
EasyChair Preprint
№ 10648

Column-Weighted Probabilistic GDBF Decoder for
Irregular LDPC Codes

Changfu He, Keyue Deng, Suwen Song and Zhongfeng Wang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 1, 2023

1

Column-Weighted Probabilistic GDBF Decoder for
Irregular LDPC Codes

Changfu He, Keyue Deng, Suwen Song, and Zhongfeng Wang
School of Electronic Science and Engineering, Nanjing University, Nanjing, China

Email: 191180045@smail.nju.edu.cn, kydeng@smail.nju.edu.cn, suwsong@sina.com, zfwang@nju.edu.cn

Abstract—Existing bit-flipping algorithms, when used for irreg-
ular low-density parity-check (LDPC) codes, often suffer from
performance degradation due to the imbalance caused by the
irregular codeword structure. To alleviate this problem, this
paper presents a column-weighted probabilistic gradient-descent
bit-flipping (CW-PGDBF) decoder for irregular LDPC codes.
Different weighting factors are allocated to variable nodes with
different column weights to solve the imbalance. Furthermore,
a modified probabilistic flipping rule is employed to reduce the
hardware complexity while maintaining the error-correction per-
formance. Simulation results demonstrate that the proposed algo-
rithm can achieve significantly improved performance compared
with other BF-based algorithms for irregular codes. Additionally,
a hardware architecture for the CW-PGDBF decoder is proposed
with acceptable hardware overhead compared to the original
PGDBF decoder.

Index Terms—Low-density parity-check codes, irregular codes,
bit-flipping, column-wise weighting factor, hardware implemen-
tation.

I. INTRODUCTION

Low-density parity-check codes have become increasingly
popular since the introduction by Gallager in 1962 [1]. Fea-
turing near Shannon limit performance and low hardware
overhead under iterative decoding, LDPC codes have been
widely used in the field of digital communication and stor-
age applications, such as IEEE802.16e, IEEE802.11n, and
DVB-S2 standards. The decoding algorithms can generally be
divided into two categories, soft-decision and hard-decision
ones. Soft-decision decoding shows great decoding perfor-
mance, including Belief Propagation (BP) algorithm [1] and
its simplified algorithms such as Min-Sum (MS) algorithm
[2] and Offset MS (OMS) algorithm [3]. Nevertheless, soft-
decision decoding algorithms are far more resource-consuming
than hard-decision decoding algorithms, such as Bit-Flipping
(BF) algorithms [4]–[11], which only utilize binary messages
instead of floating-point/quantized messages.

The BF algorithms lead to less hardware overhead but
obvious performance degradation. To mitigate this problem,
the gradient descent BF (GDBF) algorithm [7] was proposed
by adding an extra term to involve the similarity between the
received bit and the current decoded bit into the inversion
function. In [8], the probabilistic GDBF (PGDBF) decoder
was proposed, in which the bits with the satisfactory inversion
value are flipped with a probability, playing a certain role
in helping the decoding escape from the trapping sets of
LDPC codes. To decrease the critical path while keeping

the performance, the probabilistic parallel BF (PPBF) algo-
rithm [9] was proposed by flipping each bit with different
probabilities depending on their reliabilities. Recently, Cui
et. al. have proposed the Tabu-list random-penalty GDBF
(TRGDBF) algorithm [10], which adds a random penalty to
help step out of the trapping sets and a tabu-list to avoid flip-
ping the bits repeatedly, greatly improving the error-correction
performance. Furthermore, to shorten the critical path induced
by the maximum-finding operation, an information storage BF
(ISBF) algorithm [11] was proposed, storing the information
of the previous iteration and using them to perform maximum-
finding operations in parallel with other operations.

However, the algorithms mentioned above are all designed
for regular codes, instead of irregular codes. The irregular
codes were proposed by Luby et. al. and shown the ca-
pability of yielding much better performance than regular
codes [12], [13]. If the algorithms dedicated to regular codes
are directly applied to irregular codes without any changes,
there will be a huge performance loss. In [14], the adaptive
GDBF diversity decoder (AD-GDBF) was proposed, com-
bining the GDBF-based decoders with different parameters
into a unified diversity decoder by using genetic algorithm
optimization and outperforming all existing probabilistic bit-
flipping decoders. Although the AD-GDBF algorithm can be
applied to irregular codes, its complex framework demands
significant computational resources and time for training and
parameter optimization. To design a more lightweight hard-
decision decoding algorithm for irregular codes, a new GDBF
decoder is proposed, which combines column-wise weighting
factors and a modified probabilistic flipping rule with the
GDBF decoder. The main characteristic of the CW-PGDBF
decoder is that a column-degree-based weighting factor is
introduced when calculating the inversion values, to make
their maximum magnitudes consistent for different codeword
bits, so that the regular decoding algorithms can be applied.
A modified probabilistic flipping rule is also employed to
reduce the hardware overhead while maintaining the error-
correction performance. Meanwhile, a well-optimized archi-
tecture is implemented. The experiment results show that
compared with other hard-decision decoders, our proposed
decoder performs better in error-correction performance with
acceptable hardware overhead.

The rest of this paper is organized as follows. Section II
introduces the notations and the existing PGDBF algorithm. In
Section III, we detailedly describe the proposed CW-PGDBF
algorithm. Section IV displays the simulation results for our

2

algorithm, including the comparison with other algorithms
and the selection of parameters. In Section V, the hardware
architecture and synthesis results are presented. Finally, we
draw a conclusion in Section VI.

II. PRELIMINARIES

A. Notations

The M×N(N > M) parity-check matrix is denoted as H ,
where M rows correspond to M parity-check equations and N
columns correspond to N channel bits. A codeword is a binary
vector vi ∈ {0, 1}, i = 0, 1, · · · , N−1, that satisfies all parity-
check equation, i.e. HvT = 0. Suppose that the decoder is
specially designed for Binary Symmetric Channel (BSC), and
the output of the channel is yi ∈ {0, 1}, i = 0, 1, · · · , N −
1. A common representation of LDPC codes is the Tanner
graph, which is composed of M check nodes (CNs) and N
variable nodes (VNs). N (i) is the set of indices of VNs that
is connected to the i-th CN, andM(j) is the set of indices of
CNs that is connected to the j-th VN. For example, N (i) =
{n | hi,n = 1, n ∈ [1, N]}, and M(j) = {m | hm,j = 1,m ∈
[1,M]}. |N (i)| denotes the degree of the i-th row and |M(j)|
denotes the degree of the j-th column. For clarity, we also use
dv to represent the degree of each column in this paper.

B. The PGDBF Algorithm

A BF decoder updates the variable nodes iteratively. Assume
that the n-th bit in the t-th iteration is v(t)n , and the m-th parity-
check value in the t-th iteration is s(t)m , which is calculated by:

s(t)m =
⊕

n∈N (i)

v(t)n , (1)

where ⊕ means exclusive-OR (XOR) operation on all of the
codeword bits. If s(t) satisfies the parity checks, the decoding
will declare success. Otherwise, the next iteration of decoding
will be carried out. The decoding will be terminated when t
reaches the pre-defined maximum number of iterations Tmax,
and at this time if the parity checks are still not satisfied by
s(t), a decoding failure will be declared.

At the t-th iteration, each VN first calculates the inversion
value E

(t)
vi using Eq. (2):

S(t)
vi =

∑
m∈M(i)

s(t)m , (2a)

E(t)
vi = v

(t)
i ⊕ yi + S(t)

vi , (2b)

where the first term in E
(t)
vi means the correlation between

the updated codeword and the received word and the latter
one is the sum of parity-check values which are connected
to the corresponding VN, regarded as a penalty term that
forces v to be a correct codeword. A large E

(t)
vi could mean

that the correlation is weak, or there exist many unsatisfied
parity-check equations, so the bits with the maximum E

(t)
vi ,

i.e. E(t)
max = max(E

(t)
vi), should be flipped to correct the code.

In PGDBF, instead of flipping all the bits with inversion
value E

(t)
max, only a random fraction of them are flipped,

depending on the probability p, which is selected before
decoding. After that, the updated values of all VNs are sent to

the next iteration until they satisfy the termination conditions
mentioned above.

However, compared with regular LDPC codes, the structure
of irregular LDPC codes is more complex. For variable nodes
with different degrees in irregular LDPC codes, the PGDBF al-
gorithm treats them equally, leading to unfair inversion values.
Moreover, the decoding of irregular codes requires far more
iterations to achieve better decoding performance. Therefore, a
huge performance loss will be caused if continuing to use the
PGDBF algorithm or other variants to decode irregular LDPC
codes.

III. PROPOSED CW-PGDBF ALGORITHM

To minimize the performance loss as much as possible,
the CW-PGDBF algorithm is proposed for the decoding of
irregular LDPC codes in this section. We focus our attention
on the different parts of the proposed algorithm from the
PGDBF algorithm, including the newly introduced column-
wise weighting factor and the modified probabilistic flipping
rule.

A. Column-Wise Weighting Factor

Suppose that we are using an irregular H containing
only two column degrees, i.e. 4986.93xb.329 [15], which has
dv1 = 3 in the first 9141 columns and dv2 = 9 in the other
831 columns. If we use a regular decoding algorithm such as
PGDBF, the E

(t)
max of dv1 part can only reach a maximum of

4, and the dv2 part reach 10. Thus, as long as the E
(t)
max is

larger than 4, the dv1 part can never be flipped. In other words,
the dv1 part has less chance of being flipped than the dv2 part,
which will cause a huge loss in decoding performance.

Therefore, we consider multiplying the second term of each
inversion value by a column-wise weighting factor so that
the new ones are in the same range. For example, through
multiplying the dv1 part by w1 and the dv2 part by w2, the
range of the dv1 part is 0 ∼ w1 × dv1 and the dv2 part is
0 ∼ w2 × dv2. Accordingly, the weighted inversion values
turn into Eq. (3):

E(t)
vi =

{
v
(t)
i ⊕ yi + w1 × S(t)

vi , for dv = dv1, (3a)

v
(t)
i ⊕ yi + w2 × S(t)

vi , for dv = dv2. (3b)

If we select w1 and w2 appropriately to achieve the equation
w1×dv1 = w2×dv2, the weighted variable nodes will have a
fairer chance to be flipped. For our chosen H 4986.93xb.329,
we have tried different combinations of w1 and w2, and finally,
we select w1 = 3 and w2 = 1 to be the weighting factors.
For other Hs consisting of two degrees, w1 and w2 can be
constructed in the same way.

B. Modified Probabilistic Flipping Rule

Obviously, after column-weighting, the bit-width of each
inversion value may increase, which requires additional hard-
ware overhead when executing the maximum-finding opera-
tion. To avoid this problem, we improve our algorithm by
finding the maximum value before column-weighting. More-
over, instead of finding the maximum value of E

(t)
vi , we just

3

find the maximum value of its second term for dv1 and dv2
part respectively, as in Eqs. (4-5). This can also save hardware
resources to some extent, which will be mentioned in Section
V. Then we can find the entire maximum by column-weighting
the two maximum values and making comparisons between
them, as in Eq. (6).

S
(t)
max1 = max{S(t)

vi }, i ∈ {i | degreei = dv1}, (4)

S
(t)
max2 = max{S(t)

vj }, j ∈ {j | degreej = dv2}, (5)

E(t)
max = max{w1S

(t)
max1,w2S

(t)
max2}. (6)

It should be noted that the E
(t)
max we just attained may

not be the exact maximum inversion value, on account that
we actually ignore the term v

(t)
i ⊕ yi when finding the

maximum values, so the exact maximum inversion value may
be equal to or one more than E

(t)
max. Given this, we assign two

probabilities to control the flipping.
• If the inversion value is equal to E

(t)
max, then flip the

corresponding bit with probability p1.
• If the inversion value is one more than E

(t)
max, then flip

the corresponding bit with probability p2.
• If the inversion value is smaller than E

(t)
max, then no

flipping operation is needed.
To get the optimal p1 and p2, we can try different combinations
of (p1, p2) and find the best one.

C. Other Irregular Codes

Up till now, we have considered the H with only two
degrees. However, there exist many irregular codes with more
than two degrees, such as PEGirReg504x1008 [15], which
has degrees of 2, 3, 4, 5, 7, 14, 15. In this case, the weighting
factor has to be the degrees’ least common multiple (LCM)
divided by each degree. Take the PEGirReg504x1008 code for
example, the degrees 2, 3, 4, 5, 7, 14, 15 have LCM = 420, so
they are relatively multiplied by 210, 140, 105, 84, 60, 30, 24.
The weighting factors are so large that the hardware overhead
will be unimaginably huge.

We solve this problem by dividing the degrees into two
groups and treating each degree in the same group equally.
For example, we can divide the degrees 2, 3, 4, 5 into the
first group and 7, 14, 15 into the other one, accordingly the
weighting factors can be 3 and 1 to make the range as close
as possible. Similarly, we can also divide the degrees 2, 3 into
the first group and 4, 5, 7, 14, 15 into the other one, and the
weighting factors are 5 and 1. We finally choose the former
one, which shows better decoding performance. For other
irregular codes containing more than two degrees, the same
idea can also be adopted.

Finally, the proposed CW-PGDBF algorithm is detailedly
described in Alg.1.

IV. SIMULATION RESULTS

This section presents the decoding performance of the CW-
PGDBF algorithm and compares it with PGDBF, TRGDBF,
and ISBF. The considered irregular LDPC codes are the

Algorithm 1 The CW-PGDBF Algorithm.

Input y = (y0, y1, · · · , yN−1)
Parameter (w1, w2), (p1, p2), group1, group2
Initialize v

(0)
n ← yn, n = 0, · · · , N − 1

for t = 0 to Tmax − 1 do
for i = 0 to M − 1 do

si =
⊕

k∈N (i) v
(t)
k

end for
if s = 0 then break
Generate R

(t)
n ∼ B(p1), n = 1, · · · , N

Generate Q
(t)
n ∼ B(p2), n = 1, · · · , N

for i ∈ {i | degreei ∈ group1} do
S
(t)
vi =

∑
m∈M(i) s

(t)
m

E
(t)
vi = v

(t)
i ⊕ yi + w1S

(t)
vi

end for
for j ∈ {j | degreej ∈ group2} do

S
(t)
vj =

∑
m∈M(j) s

(t)
m

E
(t)
vj = v

(t)
j ⊕ yj + w2S

(t)
vj

end for

S
(t)
max1 = max{S(t)

vi }, i ∈ {i | degreei ∈ group1}
S
(t)
max2 = max{S(t)

vj }, j ∈ {j | degreej ∈ group2}
E

(t)
max = max{w1S

(t)
max1, w2S

(t)
max2}

for i = 0 to N − 1 do
if E(t)

vi = E
(t)
max then

v
(t+1)
i = v

(t)
i ⊕R

(t)
i

else if E(t)
vi = E

(t)
max + 1 then

v
(t+1)
i = v

(t)
i ⊕Q

(t)
i

end if
end for

end for
output v(k)

4986.93xb.329 and PEGirReg504x1008. The Tmax is set to
300, and the optimal p1 and p2 values are found through
numerical search. For the 4986.93xb.329 code, we vary both
p1 and p2 from 0.1 to 1.0 with a step size of 0.1, and test the
error-correction performance under α = 0.035. We mark the
total of 100 cases of (p1, p2) with an index i (0 ≤ i ≤ 99),
plotted in Fig. 1.

For the code 4986.93xb.329, the optimal values of the
parameters are selected to be p1 = 0.50 and p2 = 1.00.
It is worth noting that p2 = 1.00 is also optimal for other
codewords, which is not surprising since the maximum inver-
sion bits are expected to be flipped. It eliminates the need
for additional hardware resources such as a random generator
module. The error-correction performance of the proposed al-
gorithm on the code 4986.93xb.329, using the chosen (p1, p2),
is compared with that of the PGDBF, TRGDBF, and ISBF
algorithms in Fig. 2. As α decreases, both the TRGDBF
and ISBF algorithms experience an error floor phenomenon.
In contrast, the CW-PGDBF algorithm shows better error-
correction performance than other algorithms and does not

4

0 10 20 30 40 50 60 70 80 90 100

index

10-5

10-4

10-3

10-2

10-1

100
F

ra
m

e
E

rr
or

 R
at

e
(F

E
R

)

Fig. 1. Numerical search of (p1, p2) for 4986.93xb.329 under α = 0.035.

10-3 10-2 10-1

Crossover Probability

10-6

10-5

10-4

10-3

10-2

10-1

100

F
ra

m
e

E
rr

o
r

R
at

e
(F

E
R

)

PGDBF [8]
TRGDBF [10]
ISBF [11]
CW-PGDBF

Fig. 2. FER of CW-PGDBF over BSC channel using 4986.93xb.329.

experience an error floor, which increases the robustness of
the decoding process.

When decoding irregular LDPC codes with more than two
degrees, we select PEGirReg504x1008 as an example. The
degrees in this code are 2, 3, 4, 5, 7, 14, 15, and we divided
them into two groups: 2, 3, 4, 5 in one and 7, 14, 15 in the
other. The optimal (p1, p2) was selected to be (1.00, 1.00). We
then compared the performance of CW-PGDBF with PGDBF,
TRGDBF, and ISBF on PEGirReg504x1008, as shown in
Fig. 3, and found that CW-PGDBF outperformed the other
algorithms. As a result, we can say that the CW-PGDBF
algorithm is a good choice when decoding irregular LDPC
codes.

V. HARDWARE DECODER ARCHITECTURE

A. Top-Level Architecture

The architecture for our proposed CW-PGDBF decoder is
shown in Fig. 4, where y is the received noisy codeword
and v(t) is the estimated codeword at the current iteration t.
The decoding process proceeds as follows. In the initialization
stage, the signal init selects the noisy vector as the initial

10-4 10-3 10-2 10-1

Crossover Probability

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

F
ra

m
e

E
rr

o
r

R
at

e
(F

E
R

)

PGDBF [8]
TRGDBF [10]
ISBF [11]
CW-PGDBF

Fig. 3. FER of CW-PGDBF over BSC channel using PEGirReg504x1008.

estimate v(0). The CNUs then calculate the parity-checksum
for each row’s connected column through an XOR operation
and send the results to the VNUs. In each VNU, the ECUdv1

and ECUdv2 modules calculate the sum of the parity-check
results of the connected rows for the corresponding column,
which is denoted as S(t). After that is the column-weighting
operation, where each S

(t)
i is multiplied by its weighting factor

and added to the term v
(t)
i ⊕ yi, as shown in Eq.(3). The

maximum-finding operation is in parallel with the column-
weighting operation. For each degree, the S

(t)
i values are

sent to the corresponding MF (maximum-finding) module to
find the temporary maximum value, which is then sent to the
MF all module to find the maximum value E

(t)
max, as described

in Eq. (6). The last step in each iteration is to compare each
bit of E

(t)
vi with E

(t)
max’s. If E

(t)
vi = E

(t)
max, then v

(t)
i will be

flipped with probability p1 and if E
(t)
vi = E

(t)
max + 1, then

v
(t)
i will be flipped with probability p2. To generate random

bits with a distribution of B(p1) and B(p2), we implement
the random generator (RG) module using a cyclical shifting
method during initialization. As p2 is selected to be 1.00 for
4986.93xb.329 and PEGirReg504x1008, we can directly flip
the corresponding bits instead of using an RG module, which
reduces the hardware overhead. Finally, the updated v(t) is
sent to the next iteration until Tmax iterations are spent or all
of the checksums from CNUs are equal to zero.

The ECU (Energy-Value Calculation Unit) modules utilize
the Leading Zero Counting Topology, described in [16], to add
inputs and convert the result into a modified one-hot code.
For instance, an ECU3 has three inputs: s0, s1 and s2. The
resulting sum, S, is represented as S3, S2, S1, where Sj = 1 if
j is less than or equal to the sum of s0, s1 and s2. To multiply
S by a factor of n, we expand each bit of S by n times,
resulting in {n{S3}, n{S2}, n{S1}}. For addition operations,
we need to calculate the energy value E by adding v

(t)
i ⊕yi. If

v
(t)
i ⊕ yi is equal to 1, E is {S, 1} and otherwise,E is {0, S}.

B. Synthesis Results
In this section, we present the synthesis results for the CW-

PGDBF decoder, which has been implemented using register

5

...
...

...
...

...
...

D

>clk

QD

>clk

Q

D

>clk

QD

>clk

Q

0

1

0

1

D

>clk

QD

>clk

Q

0

1

0

1

D

>clk

QD

>clk

Q

D

>clk

QD

>clk

Q

0

1

0

1

D

>clk

QD

>clk

Q

...
...

…
 …

… ……

……

…
…

…
…RG

…
…

……
C

o
n

n
e
ctio

n
s N

e
tw

o
r
k

1

C
o

n
n

e
ctio

n
s N

e
tw

o
r
k

2

ECU
dv1

ECU
dv1

ECU
dv2

ECU
dv2

MF

dv1

MF

dv2

MF_all

*w1

*w1

*w2

*w2

IUdv1

IUdv1

IUdv2

IUdv2

I2,11

2

N

CNU1

CNU2

CNUM-1

CNUM

1

2

M

Svi

Svi

Svi

Svi

Evi

Evi

Evi

Evi

Smax1

Smax2

Emax

I1,1

I2,1

I1,2

I2,2

I1,N

I2,N

y1

y2

yN

Early Stop

…
…

…
…

I1,1

I2,2

I1,2

I2,...

I1,...

I2,N

I2,N

Fig. 4. The top-level architecture for CW-PGDBF decoder.

transfer level (RTL) design and synthesized under both 90nm
and 28nm CMOS technologies with DC compiling tools. Since
the algorithm is based on PGDBF, our analysis focuses on
comparing the hardware resources and timing of CW-PGDBF
with that of PGDBF. We evaluated the performance of the
CW-PGDBF decoder on two benchmarks, 4986.93xb.329 and
PEGirReg504x1008, and summarize the results in Table I.

TABLE I
THE SYNTHESIS RESULTS OF CW-PGDBF DECODERS

(a) 4986.93xb.329
CW-PGDBF PGDBF

Technology 28nm 90nm 28nm 90nm
fmax(MHz) 1000 202 1000 233
Area(mm2) 0.411 2.45 0.264 1.61

tave 12.6 12.6 9.1 9.1
θ(Gbps) 791.4 159.9 1096 255.3

AE(Gbps/mm2) 1953 65.3 4151 158.6

(b) PEGirReg504x1008
CW-PGDBF PGDBF

Technology 28nm 90nm 28nm 90nm
fmax(MHz) 1000 234 1000 229
Area(mm2) 0.137 0.460 0.157 0.564

tave 3.2 3.2 19.1 19.1
θ(Gbps) 315 73.7 52.8 12.1

AE(Gbps/mm2) 2299 160.2 336.1 21.4

In Table I, the parameter fmax represents the maximum
frequency achievable in the decoding process. The average
number of iterations when α is set to 0.005 is denoted by
tave. The parameters θ and AE are respectively calculated as
θ = fmax×N

tave
and AE = fmax×N

tave×Area .
As shown in Table I, the CW-PGDBF algorithm

demonstrates an obvious performance improvement of
4986.93xb.329. It is worth noting that it also incurs a no-
ticeable increase in hardware overhead. In contrast, such a
phenomenon is not observed in the case of PEGirReg504x1008
using CW-PGDBF. This design incurs even less hardware
overhead than PGDBF while achieving a substantially better

throughput. The discrepancy in hardware overhead between
CW-PGDBF and PGDBF can be attributed to the difference in
the area of the IU and ECU modules in the respective decoders,
which were synthesized using the 28nm process, as illustrated
in Table II. The table shows the hardware resources consumed
by one IU module and one ECU in each of the two decoders,
as well as the number of such modules in each decoder.

TABLE II
THE HARDWARE AREA OF IUS AND ECUS IN CW-PGDBF AND PGDBF

UNDER 28NM CMOS TECHNOLOGY

(a) 4986.93xb.329
CW-PGDBF Number PGDBF Number

IU 3 21.042 9141 3.402 9141
IU 9 29.61 831 10.08 831

ECU 3 3.402 9141 5.922 9141
ECU 9 23.94 831 26.082 831

(b) PEGirReg504x1008
CW-PGDBF Number PGDBF Number

IU 48.74 1008 17.05 1008
ECU 2 1.26 481 2.65 481
ECU 3 2.65 283 4.03 283
ECU 4 4.03 35 7.43 35
ECU 5 7.46 98 11.34 98
ECU 7 12.85 9 17.16 9
ECU 14 380.65 1 632.39 1
ECU 15 688.65 101 1157.70 101

On the one hand, Table II demonstrates that the IUs in CW-
PGDBF require significantly more hardware resources than
those in PGDBF for the same dv . The IUs in PGDBF make
comparisons between two one-hot inputs using OR gates on
each bit, but CW-PGDBF needs two comparison operations
per block, leading to a total of N more modules being needed
and causing a substantial overhead. On the other hand, for
the same dv , ECUs in CW-PGDBF require fewer hardware
resources than those in PGDBF. As explained earlier, the
ECUs add up the inputs and convert the sum into the one-hot
format, which leads to an exponential increase as the number
of inputs grows. However, in CW-PGDBF, the input number

6

of one ECU is one less than that in PGDBF, which results in
a more significant reduction in hardware overhead compared
with the increased hardware overhead of the IU module.

Table II clearly illustrates the impact of the IU and ECU
modules on the hardware overhead of the CW-PGDBF and
PGDBF decoders for different codewords. This can explain
why the two codewords exhibit completely different results in
terms of hardware overhead. For instance, for the codeword
4986.93xb.329, the negative impact of the IU module far
outweighs the positive impact of the ECU module, resulting in
a significantly higher overall hardware overhead for the CW-
PGDBF decoder than the PGDBF decoder. Conversely, for
the codeword PEGirReg504x1008, the increase in overhead
caused by the IU module is smaller than the decrease in
overhead caused by the ECU module, leading to a surprising
reduction in overall hardware overhead for the CW-PGDBF
decoder compared with the PGDBF decoder.

The above analysis indicates that compared with the PGDBF
algorithm, the CW-PGDBF algorithm is more suitable for
codewords with short code lengths and high column weights.
This is due to the fact that under high column weights, the
optimized overhead of the ECU modules may exceed the
increased overhead of the IU modules that occurs when the
code length is short. In such a scenario, the CW-PGDBF
algorithm not only improves decoding performance but also
reduces hardware complexity, making it a very promising and
competitive algorithm.

VI. CONCLUSION

This work introduces a new decoder designed specially for
irregular LDPC codes, in which a column-wise weighting
factor is used for improved performance and a modified
probabilistic flipping rule is applied for reduced complex-
ity. Simulation results show that the proposed CW-PGDBF
algorithm can achieve a far better performance compared
with almost all existing algorithms for irregular LDPC codes.
Besides, a hardware implementation is developed for the
CW-PGDBF algorithm. The synthesis results demonstrate the
effectiveness of the CW-PGDBF decoder, and future work
may investigate improvements and optimizations for the CW-
PGDBF algorithm.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China under Grant 2022YFB4400604. (Corresponding

authors: Suwen Song; Zhongfeng Wang.)

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
information theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[2] J. Chen and M. P. Fossorier, “Near optimum universal belief propagation
based decoding of low-density parity check codes,” IEEE Transactions
on communications, vol. 50, no. 3, pp. 406–414, Mar. 2002.

[3] J. Chen, A. Dholakia, E. Eleftheriou, M. P. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Transactions on
Communications, vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[4] V. V. Zyablov and M. S. Pinsker, “Estimation of the error-correction
complexity for Gallager low-density codes,” Problemy Peredachi Infor-
matsii, vol. 11, no. 1, pp. 23–36, Jan. 1975.

[5] Y. Chen, H. Cui, J. Lin, and Z. Wang, “Fine-grained bit-flipping
decoding for LDPC codes,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 67, no. 5, pp. 896–900, May 2020.

[6] K. Deng, H. Cui, J. Lin, and Z. Wang, “Counter random gradient descent
bit-flipping decoder for LDPC codes,” in 2021 IEEE Computer Society
Annual Symposium on VLSI. IEEE, Jul. 2021, pp. 55–60.

[7] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding LDPC
codes,” IEEE Transactions on Communications, vol. 58, no. 6, pp. 1610–
1614, Jun. 2010.

[8] O. A. Rasheed, P. Ivaniš, and B. Vasić, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Communications Letters,
vol. 18, no. 9, pp. 1487–1490, Sep. 2014.

[9] K. Le, F. Ghaffari, L. Kessal, D. Declercq, E. Boutillon, C. Winstead,
and B. Vasić, “A probabilistic parallel bit-flipping decoder for low-
density parity-check codes,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 66, no. 1, pp. 403–416, Jan. 2019.

[10] H. Cui, J. Lin, and Z. Wang, “An improved gradient descent bit-flipping
decoder for LDPC codes,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 66, no. 8, pp. 3188–3200, May 2019.

[11] H. Cui, J. Lin, and Z. Wang, “Information storage bit-flipping decoder
for LDPC codes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 28, no. 11, pp. 2464–2468, Nov. 2020.

[12] M. Luby, M. Amin Shokrolloahi, M. Mizenmacher, and D. Spielman,
“Improved low-density parity-check codes using irregular graphs and be-
lief propagation,” in Proceedings. 1998 IEEE International Symposium
on Information Theory, Aug. 1998.

[13] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Improved low-density parity-check codes using irregular graphs,” IEEE
Transactions on information Theory, vol. 47, no. 2, pp. 585–598, Feb.
2001.

[14] S. Brkic, P. Ivaniš, and B. Vasić, “Adaptive gradient descent bit-flipping
diversity decoding,” IEEE Communications Letters, vol. 26, no. 10, pp.
2257–2261, Oct. 2022.

[15] D. MacKay, “David mackay’s Gallager code resources,” 2008, http://
www.inference.org.uk/mackay/CodesFiles.html.

[16] B. Yuce, H. F. Ugurdag, S. Gören, and G. Dündar, “Fast and efficient
circuit topologies for finding the maximum of n k-bit numbers,” IEEE
Transactions on Computers, vol. 63, no. 8, pp. 1868–1881, Aug. 2014.

