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Abstract. We discuss a new way to approximate the concentration profile inside the porous solids. It
is an extension of the work of Liaw et al., who adopted a parabola (i.e., quadratic) profile, which is a
function of pellet radius, while retaining the spherical symmetry. We extend their work by adding the
quartic term. The inclusion of this new term still preserves the form of linear driving force approxima-
tion with some correction to Glueckauf’s parameter. The presence of such a correction will affect the
breakthrough curve, although its significance can only be determined experimentally. We plan to apply
the result to the case of fixed-bed adsorber used for hydrogen/methane separation with activated carbon.
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Introduction
Recently, gas separation has seen its wide and direct application in industry. Due to its importance, it has
become inevitable that one needs a mathematical model able to simulate the process. Such mathematical
model is a set of differential equations describing the dynamics of physical variables such as concentra-
tion and temperature of the system as the function of time and coordinate (i.e., adsorber length). This
allows us to find a set of parameters that leads to an optimal results (e.g., product purity, etc).

In fixed-bed columns with porous solids, for example, there are three equations involved, i.e., (i) equa-
tion describing gas concentration in the the bulk, (ii) mass-transfer equation inside the porous solids
(adsorbent), and (iii) equation at the adsorbent surfaces. Although this may look straightforward, solv-
ing these three equations simultaneously can be very demanding. Such a complication, however, can
be reduced should one take some simplifying assumptions. To name a few, they are linear driving force
(LDF) approximation [1, 2], nonlinear driving force, parabolic profile approach, etc.

One of techniques found in literature is the approach of Liaw et al. [3], in which they assume that the
concentration profile inside the adsorbent is isotropic with a parabolic (i.e., quadratic) function. This
comes from the fact that any well-behaved function can always be written in terms of power series of its
variables, with higher-order terms being more and more negligible. With this assumption, the equation
for gas inside the adsorbents can be eliminated, hence reducing the number of differential equations in-
volved. The interesting thing with this approximation is that it could reproduce the Glueckauf’s result
of linear driving force [1, 2], and more importantly, it could yield breakthrough curves in a good agree-
ment with those derived by exact solution [4], with considerably less computational time. For direct
application of this approach, see [5] and references therein.

In present work, we shall extend the work of [3] by including the quartic term to the concentration
profile inside the porous solids in hopes of getting close-to-experiment result; adding more term into
a power series expansion, a priori, will give a more accurate function. For all we know, we believe
that this addition has never been worked out before. The inclusion of this new term retains the form of
linear driving force approximation with some correction to Glueckauf’s parameter. The correction will
affect the shape of breakthrough curves, but its value can only be determined experimentally, i.e., by
fitting the function to data. It could be very interesting, although the detail will be preserved for future
work, if we can apply the result to fixed-bed adsorber used to separate hydrogen/methane with activated
carbon.
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Methodology
As mentioned before, in doing simulation of a fixed-bed column there are three differential equations
involved. The first is the equation governing the concentration inside the bulk:

v
∂c
∂z

+
∂c
∂t

= −1
η

∂q̄
∂t

, (1)

where c is the gas concentration side the bulk/column, v is the flow velocity, q̄ is the mean gas concen-
tration within the porous solids, and η ≡ ϵ/(1− ϵ) with ϵ being the void parameter of the column.

Inside the porous solids, there exists an equation
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with D and r denoting the diffusion coefficient and the adsorbate radial coordinate, respectively. These
two equations are related to each other through

D
(
∂q
∂r

)
r=R

= k(c− qR/K), (3)

where qR, as the symbol suggests, is the mole fraction at the surface of the adsorbent with radius R, k is
the mass transfer coefficient, and K is the adsorption equilibrium constant.

One can see that in Equation (1), q (or ∂q/∂t) is expressed in average form, which is defined as

q̄ =
3
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∫ R

0
qr2dr. (4)

It is then straightforward to find ∂q̄/∂t, that is
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, (5)

where we have used Equation (2). Equation (5) suggests that should we know the q dependence on
radius, ∂q̄/∂t can be determined. This is the essence of [3].

We assume that q can be expressed as a power series expansion

q = a0 + a1r+ a2r2 + ..., (6)

with an+1r ≪ an. Thanks to the finiteness of q, there is no term with negative power of r, and therefore
such series can be truncated at some power of r. We further assume that q is spherically symmetric
function, meaning that all odd powers vanish or a2n+1 = 0. In the present case we will keep up toO(r4)
term, so q takes the form of

q = a0 + a2r2 + a4r4. (7)

Results and Discussion
Armed with Equation (7), we find (∂q/∂r)r=R = 2a2R(1+ 2a4R2/a2). Similar to [3], it would be more
useful if one can state this derivative in terms of physical quantities qR and q̄, namely

qR = a0 + a2R2 + a4R4 (8)

q̄ = a0 +
3
5
a2R2 +

3
7
a4R4 (9)
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Taking into consideration that (a4/a2)R2 is much less than 1, so it can be treated a perturbation parameter,
we obtain (

∂q
∂r

)
r=R

=
5
R
(1+ β)(qR − q̄), (10)

with

β ≡ 4
7

(
a4R2

a2

)
. (11)

From Equation (5), the linear driving force relation follows

∂q̄
∂t

=
15D
R2 (1+ β)(qR − q̄), (12)

As expected, the inclusion of the quartic coupling into the concentration profile leads to a correction to the
Glueckauf’s constant parameter. (In the work of Liaw et al., since they have quadratic function, β = 0,
which is the reason why they end up like Glueckauf’s LDF.) One may have noticed that the parameter
β in Equation (11) is treated like constant. That is, both a4 and a2 have the same time dependence. One
may argue that, in general, it is not always the case as each expansion coefficient ai may have different
time dependence. We justify it by noting that it is q̄ that enters Equation (1). Therefore, q̄ (or more
precisely ∂q̄/∂t) consists of r and t functions that are always separable. This is the chief reason why
each coefficient ai has the same time dependence.

Despite the fact that the correction should be small, it is nevertheless useful to infer its value (and its
significance) from experimental data. We preserve this for the future work.

Next, we would like to see how β will affect the breakthrough curves. Apart from β, Equation (12) pretty
much looks like the one discussed in [3]. So we follow their procedure to eliminate q and to simplify
Equation (1). We start by transforming variables z and t

x = z/(ηv) (13)
θ = t− z/v (14)

As a result, Equation (1) becomes

∂c
∂x

= −∂q̄
∂θ

, (15)

or by using Equation (12) we get

∂c
∂x

= −15D
R2 (1+ β)(qR − q̄). (16)

By taking derivative with respect to θ on both sides followed by using Equations (3) and (10), we can
express q̄ in terms of qR and c

q̄ =

(
1+

Rk
5D(1+ β)K

)
qR − Rk

5D
c. (17)

Now we eliminate qR by taking the derivative with respect to θ followed by using Equation (15). We
finally get

∂c
∂x

= −K
∂c
∂θ
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with
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(19)
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In above equation, we assume that β ≪ 1, so that 1/(1 + β) ≃ 1 − β. All fluid (gas) characteristics,
including β, are contained in ξ.

To illustrate, in Figure 1 we show two breakthrough curves from two different ξ values. We consider at
this moment that the change in ξ is solely caused by β. Red solid line is the curve with ξ = 1 and blue
dashed line ξ = 2. We take K = 1 and x = 80 cm.
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Figure 1: Breakthrough curves for the cases of ξ = 1 and ξ = 2. Note that the variation in ξ is solely determined
by β.

From the figure, we can see that the curve with higher ξ will increase earlier compared to that of lower
ξ. However, the curve with lower ξ will increase with higher slope, resulting in quicker saturation. Of
course at this level, we still cannot determine whether the presence of β will raise or lower the ξ (the
relative sign between a2 and a4 can be positive or negative). That is why this value can only be determined
through experiment. We believe this approach will find its application, for instance, in fixed-bed column
used to separate hydrogen/methane with activated carbon.

Conclusions and Outlook
We have extended the work of [3], where we add a quartic term to the concentration profile. The in-
clusion leads to a correction to Glueckauf’s linear driving force parameter. Such correction is expected
to be small but may affect the shape of breakthrough curves, although its significance will depend on
experimental data. We hope to extend the result to separation of hydorgen/methane in fixed-bed column
with activated carbon.
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