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Abstract 

 

Given the busy period major importance in queuing systems, it is also relevant to 

study the busy cycle. In this work some interesting results on 𝑀|𝐺|∞ queue 

system busy cycle distribution are presented. They are emphasized for the M|D| 

queue system and a numerical method to compute the M|D| queue system busy 

cycle distribution function is presented. 
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1 Introduction 
 

A queue system busy period is a period that begins when a customer 

arrives at the system finding it empty, ends when a customer abandons the 

system letting it empty and, throughout its progress, there is always at 

least one customer present. An idle period followed by a busy period is a 

busy cycle. 

     In the M|G| queue system the customers arrive according to a 

Poisson process at rate  , receive a service which time length is a positive 

random variable with distribution function ( ).G  and mean   and, when 

they arrive, each one finds immediately an available server. Each 

customer service is independent from the other customers’ services and 

from the arrivals process. The traffic intensity is  = . 

     Call I, B and Z the time length random variable of the idle period, the 

busy period and the busy cycle respectively; 𝑖(𝑡), 𝑏(𝑡) and 𝑧(𝑡)  are the 

correspondent probability density functions and 𝐼(𝑡), 𝐵(𝑡) and 𝑍(𝑡) the 

distribution functions. 
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2 General Results 
Evidently 𝑍 = 𝐼 + 𝐵 and being I and B independent, see [2], the 

distribution of Z is the I and B distributions convolution. Then, being 

�̅�(𝑠), 𝐼(̅𝑠) and �̅�(𝑠) the Z, B and I, respectively, Laplace transforms 

�̅�(𝑠) = 𝐼(̅𝑠) �̅�(𝑠)            (2.1) 

where 

𝐼(̅𝑠) =
𝜆

𝜆 + 𝑠
                      (2.2) 

as it happens for any queue with Poisson arrivals process and 

                                                      �̅�(𝑠) = 1 + 𝜆−1 (𝑠 −

1

∫ 𝑒−𝑠𝑡−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡
0 𝑑𝑡

∞
0

)                  (2.3),  

see again [2]. 

   Consequently 

            𝐸[𝑍𝑛] = ∑ (𝑛
𝑝

)
𝑝!

𝜆𝑝
∞
𝑝=0 𝐸[𝐵𝑛−𝑝], 𝑛 = 1,2, …                     (2.4) 

where, see [6], 

𝐸[𝐵𝑛] = (−1)𝑛+1 {
𝑒𝜌

𝜆
𝑛 𝐶(𝑛−1)(0) − 𝑒𝜌 ∑(−1)𝑛−𝑝 (

𝑛

𝑝
) 𝐸[𝐵𝑛−𝑝]𝐶(𝑝)(0)

𝑛−1

𝑝=1

}, 

 𝑛 = 1,2, …  (2.5) 

and 

𝐶(𝑛)(0) = ∫ (−𝑡)𝑛𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡

0 𝜆(1 − 𝐺(𝑡))𝑑𝑡,
∞

0

𝑛 = 01,2, …  (2.6). 

    So     

𝐸[𝑍] =
𝑒𝜌

𝜆
         (2.7) 



 

 

 

 

does not depend on the service time distribution form, except for its 

mean
2
. But 𝐸[𝑍𝑛], 𝑛 ≥ 2 depend on the whole service time distribution 

structure. 

    For the M|D| queue system – constant
3
service times with value α - 

 

�̅�(𝑠) = 1 + 𝜆−1 (𝑠 −
(𝑠 + 𝜆)𝑠

𝜆𝑒−(𝑠+𝜆)α + 𝑠
)                     (2.8) 

obtaining, by Laplace transform inversion, see [3]4, 

𝑏(𝑡) = ∑ (
𝑑

𝑑𝑡

𝑐(𝑡)

𝑒−𝜌
) ∗ (

𝑑

𝑑𝑡

1 − 𝑑(𝑡)

1 − 𝑒−𝜌
)

∗𝑛

𝑒−𝜌(1 − 𝑒−𝜌)𝑛      (2.9)

∞

𝑛=0

 

where   
𝑐(𝑡)

𝑒−𝜌 = {
0, 𝑡 < 𝛼
1, 𝑡 ≥ 𝛼

= 𝐺(𝑡)   and   
1−𝑑(𝑡)

1−𝑒−𝜌 = {
1−𝑒−𝜆𝑡

1−𝑒−𝜌 , 𝑡 < 𝛼

1, 𝑡 ≥ 𝛼
   . 

    Then 

�̅�(𝑠) = 1 −
𝑠

𝜆𝑒−(𝑠+𝜆)α + 𝑠
              (2.10) 

and 

                                𝑧(𝑡) = (𝜆𝑒−𝜆𝑡) ∗ 𝑏(𝑡), 𝑡 ≥ 0           (2.11). 

      Still 

               
𝐶(0)(0) = 1 − 𝑒−𝜌

𝐶(𝑛)(0) = −𝑒−𝜌(−𝛼)𝑛 −
𝑛 

𝜆
 𝐶(𝑛−1)(0), 𝑛 = 1,2, … 

      (2.12), 

see again [6]. 

 

2 In these circumstances it is usual to say that it is insensible to the service time distribution. 

3 That is: Deterministic service times. 

4 ∗ is the convolution operator. 



 

 

 

 

3 The 𝑴|𝑫|∞ Queue Busy Cycle Distribution Function   
The expression (2.11) for 𝑧(𝑡), in the former section, allows the busy 

cycle distribution structure interpretation for the 𝑀|𝐷|∞ queue. But it 

fails in the task of presenting an easy expression for the distribution 

function 𝑍(𝑡) computation. 

    This may be done, for example, with an algorithm created by Platzman, 

Ammons and Bartholdi III, see [1] 5
, that allows the distribution functions 

computation since the correspondent Laplace transform in round form is 

known, as it is now the case, remember (2.10). Unhappily the same does 

not happen for other  𝑀|𝐺|∞ systems what inhibits the use of this 

algorithm.   

 

5 It is generally said that an algorithm is “accurate” if it looks for solving a problem 

“close” to the one that is supposed to solve. An algorithm is “precise” if it gets a solution 

“close” to the one of the problem that it is trying to solve. .More concretely, being 

∆𝑡 (∆𝑡 > 0) the accuracy and ∆𝑝 (0 < ∆𝑝 <
1

2
) the precision required, the 

approximation 𝜏 of   𝑃[𝑋 > 𝑡] must satisfy the condition 

      𝑃[𝑋 ≥ 𝑡 + ∆𝑡] − ∆𝑝 ≤ 𝜏 ≤ 𝑃[𝑋 > 𝑡 − ∆𝑡] + ∆𝑝          (3.1).       

   Platzman, Ammons and Bartholdi III suggest doing 

        𝜏 =
𝑈−𝑡+∆𝑡

𝑈−𝐿+2∆𝑡
+ ∑

𝛼𝑛2

𝜋𝑛

𝑁
𝑛=1 𝑖𝑚{(𝛽𝑛 − 𝛾𝑛)𝐿(𝑗𝜔𝑛)}              (3.2) 

where 𝐾 = log
2

∆𝑝
, D=

∆𝑡

√2𝐾
, 𝜔 =

2𝜋

𝑈−𝐿+2∆𝑡
, N=[

2𝐾

𝜔∆𝑡
], being [∙] the characteristic of a real 

number, 𝛼 = 𝑒−𝐷2𝜔2

2 , 𝛽 = 𝑒𝑗(𝑈+∆𝑡)𝜔,  𝛾 = 𝑒𝑗𝑡𝜔, 𝑈 and 𝐿 are numbers such that 1 −

𝑃[𝐿 ≤ 𝑋 ≤ 𝑈] ≪ ∆𝑝, 𝑗 = √−1 and 𝑖𝑚(∙) designates the imaginary part of a complex 

number. 𝐿(𝑗𝜔𝑛) is the Laplace transform value in 𝑗𝜔𝑛. They demonstrate that the 

approximation so defined fulfills the condition (3.1).  

 



 

 

 

 

     The algorithm implementation, for details see [4], is computationally 

performed through a FORTRAN program, see [5], and the results of some 

experiences are presented in the Annex. 

     The values of α, λ, Δt and Δp must be specified and the values of t for 

which the values of 𝑍(𝑡), called 𝑍𝑐(𝑡), are wanted.  

     As for the goodness of the obtained results, it is tested computing the 

errors of 𝐸[𝑍𝑐] and 𝑉𝐴𝑅 [𝑍𝑐], computed after them, in relation with the 

true values of 𝐸[𝑍] and 𝑉𝐴𝑅[𝑍] that are available for this queue system. 

The exception is the first experience where, with α=0, the situation is the 

one of a pure Poisson process. So, the results obtained (2nd column in 

Table 1) are compared with the Poisson process ones (3rd column in Table 

1). Generally, the 𝑍𝑐 values fit well. 
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ANNEX 
 
Table 1. Experience 1: α=0, λ=1, Δ t= 0.01 and Δp=0,001 

t 𝑍𝑐(t) Poisson Process 

0 0.00020928263 0.000… 

0.5 0.39354845 0.39346934 

1 0.63201874 0.632120559 

1.5 0.77676630 0.77686984 

2 0.86456292 0.864664717 

2.5 0.91781115 0.917915001 

3 0.95011103 0.95021212932 

3.5 0.96969878 0.969802617 

 

Table 2. Experience 2: α=1, λ=1, Δt=0.01 and Δp=0,001 

t 𝑍𝑐(t) t 𝑍𝑐(t) 

0.5 0.00070788896 4.5 0.89332950 

 1 0.00078194999 5 0.92884773 

1.5 0.18467983 5.5 0.95303684 

2 0.36851909 6 0.96932029 

2.5 0.53561949 6.5 0.98016983 

3 0.66881525 7 0.98734205 

3.5 0.76919734 7.5 0.99205017 

4 0.84198290 

𝐸[𝑍] = 2.718281829

𝐸[𝑍𝑐] = 2.605018789
𝜀 = 4%

 

𝑉𝐴𝑅[𝑍] = 1.9444392442

𝑉𝐴𝑅[𝑍𝑐] = 1.875647136
𝜀 = 3.5%

 

 

Table 3. Experience 3: α=1, λ=2, Δt=0.01 and Δp=0,001 

t 𝑍𝑐(t) t 𝑍𝑐(t) 

0.5 0.00038790601 7.5 0.92047894 

1 0.00045109048 8 0.93518191 

1.5 0.13572108 8.5 0.94718128 

2 0.27099844 9 0.95697385 

2.5 0.39718168 9.5 0.96496373 

3 0.50513958 10 0.97148519 

3.5 0.59509700 10.5 0.97680729 

4 0.66922503 11 0.98115152 

4.5 0.72997826 11.5 0.96469930 

5 0.77964925 12 0.98759257 

5.5 0.82022225 12.5 0.98995178 

6 0.85335999 13 0.99188309 

6.5 0.88039940 13.5 0.99344980 

7 0.92047130 14 0.99473917 



 

 

 

 

 

𝐸[𝑍] = 3.69452805

𝐸[𝑍𝑐] = 3.606224458
𝜀 = 2.4%

 

𝑉𝐴𝑅[𝑍] = 6.260481408

𝑉𝐴𝑅[𝑍𝑐] = 5.358674148
𝜀 = 14%

 

 

Table 4. Experience 1: α=2, λ=1, Δt=0.01 and Δp=0,01 

t 𝑍𝑐(t) t 𝑍𝑐(t) 

0.5 0.00039526703 14 0.90255320 

1 0.00039531649 14.5 0.91201680 

1.5 0.00039744257 15 0.92056465 

2 0.00042999497 15.5 0.92828899 

2.5 0.0068082088 16 0.93526571 

3 0.13566480 16.5 0.94157290 

3.5 0.20333376 17 0.94726365 

4 0.27105104 17.5 0.95241045 

4.5 0.33643096 18 0.95705801 

5 0.39722785 18.5 0.96125179 

5.5 0.45344632 19 0.96504825 

6 0.50523263 19.5 0.96847575 

6.5 0.55233818 20 0.97157025 

7 0.59518069 20.5 0.97437018 

7.5 0.63407224 21 0.97689431 

8 0.66930794 21.5 0.97917509 

8.5 0.70120662 22 0.98124003 

9 0.73005634 22.5 0.98309797 

9.5 0.75615197 23 0.98477888 

10 0.77973318 23.5 0.98630297 

10.5 0.80105113 24 0.98767584 

11 0.82031202 24.5 0.98891764 

11.5 0.83771467 25 0.99003869 

12 0.85343867 25.5 0.99104917 

12.5 0.86764937 26 0.99196279 

13 0.88047999 26.5 0.99279278 

13.5 0.89207541 27 0.99353820 

𝐸[𝑍] = 7.389056099

𝐸[𝑍𝑐] = 7.200722486
𝜀 = 2.5%

 

𝑉𝐴𝑅[𝑍] = 25.04192563

𝑉𝐴𝑅[𝑍𝑐] = 20.69584719
𝜀 = 17%

 

 
 

 

 


