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ABSTRACT 

Despite the abundance of open Earth Observation (EO) data 

from the Copernicus program and the GEOSS platform, 

their uptake in the context of Climate Change (CC) related 

applications is often limited due to inherent spatial and 

temporal resolution constraints. Super-resolution techniques 

aim to reconstruct high spatial resolution images from 

degraded low spatial resolution images, but current 

approaches are being tested mainly for high spatial 

resolution imagery and small scaling factors. To fill this 

gap, this study investigates the ability of the diffusion-based 

image super-resolution via repeated refinement (SR3) 

method in enhancing the spatial resolution of the near-daily 

Sentinel-3 SYNERGY images from 300 to 75 meters by 

taking advantage of the higher spatial resolution of the 

Sentinel-2 MSI images during model training. In 

quantitative and qualitative evaluations of results, SR3 

provides convincing results and reveals its suitability in 

spatially enhancing Sentinel-3 SYNERGY images. 

Index Terms— Sentinel-3 SYNERGY, super-

resolution, large scaling factor, diffusion model 

1. INTRODUCTION 

The open EO data from the Copernicus program and 

GEOSS provide the required information to support Climate 

Change (CC) adaptation and mitigation policies. However, 

inherent spatial and temporal resolution constraints often 

limit their uptake in the context of CC-related applications. 

To address this issue, the H2020 EIFFEL1 project will 

provide tools to enhance the spatial resolution of EO data 

from the Copernicus program and address the data 

requirements of five different CC adaptation and mitigation 

applications.   

Two of the Copernicus missions that can support 

the envisioned CC-related applications are Sentinel-2 and 

Sentinel-3. They both carry multispectral sensors and are 

focused on global monitoring of the earth’s surface. On the 

one hand, Sentinel-2 twin satellites include two identical 

satellites that carry the multispectral instrument (MSI), 

which provides a total of 13 spectral bands covering the 

wavelength region from 443 to 2190 nm of the 

 
1 https://www.eiffel4climate.eu/ 

electromagnetic spectrum, with a spatial resolution ranging 

from 10 to 60 m and a temporal resolution of 5 days. On the 

other hand, the Sentinel-3 mission satellites have a temporal 

resolution of 1.4 days and carry two multispectral 

radiometers on board: (i) the Ocean and Land Colour 

Imager (OLCI) and (ii) the Sea and Land Surface 

Temperature Radiometer (SLSTR). The OLCI captures the 

earth’s surface using 21 bands in the spectral range between 

390 and 1040 nm at 300 m spatial resolution. SLSTR 

provides 12 bands in the spectral range between 555 nm and 

1200 nm at a spatial resolution of 500 m. ESA has also 

developed an additional product, named Sentinel-3 

SYNERGY (SYN), which includes atmospherically 

corrected OLCI and SLSTR bands at 300 m spatial 

resolution [1]. However, such a spatial resolution is too 

coarse to provide sufficient detail for small extent areas of 

interest. While the 5-day revisit cycle of the fine spatial 

resolution Sentinel-2 and the cloud contamination can 

further degrade the temporal resolution and limit its 

application in detecting rapid surface changes crucial to 

some applications such as detecting intraseasonal ecosystem 

disturbance [2]. Therefore, there is a great need for data that 

have both the spatial resolution of Sentinel-2 and the 

temporal resolution of Sentinel-3 to support a wide range of 

monitoring applications.   

 There are several solutions that try to combine the 

fine spatial resolution of Sentinel-2 with the high temporal 

frequency of Sentinel-3 by taking advantage that both 

missions carry multispectral sensors and have similar 

wavelengths for four bands (i.e., blue, green, red, and NIR 

bands). It is possible to distinguish between two general 

approaches: (i) spatiotemporal data fusion and (ii) deep 

learning-based super-resolution. Spatiotemporal data fusion 

is a cost-effective way to combine the spatial information 

from high spatial resolution images with the temporal 

information from frequent but low spatial resolution images 

to generate images with high spatiotemporal resolution. 

Existing spatiotemporal data fusion algorithms can be 

divided into five categories: unmixing, weight function, 

Bayesian, deep-learning, and hybrid approaches. Although 

unmixing-based methods were proven to be more efficient 

in capturing gradual reflectance change and land cover type 

change in heterogeneous environments, they cannot capture 

rapid changes and small changes in land cover type which 

are invisible in the input low spatial resolution images [3]. 

The performance of the spatio-temporal fusion methods is 



based on the availability of fine spatial resolution images 

that are temporally close to the prediction date. Due to cloud 

contamination, sometimes very few effective Sentinel-2 

images are available for fusion. Strong temporal changes 

from the time of the only available Sentinel-2 image to the 

prediction may lead to a small correlation of the only 

available Sentinel-2 with the ideal prediction of the 

Sentinel-2 image at the prediction time [4]. Moreover, 

spatiotemporal data fusion methods need to rebuild the 

model for each prediction, which is time-consuming [5]. 

When dealing with a large quantity of data, the computation 

time of a fusion algorithm can be extensive, greatly limiting 

its application in monitoring long-term and large-scale land 

surface dynamics. Whereas deep learning-based super-

resolution methods can directly transfer trained models and 

consequently reduce the computational time.  

Super-resolution techniques aim to retrieve high 

spatial resolution information from degraded low spatial 

resolution images and have achieved great progress due to 

the recent advance of deep neural networks, including 

convolutional neural networks [6,7] and generative 

adversarial networks [8]. Yet the majority of the existing 

super-resolution techniques are simple regression-based 

methods with feedforward convolutional networks and are 

designed for augmenting the spatial resolution of high 

spatial resolution images (e.g. Sentinel-2 and Landsat 8/9) 

and for small scaling factors (x2, x3), where the spatial 

uncertainty of the super-resolution mapping can be 

compensated to some degree with the spatial details 

included at the low-resolution image [10]. Reconstruction of 

high spatial resolution images at large scaling factors (> x3) 

is more challenging due to the large spatial resolution gap 

and the severe information loss of the original medium/low 

spatial resolution images. In recent years, diffusion 

denoising probabilistic models (DDPM) have shown 

promising results in performing super-resolution tasks with 

large scaling factors on natural and face images [11]. 

However, they have not been systematically tested yet in EO 

images which include small features and complex scenes. 

To fill this gap, this study investigates the performance of 

the diffusion-based Super-Resolution via Repeated 

Refinement (SR3) model to enhance the 300 m spatial 

resolution of Sentinel-3 SYNERGY data to the target 

resolution of 75 meters by taking advantage of the higher 

spatial resolution of the Sentinel-2 MSI data only during 

training.  

2. SUPER-RESOLUTION VIA REPEATED 

REFINEMENT (SR3) MODEL 

DDPMs are deep generative models that are trained to learn 

a data distribution using variational inference to produce 

samples matching the data after a finite time [12]. Their key 

idea is to first disrupt images by defining a forward 

Markovian diffusion process that gradually adds Gaussian 

noise to a high-resolution image over T iterations. And then 

training a U-Net architecture to remove various levels of 

noise from the noisy image. During inference, the U-Net is 

repurposed into a generative model by starting with 

Gaussian noise at the maximum level, then iteratively 

refining the low-resolution image by gradually attenuating 

noise and amplifying the image.  

SR3 [11] is an early application of DDPMs to super 

resolution conditional image generation by proposing a 

simple and effective modification to the U-Net architecture. 

Specifically, the SR3 model includes a U-Net architecture 

like the one found in DDPM but the residual blocks were 

replaced by residual blocks from BigGAN [14] and the skip 

connections were rescaled. The number of residual blocks 

and the channel multipliers at different resolutions were also 

increased. The low-resolution image is resampled to the 

target resolution and concatenated with a normal 

distribution noisy image to condition the model to create 

images that have the same distribution as the initial low-

resolution image. 

3. EXPERIMENTS 

We evaluated the performance of SR3 model in enhancing 

the spatial resolution of Sentinel-3 images. For this purpose, 

we employed Sentinel-2 images as the input high-resolution 

images required only in the forward diffusion process at the 

training stage, and Sentinel-3 images as the low-resolution 

images employed as input in the reverse (denoising) process 

at the inference stage.  

Effectively exploiting such inter-sensor synergies 

raises important challenges in terms of sensor alignment, 

and substantial spatial and spectral resolution differences [3, 

10]. Each pair of Sentinel-2 and Sentinel-3 images must be 

atmospherically corrected, projected to a common 

coordinate system and co-registered to reduce the geometric 

errors due to the large spatial resolution difference between 

them. Considering that atmospherically corrected Sentinel-3 

OLCI products are still not available, Sentinel-3 SYNERGY 

Fig. 1. Locations of Sentinel-2 and Sentinel-3 image pairs 

used for training, validation and testing. The locations are 

plotted over the Köppen-Geiger climate classification map 

[13]. 

 



images were used instead, which include atmospherically 

corrected bands acquired from both OLCI and SLSTR 

sensors.  

The training dataset includes pairs of Sentinel-2 

and Sentinel-3 SYNERGY Level-2 images that were 

acquired on the same day and cover the same areas. The 

considered areas were randomly picked, aiming to include 

different types of land covers and climate zones to obtain 

data diversity. Fig. 1 shows the distribution of the images 

composing the dataset. Specifically, 14 image pairs were 

used for training and 5 image pairs for validation and 

testing, respectively.  

The selected image pairs were obtained from the 

Copernicus Open Access Hub. Specifically, only the bands 

Oa4, Oa6, Oa8, and Oa17 bands of Sentinel-3 SYNERGY 

and the bands 2, 3, 4, and 8a of Sentinel-2 which have 

similar wavelengths were included in the training datasets. 

The Sentinel-3 images were reprojected onto the coordinate 

system of the corresponding Sentinel-2 counterparts to 

obtain the intersection between both products as output. 

Then both Sentinel-2 and Sentinel-3 images were resampled 

to 75 m with bilinear interpolation. And they were also co-

registered using the Sentinel-2 images as spatial reference 

with the AROSICS inter-sensor registration method [15].  

Each processed Sentinel-2 and Sentinel-3 image 

was split into 1000 random image patches of 128x128 

pixels. To simplify training, only tiles that do not contain 

background, clouds and water surface pixels were selected 

for the training dataset. Considering that remote sensing 

images have more complex distributions and contain 

multiple categories of ground objects than natural images, it 

was decided to first train the model with the global training 

dataset and then retrain only with a smaller training dataset 

containing Sentinel-3 and Sentinel-2 images acquired from 

the same locations as the ones contained in the test dataset.  

The model was trained with PyTorch for 1 million 

training steps and a batch size of 32. The Adam optimizer 

with a linear warmup schedule over 10k training steps, 

followed by a fixed learning rate of 1e-4 was used to be 

consistent with the initial implementation and demonstration 

of the diffusion models. Training was run on a NVIDIA 

GeForce RTX 3090 GPU, with 16 GB of RAM for 

approximately 5 days. For numerical stability, we divided 

the raw reflectance values of Sentinel-2 by 25000 before 

training. 

During the inference stage, the trained SR3 model 

is iteratively refining the Sentinel-3 image by gradually 

attenuating noise and amplifying the image. The low-

resolution Sentinel-3 image is the only input during the 

inference stage and it is resampled to the target resolution 

and concatenated with a normal distribution noisy image to 

condition the model to create images that have the same 

distribution as the initial low-resolution image. 

 

 

 

4. RESULTS 

Fig. 2 demonstrates 5 test Sentinel-3 natural color composite 

images that were super-resolved with the model trained 

during the first training phase with the global training 

dataset and the second training phase with a similar to the 

test images training dataset. The original Sentinel-2 and 

Sentinel-3 images resampled to 75 meters spatial resolution 

are also included for comparison. The Sentinel-2 images 

were used to perform the quality assessment of the DL-

based super-resolution for Sentinel-3 SYNERGY images 

(Table 1).  

 The qualitative results demonstrated in Fig.2 show 

that both models trained with the global and the test-specific 

dataset can produce high-quality super-resolved Sentinel-3 

images. The second training of the model with the test-

specific dataset contributes to the generation of super-

resolved images that resemble the reference Sentinel-2 

images and achieved better quantitative results than the first 

training dataset (Table 1) that can be relatively accepted in 

most cases (i.e., ERGAS < 3).   

Fig. 2. Qualitative results for 5 test areas. The first column 

includes the original Sentinel 3 SYNERGY images 

resampled to 75 m, which were used as an input for the SR 

process. The second and third column include the results 

from the first and the second training phase, and the fourth 

column includes the high-resolution Sentinel-2 images 

resampled to 75 m employed as reference images for 

qualitative and quantitative assessment. 



5. CONCLUSION & FUTURE WORK 

This study investigated the performance of the novel 

diffusion-based super-resolution SR3 model in enhancing 

the spatial resolution of Sentinel-3 SYNERGY images. The 

model was first trained with a training dataset including 

randomly picked pairs of Sentinel-3 and Sentinel-2 images 

and then further trained with image pairs similar to the test 

images. The two trained models used as an input only 

Sentinel-3 images during inference and produced qualitative 

consistent results. However, the retrained model achieved 

better scores in reference-based metrics (i.e., ERGAS < 3) 

and produced images with a higher level of detail. This can 

be explained by the fact that diffusion models create images 

that have the same distribution as the images they are 

trained on.  

Table 1. Quality assessment results 
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PSNR 36.19 49.44 44.01 48.93 36.85 49.86 40.92 49.04 47.11 52.82 

RMSE 387.52 84.24 157.40 89.39 359.21 80.25 224.77 88.22 110.18 57.13 


