

4 Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

2.2 System Model

The system model is shown in Fig.1, which is the same as [6–11], [14–16]. It in-
cludes three different entities. Data owners(DO) are responsible for constructing

fragment-based encrypted inverted indexes (Ĩ), and outsourcing the encrypted
indexes and documents to the cloud server (CS). CS provide the search service
in parallel according to the search request submitted by data users (DU). DU
construct a search trapdoor based on its needs and send it to CS, then wait for
CS to return the search results.

Fig. 1. The system model

2.3 Problem Description

We adopt the “Honest-but-Curious” threat model. In this model, CS honestly
and correctly executes instructions in the designated protocol. However, CS can
analyze stored data and try to snoop on sensitive information.

The search result of PPTS is represented as RS. Vq is the query vector of Q.
Vdi and Vdj respectively represent the document vector of di and dj . Then, RS
meets the requirement:

|RS|= k ∧ ∀di, dj(di∈ RS∧ dj ∈ (D−RS))→ Vdi
·Vq>Vdj

·Vq.

The PPTS should satisfy three goals. First, the contents are directly seen
by CS only include encrypted documents, indexes, and trapdoors, that is, the
confidentiality of documents, indexes and trapdoors cannot be leaked. Second,
PPTS can handle the search requirements of large document sets in parallel with
Map-Reduce parallel search framework. Third, PPTS should fully guarantee
the accuracy of search, that is, to improve the efficiency without reducing the
accuracy.

2.4 Search Framework

To clearly describe the scheme proposed in this paper, we define a framework
for the PPTS scheme. As shown in Fig.2, the search model is composed of five
modules: GenKey, Setup, BuildIndex, GenTrapdoor, and Search.

– Genkey: DO generate the key for encryption, and share it with DU.

A Parallel Multi-Keyword Top-k Search Scheme over Encrypted Cloud Data 7

K GenKey(1λ): On input a security parameter λ, the key generation
algorithm output the key K. DO randomly generate the key sk, c ∈ {0, 1}�, an
m-dimensional vector S and two m×m invertible matrices M1, M2. Finally, the
key K = (sk, c, S,M1,M2) is formed. K is shared between DO and DU but is
private to CS.

(Ṽ ; D̃) Setup(D): On input the document set D, this algorithm output

the encrypted document vector set Ṽ and encrypted document set D̃. DU en-
crypts document di into d̃i using sk. Then DU generate document vector Vdi

according to VSM and TF-IDF models. The key S is used to split the document
vector Vdi into V

′

di
and V

′′

di
according to the following formula, and then the re-

versible matrices M1 and M2 are used to encrypt Vdi
to Ṽdi

= (MT
1 V

′

di
,MT

2 V
′′

di
).

Finally, the generated d̃i and Ṽdi are added to D̃ and Ṽ respectively.{
V

′

di
[j] = V

′′

di
[j] = Vdi [j], S[j] = 0

V
′

di
[j] + V

′′

di
[j] = Di[j], S[j] = 1

(5)

Algorithm 1: BuildIndex(K, Ṽ ,D, ε)

1 Calculate the value of Parameter-(δ, β);
2 for each Fv 2 F do
3 for each wj 2Wv do
4 for each di 2 Fv,j do

5 add ePj,i =< id(di), eVdi > to gPLj ;
6 end

7 while jgPLj j < δ do

8 add artificial padding ePj,s =< id(ds), eVds
0 > to gPLj ;

9 end

10 add < tagj ,gPLj > to eIv;

11 end

12 while jeIvj < β do

13 add artificial row < tags,gPLs > to eIv ;
14 end

15 add eIv to eI;

16 end

17 return eI
Ĩ BuildIndex(K; D; Ṽ ; "): This algorithm is run by DU to generate

encrypted indexes. Its inputs are the key K, the document set D, the encrypted
document vector set Ṽ , and the fragmentation parameter ε, and output the Ĩ.
Procedures of this algorithm is shown in Algorithm 1 where DO first divides D
into fragments and then builds an encrypted index for each fragment. Since the
operations on each fragment are exactly the same after fragmented, the data
preprocessing stage can be executed in parallel. Finally, DO outsource the D̃
and Ĩ to CS.

8 Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

3.3 Map-Reduce-based Top-k Search

The Map-Reduce-based top-k search phase of PPTS is performed by DU and
CS. DU generate a search trapdoor TD and submit it to CS. CS perform the
Map operation according to TD to obtain the k documents most relevant to each
fragment, and then perform Reduce operation to merge and rank the previous-
ly acquired documents to generate the final top-k results. This phase mainly
contains two polynomial-time algorithms: GenTrapdoor and Search.

T D GenT rapdoor(K; Q; k): This algorithm takes a plaintext query
containing the key K, the search keyword set Q, and the number of documents
to be returned k, and outputs the encrypted query as a trapdoor TD. Its goal
is to protect the keyword information in the query from CS. The construction
process of TD as the following steps:

1) The query vector Vq is constructed according to Q. If wi ∈ Q, the IDF
of wi is stored in Vq[i], otherwise, the value of Vq[i] is 0. Then, according to the

following formula, Vq is split into two vectors V
′

q and V
′′

q . Finally, V
′

q and V
′′

q are
encrypted with reversible matrices M1 and M2 to obtain the encrypted query
vector Ṽq = (M�11 Vq

0,M�12 Vq
00).

{
V

′

q [j] + V
′′

q [j] = Vq[j], S[j] = 0

V
′

q [j] = V
′′

q [j] = Vq[j], S[j] = 1
(6)

2) The hash-based message authentication code tagi of wi is calculated and
constitutes the set T = {tagi | tagi = hash(c, wi) ∧ wi ∈ Q}.

3) Output TD = (T, Ṽq, k).

Algorithm 2: Search.Map(Ĩv, TD)

1 for each < tagj ,gPLj >2 eIv do
2 if tagj 2 T then

3 for each ePj,i 2gPLj do

4 if Score(eVdi ,
eVq) > minScorefRSig then

5 if jRSij = k then
6 Delete the document with the lowest relevance score in RSi;
7 end

8 add < id(di), Score(eVdi ,
eVq) > to RSi;

9 end

10 end

11 end

12 end
13 return RSi

RS Search(Ĩ;TD): When CS receives the trapdoor TD, it performs the

top-k search in parallel on the basis of the indexes Ĩ, and then returns the result
encrypted documents. The standard Map-Reduce model is adopted to find the
top-k relevant documents. In the Map stage, local top-k result is obtained in

