developer of an AI system for 

clinical use to consider both the potential benefits and the proposed use; we believe 

more systems would have impact of this was done. 

We have also shown that, with the utilities we have used, the impact of assisting a 

clinical decision maker is less than replacing her. Moreover, estimating the impact of 

the ‘assist’ case requires much more information. In all cases we need some information 

about the performance of the clinical decision maker. Our assumption that this can be 

characterized by a simple confusion matrix is simplistic as, for example, different indi-

viduals may have different performance. We plan to investigate replacing fixed param-

eters here (and elsewhere) with distributions. A more profound issue is whether such 

information can be obtained. We argue that a full impact study would be pointless with-

out, in the example of assistive AI, some indications that decisions need to be improved 

since there is no impact in assisting a perfect decision maker. Nevertheless, the calcu-

lation of confusion matrix requires a ‘ground true’ – a ‘correct’ outcome – for each 

decision and this may not be available. One approach might be to look at the consensus 

of a group of decision makers for similar patients.  

A particular problem is that we know little about the interaction between a clinical 

decision maker and an AI system intended to assist with decision-making. We could 

consider the AI to behave like a ‘second opinion’ and the effects of this have been 

studied, for example in [12]. So far, we have assumed that mistakes are made inde-

pendently, but there are many other effects to consider. For example, reducing the num-

ber of patients may change decision accuracy [13]. Furthermore, some decisions are 
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harder than others and it is likely that those that the AI system gets wrong may also be 

incorrectly diagnosed by the clinician. We plan to investigate the impact of correlation 

between the decision performance of the two decision makers in future. 
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