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Abstract— Medical image analysis and classification, using 
machine learning, particularly Convolutional Neural 
Networks, have demonstrated a great deal of success.  
Research into mammography image classification tended to 
focus on either binary outcome (malignancy or benign) or 
nominal (unordered) classification for multiclass labels [1]. 
The industry standard metric for radiologist’s classification 
of mammography images is a rating scale called BI-RADS 
(Breast Imaging Reporting and Data System), where values 
1 through 5 are a distinct progression of assessment that are 
intended to denote higher risk of a malignancy, based on the 
characteristics of anomalies within an image [1][2][3]. The 
development of a classifier that predicts BI-RADS 1-5, 
would provide radiologists with an objective second opinion 
on image anomalies. In this paper, we applied a novel Deep 
Learning method called OHPLall (Ordinal Hyperplane 
Loss - all centroids), which was specifically designed for 
data with ordinal classes, to the predictions of BI-RADS 
scales on mammography images. Our experimental study 
demonstrated promising results generated by OHPLall and 
great potential of using OHPLall models as a supplemental 
diagnostic tool.  

Keywords—ordinal hyperplane loss, ordinal classification, 
deep learning, machine learning, mammography, BI-RADS 

 

I. INTRODUCTION 
The American Cancer Society reports that, in 2017, over 

300,000 people in the United States were diagnosed with breast 
cancer and over 40,000 people died from the disease. Due to 
improvements in treatment and early detection, the death rates 
that are attributed to breast cancer have declined 39% from 
1989 to 2015 [1]. Developing a mammography image BI-
RADS classifier that provide radiologists with an additional 
tool for early detection of breast cancer may help save 1,000’s 
of lives per year [2].  

Much of the work in mammography classification focuses on 
a single binary outcome (malignant-benign) or take the 
approach that used to analyze “multi-class” label data, where a 

label with N different classes is recode into an Nx1 vector of N-
1 0’s and a single value of 1. The first would require an over-
simplification of the BI-RADS classification problem, while 
the second doesn’t include the ordering information of the BI-
RADS labels/classes [3]. 

A third approach uses “Ordinal Regression” which is 
essentially modification of the multi-class DNN approach [9].  
In this approach, a single Deep Neural Network is used to 
predict the classes. Their approach is very similar to a multi-
label classification problem using a DNN, where multiple 
outputs are estimated with all elements of the output layer being 
the value from a sigmoid function. To set up the analysis for k 
ordinal classes, the label value for each record is recoded into a 
k-1 length vector. For a given class value, ‘a,’ all index values 
of the vector with position value (using the standard 0 index 
value for the 1st position in the vector) that are less than ‘a’ 
minus the minimum ordinal value are coded with a 1. All other 
values are coded with a zero [9].  

The three ordinal class case, with ordinal values ‘1’, ‘2’ and 
‘3’, is illustrated below (Table 1). For the three-class problem, 
the neural network essentially estimates two binary models. 
The first output predicts the likelihood that the label is greater 
than ‘1’, and the second predicts the likelihood that the label is 
greater than ‘2.’ Once the algorithm converges or reaches a 
predefined stopping point, a classification rule, typically 
whether or not the value is greater than 0.5, converts each 
output vector into a binary array that is similar to the one used 
for training. Ordinal classes are assigned based on which 
encoded vector that the binary output matches. If the first 
position is zero then the record is assigned the value of the 
minimum label [4].  

 
Table 1 Ordinal Regression Three Class Label Encoding 

Label Vector 
1 [ 0, 0 ] 
2 [ 1, 0 ] 
3 [ 1, 1 ] 

 
It should be noted that, while the vast majority of class 

predictions will conform to one of the vector values of the 



encoded ordinal classes, it is possible for vector values that do 
not conform to exist. In the three-class problem, it is possible 
that a prediction of ‘[0, 1]’ results from applying the resulting 
model to a data record (either in the training set, a test or 
validation set or to completely new data). It is left to the analyst 
to determine how to classify these nonconforming results.  

In [5], we introduced a novel loss function called Ordinal 
Hyperplane Loss (OHPL) that was specifically for ordinal 
classification.  OHPL first uses a set of parallel hyperplanes to 
represent samples in a feature space. Then each class can be 
represented using the centroid of all the hyperplanes that belong 
to this class (denoted as Hyperplane Centroid).  Based on the 
definition of Hyperplane Centroid, OHPL further quantifies 
both the discrepancy between the ordering of hyperplane 
centroids in the feature space and the given ordinal relationship 
among the classes, and the relative closeness of each sample 
towards the Hyperplane Centroids of the classes that this sample 
doesn’t belong to.  We further developed a deep learning 
strategy called OHPLNet that learns to map data from its 
original feature space to an optimal feature space where the 
Ordinal Hyperplane Loss is minimized.  In [5], experimental 
studies showed that OHPLNet consistently outperforms other 
ordinal classification methods on multiple data sets.  

However, in the formulation of OHPL that is described in [5], 
the hyperplane centroid ordering is applied to the full training 
set within each learning iteration, which makes this approach 
difficult to scale to large data sets, especially in a computing 
environment with limited computing resources. In one of our 
experimental studies, we laid OHPLNet upon a simple CNN to 
perform ordinal classification on medical images using a 
computer with a NVIDIA 1080 Ti GPU that has 10 GB of GPU 
memory.  In this experiment, the maximum number of images 
that can be processed in a training batch is 500. In order to apply 
OHPL strategy to mammography image classification, we 
proposed in this paper an enhanced OHPL version that is called 
OHPLall. OHPLall is able to effectively assess the loss that is 
caused by improper ordering of Hyperplane Centroids in the 
feature space by using mini-batch of data that most likely only 
contains small numbers of samples from a given class. Our 
experimental results showed that the performance of 
mammography image classification using OHPLall is promising 
and better than ordinal regression.  

The rest of the paper is organized as follows. In section II, we 
review the basic concepts of our OHPL.  Then we briefly 
describe OHPLNet, a deep learning strategy using OHPL in 
section III.  In section IV, our new development of the OHPLall 
strategy is presented. We further applied OHPLall to ordinal 
classification on mammography image in section V and 
analyzed the experimental results in section VI.  Finally, we 
conclude our paper in section VII.  

 

II. BASIC CONCEPTS OF OHPL 

As the name implies that Ordinal Hyperplane Loss (OHPL) 
uses ordered linear hyperplanes, as the basis for calculating the 
loss for data distribution in a feature space. The loss function is 
designed to utilize simple scalar distance calculations, 
combined with a standard application of large margin loss. The 

loss function enables the use of stochastic gradient descent, in 
optimizing data transformations. 

A linear hyperplane can be expressed as a simple 
mathematical equation of the form: 𝒘𝑻𝒙 + 𝑐 = 0w)x + c = 0, 
where 𝒘 w and 𝒙x are vector valued and c is a scalar constant. 
A set of parallel hyperplanes of this form differ in their c 
values. As a direct consequence, the ‘distance’ between two 
parallel hyperplanes can be defined to be the absolute value of 
the difference in their c values divided by	|𝒘|.  Given 𝒘 w, we 
further denote the hyperplane that goes through the ith data 
point 𝒙𝒊x2 can be defines as the set of points satisfying:  

𝒘𝑻𝒙 + 𝑐3 = 0					(1) 

then bring 𝒙𝒊 into (1), we have 

𝒘𝑻𝒙𝒊 + 𝑐3 = 0			(2𝑎) 

𝑐3 = −𝒘𝑻𝒙𝒊			(2) 

further bring (2) into (1), we have the expression of the 
hyperplane that goes through  𝒙𝒊 

𝒘𝑻𝒙 −𝒘𝑻𝒙𝒊 = 0		(𝟑)  

Given the hyperplanes going through each data point in a 
feature space, we can now represent a class in that feature space 
by calculating its Hyperplane Centroid (HC). For instance, 
the hyperplane centroid for the kth class, denoted as 𝐻𝐶>HCA, 
can be expressed as 

					𝐻𝐶>:	𝒘𝑻𝒙 −
1
𝑛>

D 𝒘𝑻𝒙𝒊
EFG>

= 0				(4) 

Given the definition in (4), all ordinal classes are represented 
as a group of hyperplane centroids, which are parallel to each 
other, in the feature space. Now we define OHPL, such that we 
can quantify the loss in a data distribution that is produced by a 

data transformation  𝜑(𝑥)  with respect to a given 
vector w w.  According to the intuitive criteria of an optimal 
data distribution that are described in section 3.1, OHPL 
consists two components, namely Hyperplane Centroid Loss 
and Hyperplane Point Loss.  Hyperplane Centroid Loss reflects 
the loss caused by non-optimal ordering of Hyperplane 
Centroids per the ordinal relationship of the classes, while 
Hyperplane Point Loss reflects the loss caused by non-optimal 
relationship between individual data points and the hyperplane 
centroids of their classes.  

1) Hyperplane Centroid Loss(HCL) 

Hyperplane Centroid Loss (HCL), the first component of 
OHPL, ensures that the hyperplane centroids are properly 
ordered, per the ordering of the classes. This ordering can be 
expressed as a difference in adjacent HCs. If the adjacent HCs 
are properly ordered, then the transitive property ensures that 
all HC’s are properly ordered. Therefore, we require that the 
HCs for adjacent classes k and k+1 adhere to:  

	𝐻𝐶> − 𝐻𝐶>KL > 𝛿 , for   This 
means, if 𝐻𝐶>KL is at least 𝛿  from 𝐻𝐶>



, then the ordering 
is correct with sufficient distance between the adjacent classes. 
Since the difference is unbounded from above, this formulation 
doesn’t introduce a distance assumption. Given adjacent classes 

k and k+1, and 𝛿 > 0 the Hyperplane Centroid Loss 
contribution of 𝐻𝐶>HCA relative to 𝐻𝐶>KLHCAKL is defined as:  

 

𝐻𝐶𝐿 =Dmax(𝐻𝐶3 − 𝐻𝐶3KL + 𝛿, 0)
>SL

3GL

		(5) 

 
2) Hyperplane-Point Loss (HPL) 

 
The second component of OHPL is “Hyperplane-Point Loss” 

(HPL). In calculating this loss component, individual data 
points are compared to a specific set of Hyperplane Centroids, 
to access the point’s contribution to the loss of the data 
distribution. HPPL is actually, the sum of two analogous loss 
functions, that work in different “directions” a la the 
formulation of (5). 

For the points, in a given class, if we “look” in the 
“increasing” direction (direction of larger ordinal class value), 
we only want the points that are higher than the HC for the point 
to potentially contribute to the loss (those below will be 
examined later). For points that are above their HC, but are 
already sufficiently close to their HC, there isn’t much benefit 
in drawing them closer, so we want their loss contribution to be 
zero. Therefore, the HPL uses a margin to ensure that points 
that do not contribute to loss are closer to their HC than the 
midpoint between the HC. In Figure 1, the circled points are 
higher than the margin above its HC, so they contribute to the 
total HPL value. Note that the dotted margin line/threshold is 
closer to the HC, than to the adjacent HC. 

 

 
Figure 1. Computing HPL in Increasing Direction 

 
Similarly, when we look in the decreasing direction, points 

that are further from their HC than the margin, will contribute 
to the HPL total. In Figure 2, the three circled points contribute 
to HPL. 

The two components of the HPL (an increasing and a 
decreasing) that are summed to arrive at the total HPL. 
Formally, given a dataset SS , let  to be the proportion of 
distance between adjacent HCs, HC be the hyperplane centroid 
that represents the class that  𝐱𝐢 ∈ S  belongs to, 
HCKLHCKL is the higher hyperplane centroid that is adjacent to 

HC, and HPL2K HCL2K be the HPL for the point 𝐱𝐢 ∈ S in 
the increasing direction, then we have:  

0.5 < 𝛾 < 1.0 

𝑝𝑜𝑖𝑛𝑡	𝑚𝑎𝑟𝑔𝑖𝑛 = 	𝛾(𝐻𝐶KL − 𝐻𝐶) 

		𝐻𝑃𝐿3K = maxf(𝑓(𝒙3) − 𝐻𝐶) − (𝐻𝐶KL − 𝐻𝐶) + 𝛾(𝐻𝐶KL − 𝐻𝐶), 0h 

= max	(𝑓(𝒙3) − 𝛾𝐻𝐶 − (1 − 𝛾)𝐻𝐶KL, 0) 

Similarly, in the decreasing direction, 

𝐻𝑃𝐿3S = max	(𝛾𝐻𝐶 − 𝑓(𝒙3) + (1 − 𝛾)𝐻𝐶SL, 0) 

     Then, the overall HPL will be the aggregation of (𝐻𝑃𝐿K +
𝐻𝑃𝐿S) over all data points in 𝑆. 
 

𝐻𝑃𝐿 = D𝐻𝑃𝐿K + 𝐻𝑃𝐿S
𝒙𝒊∈j

			(6) 

 

 
Figure 2. Computing HPL in Decreasing Direction 

 

3) Ordinal Hyperplane Loss (OHPL) 

Finally, the Ordinal Hyperplane Loss (OHPL) is defined as 
the weighted aggregation of HCL and HPL, as shown below, 
where 𝛼 ≥ 1 reflects the importance of HCL in OHPL with 
respect to HPL.  

𝑂𝐻𝑃𝐿 = 𝛼𝐻𝐶𝐿 + 𝐻𝑃𝐿				(7) 

 

III. OHPLNET: THE DEEP LEARNING STRATEGY USING OHPL 

Given the definition of OHPL, this section describes a deep 
NN architecture for ordinal classification based on OHPL. 
Figure 3 shows a simple deep neural network (DNN) model that 

represents a non-linear transformation  that maps input data 
from their original space to a n-dimensional space. We further 

add the last layer 𝒘𝑻𝝓(𝒙)  on the top of the 

transformation 𝝓(𝒙).  Then we use the weights of the last 
layer, namely w w , to define 𝑚  parallel hyperplanes to 
represent m  ordinal classes, such that the kth class will be 
represented by the hyperplane whoes expression is shown in 
(4). 

Based on the hyperplane representations of the ordinal 
classes, we can calculate the Ordinal Hyperplane Loss (OHPL) 
based on the formula (7). Then the DNN can learn both an 
optimal transformation 𝛟  and an optimal vector w  by 
minimizing the OHPL (recall that w determines the direction of 



those parallel hyperplanes in the feature space that is mapped by 
𝛟.  

 
Figure 3: OHPLNet 

 
In order to facilitate the application of OHPL deep learning 

strategy on different types of data for ordinal classification, we 
further brand this architecture as OHPLNet, a deep architecture 
that users can directly apply to their ordinal classification 
problems. Formally, an OHPL-Net contains two components. 
The first component is called 𝝓 layers, which are fully 
connected deep nets that represents a non-linear transformation 
of the input data. The second component is called Hyperplane 
layer, which is a one-layer one-output neuron network 
representing the direction of Hyperplane Centroids. Again 
OHPLNet uses OHPL to learn optimal 𝝓 and optimal parallel 
hyperplanes. If users’ classification tasks involve unstructured 
data, OHPLNet can be put upon those deep neuron architectures 
that are built on specific unstructured data, such as 
Convolutional Neuron Network (CNN) [6] [7] on image data as 
shown in Figure 3 and Recurrent Neural Network (RNN) [8] on 
text data as shown in Figure 4. 

 

 
Figure 3. OHPLNet upon CNN for Image Ordinal Classification 

 

 
Figure 4. OHPLNet upon RNN for Sequential Data Ordinal 

Classification 

 

IV. FURTHER DEVELOPMENT OF OHPLALL 

The initial work on OHPL provided a meaningful 
improvement over the best ordinal classifiers that are available 
today [5], but the methodology had some concerns that needed 
to be addressed. All of the benchmark data sets were relatively 
small in size, so the initial algorithm design was able to use the 
entire dataset, for calculating the hyperplane centroids for each 

batch submission. Since the design for that part of the algorithm 
used straightforward matrix operations on structured data, the 
conceptual investigation could be conducted without concern for 
that the standard benchmark datasets were too large to run in a 
single pass. To apply the OHPL strategy to large dataset, 
algorithmic changes were going to be required. Possible 
directions of changes include 1) incorporating efficient matrix 
multiplication that could be distributed to multiple computing 
nodes; 2) developing effective mini-batch variant of OHPL such 
that the loss caused by improper ordering of Hyperplane 
Centroids in the feature space can be assessed using mini 
batches of data that most likely only contains small amount of 
samples from partial classes. In this development, we adopted 
the second direction, not only because mini-batch based deep 
neural nets have a solid history of providing improved 
generalizability over large data set, but also the scalability 
brought by mini-batch learning strategy is far less subject to the 
restriction of computing powers.  In order to develop mini-batch 
variant of OHPL, we made the following changes on the HCL 
estimation.  

1) With the original OHPL that works on the whole data set, 
class labels were used to calculate an integer “distance” between 
adjacent hyperplane centroids. However, with mini-batch 
strategy, not all class labels may appear in a mini batch. For 
example, if the full dataset contained six distinct class labels, 
‘0’-‘6’, but a mini-batch only contained records with values ‘2’ 
and ‘4’, then instead of requiring a minimum one-unit distance 
between the respective hyperplane centroids, the threshold will 
be set to (4 − 2) ∗ 𝛿.  

2) Instead of relying on the transitive property that the 
original OHPL uses to calculate HCL based on adjacent 
hyperplane centroids, we propose a new way to calculate the 
HCL loss component in a mini-batch by comparing all classes 
that were represent in the mini-batch to each the other classes 
within the batch. The new formulation for HCL is shown in 
equation (8). 

 
𝐻𝐶𝐿 =Dmaxf𝐻𝐶3 − 𝐻𝐶s + (𝑗 − 𝑖) ∗ 𝛿, 0h

3us

		(8) 

 
Given that this new mini-batch strategy compares every pair 

of classes that appear in a mini batch for HCL estimation 
(instead of just comparing adjacent pairs in the original 
formation of OHPL), we call this strategy OHPLall. The 
complete OHPLall algorithm is given in Figure 5. 

 
 



 
Figure 5. OHPLall Algorithm 

 

V. MAMMOGRAPHY IMAGES CLASSIFICATION USING OHPLALL 

Radiologists use the first six categories, of the seven-point 
BI-RADS (Breast Imaging Reporting and Data System) rating 
system to classify mammography images.  The seventh 
category is used for images that are of breasts with a known 
malignancy, that was confirmed via a biopsy. The zero category 
is used, for images where classification is uncertain and 
additional information is required. Categories one through six 
are a sequence of ordinal classes [2].  

 
Table 2 BI-RADS Category Scale [2] 

Category Definition 

0 Additional imaging evaluation and/or comparison to 
prior mammograms is needed. 

1 Negative 

2 Benign (non-cancerous) finding 

3 Probably benign finding – Follow-up in a short time 
frame is suggested 

4 Suspicious abnormality – Biopsy should be considered 

5 Highly suggestive of malignancy – Appropriate action 
should be taken 

6 Known biopsy-proven malignancy – Appropriate action 
should be taken 

 

While the BI-RADS rating scale has seven classes, only six 
of the classes (1-6) are ordered (see Table ). In addition, a rating 
of 6 is only used when the results of a biopsy of the abnormality 

confirms a malignancy. As such, it wouldn’t be used at the time 
when the radiologist was reading the images.  

 
Table 3: CBIS-DDSM Annotations [9] [10] 

Annotation 
Relation 
to Scan 
Event 

Definition/Values 

Side Prior to Left or right breast 

View Prior to CC - craniocaudal 
MLO - mediolateral oblique 

Density 
Rating Prior to Breast density rating 

Abnormality 
Type After 

Calcification (2 annotations) –   
Type and distribution 
Mass (2 annotations)  – shape and 
margin 

Assessment After BI-RADS rating (0, 2-5) 

Pathology 
After Image 
Assessment 

Benign Without Callback 
Benign 
Malignant 

 

The Cancer Imaging Archive (TCIA) contains a database of 
mammography images, called CBIS-DDSM (Curated Breast 
Imaging Subset of DDSM). The database contains over 2,600 
images selected and annotated by trained mammographers 
(Table 3 shows the format of the annotation). Released in 1997, 
they remain a valid source of curated mammography data for 
public research into mammography classification [10] [11]. 
Several studies, analyzing the CBIS-DDSM data, were 
published in the past year or two, reporting a variety of 
classification algorithms, that demonstrate good success in 
using DNN’s [12] [13].  The goal of this research is to analyze 
mammography images from the CBIS-DDSM database that 
have been classified by radiologists, to build an image 
classification model using OHPLall to predict BI-RADS 
categories two through five. The CBIS-DDSM database 
contains three types of images, which differ by size:  

1. Full mammography images 
2. Images that are cropped for standardization for use 

in computer-aided diagnosis and detection (CADx 
and CADe, respectively). Regions of interest are at 
the centroid of the image.  

3. Regions of Interest (ROI) images are smaller 
images that focus more directly on the 
abnormality.  

 
    The ROI scans vary in size from 70 pixels to 3,000 pixels but 
are heavily skewed to under 1,000 pixels per side. Due to their 
relatively small size, these images are better choices for 
analysis on a desktop or laptop. Therefore, in this experimental 
study, we used the ROI images. The ROI images have two 
perspectives (Mediolateral Oblique or MLO and Craniocaudal 
or CC). Both perspectives were used in this research. Images 



are also split into Calcification and Mass subsets. For this 
analysis, the Calcification images are used. 
    For images larger than 1,024 pixels per row or column, the 
image outer regions are cropped to result in a maximum pixel 
size of 1,024 in each dimension. Images that are smaller than 
1,024 pixels in their rows or columns are zero padded on the 
outer edges (equally on both dimensions). After pre-processing, 
we have1,423 images of 1,024x1,024 pixels with a BI-RADS 
rating of 2-5 in the training set. The database comes with an 
independently selected testing set. We use 306 of them with BI-
RADS rating of 2-5 as our testing set.  

Since BI-RADS rating (the class labels for predicting) is 
supposed to strongly associated with the incidents of a 
malignant abnormality, assessing the model results, in terms of 
malignancy rates, should be an interesting and useful analysis. 
If a model performs below expectations, but provides an 
appropriate distribution of malignancy cases, it may be even 
more useful, as a diagnostic tool, to supplement a radiologist’s 
findings. In Table , we see that for the training set, BI-RADS 2 
and 5 have expected incidence rates for malignancy. BI-RADS 
3 and 4 are likely not the desired distribution. For the test set, 
the images seem to almost be randomly assigned in terms of 
malignancy incidence. This test set will be a meaningful 
challenge in terms of evaluating malignancy rates in the 
resulting classifiers.   

To apply OHPLall strategy to this mammography ROI 
images to predict BI-RADS, we lay a 4-layer OHPLNet on the 
following CNN model as shown in Figure 6.  For comparison, 
we also use the same CNN model for Ordinal Regression that 
is described in [4]. 

 
Table 4 Image Counts by BI-RADS Rating 

BI-RADS 
Rating 

Test Pct 
Images with 
Malignancy 

Number 
of 

Images 

Training Pct 
Images with 
Malignancy 

Number 
of 

Images 
2 35.2% 62 0.2% 473 

3 30.4% 81 35.5% 84 

4 40.9% 115 39.9% 742 

5 36.1% 48 98.5% 124 

Total 38.2% 306 29.3% 1,423 

     

 
Figure 6. CNN model used in the experimental study 

 

VI. EXPERIMENTAL RESULTS 

Assessment of ordinal class labels is done using two 
standard methodologies. Ordinal Class problems use Mean 
Zero Error (MZE), instead of using traditional accuracy 
(proportion of records that are correctly classified). MZE is the 
simple ratio of the number of misclassified records and the total 
number of records. Mean Absolute Error (MAE) is the other 
key metric. In MAE is calculated by taking the sum of the 
absolute differences between actual label value and the 
predicted labels and dividing by the number of records. Two 
classifiers that perform comparably on MZE may not do so on 
MAE. In that case, the classifier with the lower MAE performs 
better. 

Twenty OHPLall models and twenty Ordinal Regression 
models were generated through twenty executions for each. For 
OHPall, the mean batch training error, for an epoch is a 
reasonable metric to use for as a stopping criteria. As can be 
seen, in Figure 7, mean batch error values that are below 0.5 
results in low test set MZE and MAE. While higher mean batch 
error values may have low test set MZE and MAE, they may 
also have higher than desired test set MZE and MAE values.  

 

 
Figure 7 Training Data Mean Batch Error 

 
As can be seen in Table 7, Ordinal Regression MZE and 

MAE are 25% and 43% higher, respectively, than OHPLall, on 



the mean values of 20 executions of each algorithm (see Table 
). In addition, the MAE values for Ordinal Regression had 
double the standard deviation for MAE as OHPLall.  
 

Table 5 OHPLall vs Ordinal Regression  
MAE and MZE Results 

Algorithm Metric MZE MAE 

OHPLall 
Mean 0.473 0.612 

Std Dev 0.033 0.046 

Ordinal 
Regression 

Mean 0.595 0.877 
Std Dev 0.041 0.099 

 
In addition to assessing standard model performance 

metrics, it is also worthwhile to assess class predictions relative 
to biopsy results for the calcifications. For this evaluation, a 
single well performing model for each algorithm is examined. 
Table  reports the MAE and MZE for the selected models. If a 
model “struggles” to properly classify records within a given 
BIRAD rating, it is likely to be desirable for the errors to occur 
in the lower rating values and perform better in the higher 
ratings leading to early treatment for a malignancy. Both 
models perform poorly on BI-RADS ‘3’ and ‘5’ rated images. 
From the table it is clear to see that Ordinal Regression does a 
good job, with BI-RADS ‘2’ rated records, but performs poorly, 
relative to OHPLall in the other three classes (to the point that 
MAE for OHPLall is roughly equal to MZE for Ordinal 
Regression).  

 
Table 6 Rating Level Assessment for OHPall Model  

and Ordinal Regression Model 
BI-

RADS 
OHPLall 

MZE 
OHPLall 

MAE 
Ord Reg 

MZE 
Ord Reg 

MAE 
2 0.408 0.732 0.211 0.338 
3 0.696 0.739 0.739 0.826 
4 0.324 0.386 0.574 0.767 
5 0.750 0.944 0.889 1.417 

Total 0.422 0.559 0.539 0.748 
 
Per the BI-RADS definitions, it is expected that malignancy 

rates would increase with BI-RADS score. The algorithm that 
produces models that best meet this expectation would provide 
higher quality predictions. As shown in Table 8, Ordinal 
Regression predicted a significant shift in BI-RADS rating, 
towards the low end of the scale, resulting in very good MZE 
and MAE values for the ‘2’ class, but poor results for the other 
classes.  In addition, images classified as a ‘5’ by OHPLall have 
over three times the Malignancy Rate (percent of images that 
were ultimately classified as malignant) as Ordinal Regression. 
Early identification of malignancy is critical in treating breast 
cancer, so this skew towards lower values versus OHPLall is 
less desirable for a model that is intended to be used as a 
diagnostic tool.  
 

Table 8 Malignant Counts (Ratio) for Both a High Performing 
OHPLall Model and a High Performing Ordinal Regression Model 

BI-
RADS 

Actual 
Malignant 

Counts (Ratio) 

OHPLall 
Malignant 

Counts (Ratio) 

Ord Reg 
Malignant 

Counts (Ratio) 

2 0 (0.0%) 7 (12.5%) 44 (42.7%) 

3 16 (69.6%) 28 (48.3%) 29 (35.8% 

4 65 (36.9%) 69 (38.8%) 40(37.4%) 

5 36 (100.0%) 13 (92.9%) 4(26.7%) 

 
The image database also contained a number of images with 

a BI-RADS classification of ‘0’. This class is designated as 
“Additional imaging evaluation and/or comparison to prior 
mammograms is needed”. While a specific rating value is not 
available, the models can be assessed based on the malignancy 
rates for the predicted classes. As was the case for the test 
dataset, relative to OHPLall, Ordinal Regression shifts cases to 
the lower end of the rating scale, as demonstrated in table 9. 
This skew towards the lowest available BI-RADS class 
includes a shift of nine malignant cases, to the ‘2’ class, giving 
this Ordinal Regression a higher malignancy rate than the rates 
for the other three classes. OHPLall classifies two malignant 
cases into class ‘2’. OHPLall classifies over 2/3 malignant cases 
into classes ‘4’ and ‘5’, while Ordinal Regression classifies just 
over half of the malignant cases into class ‘4’ and no malignant 
cases into class ‘5’. The OHPLall results are more consistent 
with the overall definitions of the BI-RADS measurement 
system.  
 

Table 9 Results for ‘0’ Rated Cases 

BI-
RADS 

OHPLall 
Counts 

OHPLall: 
Malignant 

Counts 

Ordinal 
Regression 

Counts 

Ordinal 
Regression 
Malignant 

Counts 
2 2 2 15 9 
3 14 8 15 7 
4 42 16 40 17 
5 13 7 1 0 

 
In summary, for the classification of the available 

mammography images into BI-RADS rating, a Convolutional 
Neural Network that uses OHPLall loss provides better results 
than a Convolutional Neural Networks that use Ordinal 
Regression. Not only does it provide better overall results, but 
in the critical secondary assessment OHPLall works well in 
predicting images that have a malignancy into higher BI-RADS 
classes.  

 

VII. CONCLUSIONS 

In this paper, we presented our continuous development of 
OHPL, a loss function specifically designed for ordinal data 
that enables deep learning to be applied for ordinal 
classification, into a new enhanced version that is called 
OHPLall.  Instead of requiring the whole training datasets, 
OHPLall uses mini batches to effectively assess the ordering of 
the classes and the relative closeness of a sample towards its 
own class in a feature space.  Deep learning strategy using 
OHPLall as the loss function is more scalable to large data sets 
than the original OHPL.  



We further applied OHPLall to mammography image BI-
RADS classification. Experimental results showed that 
OHPLall outperformed the Ordinal Regression approach with 
respect to MZE and MAE measures. By further analyzing the 
model results in terms of malignancy rates in each BI-RADS 
scale, we found that the predicted results generated by OHPLall 
provided a more appropriate distribution of malignancy cases 
among predicted BI-RADS scales than the results generated by 
Ordinal Regression, which demonstrated a great potential of 
using OHPLall as a supplemental tool in breast cancer 
diagnosis. 
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