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Abstract
Feedforward control can greatly improve the accuracy of a manipulator by computing a control input
from the desired motion using an inverse dynamic model of the multibody system. The achievable per-
formance gain from this feedforward depends heavily on the correctness and completeness of the model.
In a model-based approach a white-box model with the equations of motion of the multibody system is
derived of which the parameters are estimated. Assuming these parameters have a clear physical mean-
ing, it is expected that the model can be used for a wide variety of trajectories. However, the “richness” of
the model is obviously limited to features included in the model structure. Alternatively, in a data-driven
approach a black-box model is estimated purely from data. E.g. using machine learning techniques a
Feedforward Neural Network (FNN) can be trained that does not require any knowledge about the sys-
tem dynamics and its parameters. However, care has to be taken to avoid overfit and incorrect model
outputs are likely for operating conditions that were not sufficiently included in the training data.
In [2] we augmented the black-box FNN model with a Lagrangian Neural Network (LNN), or Deep
Lagrangian Networks (DeLaN) [3], to improve the robustness of feedforward control for a manipulator
with two degrees-of-freedom (2-DOF) where the motion is enabled using flexure joints, figure 1. In this
manipulator the actuator forces are dominated by conservative forces arising from the accelerations of
the links and the deformations of the compliant joints. It was shown that the physical structure of the
equation of motion can be embedded in the DeLaN such that it can be trained robustly with a relatively
small data set. In parallel a FNN was needed to represent the relatively small remaining residue.
In the present paper the physical structure of the DeLaN is extended to a more general Physics Informed
Neural Network (PINN) such that no additional black-box model is needed anymore.
In the 2-DOF manipulator shown in figure 1, two actuators drive the rotation of two arms to achieve
in-plane end-effector motion in two translation directions “X” and “Y”. Due to the flexure joints, the
manipulator shows rather smooth operation with low friction and hysteresis. Contributions from the link
mass and joint stiffness result in well-defined terms in the non-linear equation of motion expressed in
mass matrix MMM(qqq) and potential energy V (qqq) that both are functions of the independent generalised co-
ordinates qqq. The wiring of the actuators and sensors results in some (small) damping that is assumed
to combine linear viscous and Coulomb damping, both depending on the velocity q̇qq and described with
matrices DDDv(qqq) and DDDc(qqq), respectively. In the equation of motion for the forces FFF applied at the inde-
pendent generalised coordinates qqq all contributions are combined into

FFF = MMM(qqq)q̈qq+ ṀMM(qqq)q̇qq− 1
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Figure 1: The 2-DOF manipulator with flex-
ure joints [1] (photo by Ger Folkersma). Figure 2: DeLaN+D-structure (detailed in full paper).



Figure 3: Comparison between simulated 2-DOF manipulator dynamics and DeLaN+D force estimates
for the total force (leftmost plots) as well as split into four components (other plots). In case of a (near)
perfect agreement the simulated data are hidden and the plots in the bottom row confirm the small error.

This equation of motion for the inverse dynamics of the manipulator is implemented in a PINN that
effectively extends the previously used DeLaN [2] with the viscous-Coulomb damping terms into a “De-
LaN+D” network, figure 2. The damping terms are added similarly to the mass term, where the mass,
viscous and Coulomb matrices are guaranteed to be symmetric and positive definite.
The performance of the DeLaN+D network has been evaluated with simulated and experimental data.
In the leftmost plots of figure 3 the total predicted actuator forces in both directions “X” and “Y” are
compared to the simulated plant dynamics and show an agreement of approximately 99.8%. The other
plots show this comparison for four separate components that contribute to the total force in agreement
with Eq. (1), i.e. the first term, the second and third terms, the stiffness term, and the damping terms,
respectively. It can be seen that most mean square errors (MSE) are small with a relatively larger misfit
only in the small contribution of the Coriolis terms.
The closed-loop tracking accuracy in both “X” and “Y” directions has been evaluated experimentally as
will be detailed in the paper. The joint position errors are compared using only feedback, i.e. no feed-
forward, and adding the feedforward force estimated with a white-box model or the DeLaN+D network,
respectively. Both feedforward estimates show similar performance, reducing the mean absolute error
(MAE) with 92%. Furthermore, the effectiveness of the DeLaN+D feedforward action is confirmed by
comparing it with the remaining feedback control. It appears that the DeLaN+D estimate accounts for
on average 86% of the total control force.
These results demonstrate that the feedforward control generated by the trained DeLaN+D network can
be applied successfully for the considered manipulator. The robustness and more general applicability of
this approach will be investigated in future work.
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