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Abstract

Many Automated Theorem Proving (ATP) systems for different logics, and translators
for translating different logics from one to another, have been developed and are now avail-
able. Some logics are more expressive than others, and it is easier to express problems in
those logics. However, their ATP systems are relatively newer, and need more develop-
ment and testing in order to solve more problems in a reasonable time. To benefit from
the available tools to solve more problems in more expressive logics, different ATP systems
and translators can be combined. Problems in logics more expressive than CNF can be
translated directly to CNF, or indirectly by translation via intermediate logics. Description
Logic (DL) sits between CNF and propositional logic. Saffron a CNF to DL translator,
has been developed, which fills the gap between CNF and DL. ATP by translation to DL
is now an alternative way of solving problems expressed in logics more expressive than DL,
by combining necessary translators from those logics to CNF, Saffron, and a DL ATP
system.

1 Introduction

A logic problem can be solved by either checking whether the conjecture of a logic problem is a
theorem, or using proof by contradiction. Proof by contradiction checks if the set consisting of
the axioms and the negated conjecture is unsatisfiable. Automated Theorem Proving (ATP) [9]
is concerned with development of automatic techniques and computer programs that solve logic
problems. An ATP system is a computer program that solves logic problems. Many logics
have ATP systems available. Examples include Konclude [14] for Description Logic (DL),
iProver [8] for Effectively Propositional Form (EPR), and Alt-Ergo [3] for Typed First order
form-polymorphic (TF1).

Different logics with different levels of expressivity are available. Expressing a problem in
a more expressive logic is easier because it is more natural and compact, but the ATP systems
for more expressive logics are relatively newer, and need more development and testing to be
able to solve more problems in a reasonable time.

It is possible to translate a problem in one logic to another logic. The translation from a
source logic to a destination logic is satisfiability preserving means if a logic problem is sat-
isfiable in the source logic, then the translated problem in the destination logic is satisfiable.
The translation is countersatisfiability preserving1 means if the conjecture of a problem is not
a logical consequence of its axioms in the source logic, then the translated conjecture is not
a logical consequence of the translated axioms in the destination logic. The translation is
countersatisfiability-satisfiability preserving means if the conjecture of a problem is not a logical
consequence of its axiom in the source logic, then the translated negated conjecture and axioms
are satisfiable in the destination logic. A sound translation is satisfiability, countersatisfiabil-
ity, and countersatisfiability-satisfiability preserving. Many sound translators for translating a

1 The SZS ontology [16] supplies the definitions of status values such as “theorem”, and “countersatisfiable”.
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problem in one logic to another have been implemented [18]. Examples of available translators
are ECNF [11], which translates from First Order Form (FOF) to Conjunctive Normal Form
(CNF), and Why3-FOF [4], which translates from TF1 to FOF.

As illustrated in Figure 1, a problem expressed in a logic can be either solved using an
ATP system for that logic, or translated to a less expressive logic. If it is translated to a less
expressive logic, again the same two options of solving by using an ATP system, and translating
down (if possible) are available. This continues until no further translation is possible. Table 1
lists the translators and ATP systems used in this research, corresponding to the labels on the
arrows in Figure 1. In Figure 1, the plain arrows indicate the process of translation, and the
dashed arrows indicate the process of solving using an ATP system.

TF1 ATP SystemTyped First Order!
Logic (Polymorphic) 

TF0 ATP SystemTyped First Order!
Logic (monomorphic) 

Conjunctive Normal Form

First Order Logic 

Description Logic
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Figure 1: Different Combinations of Translators and ATP Systems to Solve a Problem

Problems in logics more expressive than CNF can be translated directly to CNF, or indirectly
by translation via intermediate logics. No CNF to DL translator was available when this
research was started. A sound translation from CNF to DL, and its implementation as Saffron,
are provided in this research. Saffron was implemented in Prolog. Saffron fills the gap
between CNF and DL. The translated DL problem can be solved using a DL ATP system.
In this research, Konclude, a powerful DL ATP system, was used. SaKo is a new CNF ATP
system which combines Saffron and Konclude. SaKo is now available on the SystemOnTPTP [15]
website, www.tptp.org/cgi-bin/SystemOnTPTP.

The Thousands of Problems for Theorem Provers (TPTP) problem library [17] is a compre-
hensive library of test problems for ATP systems. It also includes software tools that facilitate
using ATP systems. The TPTP was developed to make evaluating and comparing ATP systems



Label Action Tool
1 TF1 → Proof Alt-Ergo 0.95.2 [3]
1.2 TF1 → TF0 Why3-TF0 0.85 [4]
1.3 TF1 → FOF Why3-FOF 0.85 [4]
2 TF0 → Proof CVC4 1.4 TFF-1.5 [2]
2.3 TF0 → FOF Monotonox-2FOF e3c1636 [5]
2.4 TF0 → CNF Monotonox-2CNF e3c1636 [5]
3 FOF → Proof Vampire 4.0 [10]
3.4 FOF → CNF ECNF 1.8 [12]
4 CNF → Proof Vampire 4.0 or iProver-1.4 [8]
4.5 CNF → DL Saffron 4.5 [1]
4.6 EPR → DL EGround 1.8 [13]
5 DL → Proof Konclude 0.6.1 [14]
6 PL → Proof MiniSAT 2.2.0 [7]

Table 1: ATP Systems and Translators used in this research

possible by providing general guidelines, outlining the requirements for ATP system evaluation,
and standards for input and output for ATP systems. The TPTP provides syntaxes for many
logics. The TPTP syntax is compact and natural, and uses only ASCII characters. Propo-
sitional Logic (PL), Conjunctive Normal Form (CNF), Effectively Propositional Form (EPR),
First Order Form (FOF), Typed First order form-monomorphic (TF0), and Typed First order
form-polymorphic (TF1) are the logics supported by the TPTP. Description Logic Form (DLF)
is the new TPTP syntax for DL. DLF was designed as a part of this research, and is described
in Appendix A.

2 CNF to DL Translation

The translation of a CNF problem to DL is based on translating each CNF clause of the problem
to a set of DL formulae that has equivalent semantics. Constants, unary predicates, and binary
predicates in CNF correspond to the individuals, classes, and roles that are the building blocks
of DL ontologies. Clauses with only constants, unary predicates, and binary predicates might
be translated directly to DL. It might not be possible to translate some such clauses to DL,
because there might not be equivalent DL semantics for the clauses. The current version of
Saffron supports translation of CNF clauses with a wide range of literal structures, which have
equivalent semantics in DL.

A splitting technique is applied in Saffron to preprocess problems with propositions, and
hence remove the propositions. Considering each proposition in turn, the proposition is assigned
TRUE and then FALSE. In each case, the resultant clause set is simplified by removing clauses
that contain TRUE or ~FALSE, and removing FALSE and ~TRUE literals from the other clauses.
Once all propositions have been removed, the resultant clause sets, i.e., proposition free versions
of the problem, are translated to DL. If there are n propositions, there are 2n sets to translate.
If any one of the translated sets is satisfiable, the original CNF is satisfiable. If all of the
translated sets are unsatisfiable, the original CNF is unsatisfiable. (Most readers will recognize
this approach from the DPLL algorithm [6].)

Definition 1. CNF clauses that can be translated to DL using Saffron are referred to as
DL-able clauses. Since DL-able clauses have no functions of arity greater than zero, they are



EPR.

Definition 2. CNF problems that includes only DL-able clauses are referred to as DL-able
problems. Since these problems have no functions of arity greater than zero, they are EPR.

A problem with one or more CNF clauses that are not DL-able can be partially translated to
DL, i.e, less than 100% of its clauses can be translated to DL. The unsatisfiability of a partially
translated problem might be preserved, because an unsatisfiable subset of the clauses has been
translated. The experiments in Section 5 show how successful this translator is in preserving
the unsatisfiability of partially translated problems.

3 Translation Procedure

Definition 3. The translation function saffron : c 7−→ saffron(c) translates a CNF clause c
in a CNF problem to a set of DL formulae saffron(c). If c is not DL-able, saffron(c) is the
empty set. For each constant, unary predicate, and binary predicate in c, an individual, a class,
and a role are correspondingly defined in saffron(c) with the same name.

Every DL formula defines a characteristic of an individual, a class, a role, or the default
class Thing. Some of the characteristics of individuals, classes, roles, and the class Thing
that are covered in this translation are illustrated in Table 2. The CNF clause c is in TPTP
syntax, and the corresponding DL formulae saffron(c) are in DL mathematical syntax. As
examples. . . The CNF clause in row 3 of Table 2 expresses that at least one of p i(a) or ~q j(a)

is TRUE. The DL formula expresses that the individual a belongs to the union of the classes
p i and the complements of the classes q j. The CNF clause in row 9 is equivalent to the
FOF formula ![X]: (p(X) => q(X)), and expresses that for all X if p(X) then q(X). The DL
formula expresses that the class p is a subclass of the class q. The CNF clause in row 15 is
equivalent to the FOF formula ![X,Y]: (r(X,Y) => s(Y,X)), and expresses that for all X and
Y if r(X,Y) then s(Y,X). The DL formula expresses that the role r is a subrole of the inverse
of the role s. The CNF clause in row 20 expresses that for all X, X is equal to at least one of
the constants a i. The DL formula expresses that the class Thing consists of individuals a i.

4 Implementation of Saffron

Saffron has two implementations. One implementation outputs the resultant DL problem
in RDF/XML, and the other implementation outputs the resultant DL problem in DLF. Both
implementations consists of three translation related modules, and several support modules that
are responsible for reading the input problem and saving the clauses in a processable format.
The three translation related modules are named translation, gather, and generate-output.

In both implementations, the translation module translates the CNF problem clause-by-
clause. Each clause is translated to a set of DL formulae. In the RDF/XML implementation
the output from the translation module is passed to the gather module for further process-
ing, and then the output of the gather module is passed to the generate-output module.
In the DLF implementation the output from the translation module that needs further pro-
cessing is passed to the gather module, and the rest of the output is passed directly to the
generate-output module. In both implementations, the generate-output module uses the
data received from the other module(s) to generate the output DL problem.

An output DL problem of Saffron is written to a file, which consists of a definition header
and the body of the problem. The definition header includes information such as definitions



Table 2: CNF Clauses and Equivalent DL Formulae
# Clause c saffron(c)

1 p(a) { a : p }
2 ~p(a) { a : ¬p }
3 p 1(a) | ... | p 2(a) | p n(a) |

~q 1(a) | ~q 2(a) | ... | ~q m(a)

where n ≥ 0, m ≥ 0, and (m + n) ≥ 2

{a : (
⊔n

i=1 p i t
⊔m

j=1 ¬q j)}

4 r(a,b) { r(a, b) }
5 ~r(a,b) {¬r(a, b) }
6 a = b { a = b }
7 a != b { a 6= b }
8 p(X) { p = Thing }
9 ~p(X) | q(X) { p v q}

10 ~p(X) | r(X,Y) { p v ∃r.Thing }
11 p(X) | ~r(X,Y) { ∃r.Thing v p }
12 p(X) | ~q(Y) | ~r(X,Y) { ∃r.q v p }
13 p 1(X) | p 2(X) | ... | p n1(X) |

~q 1(X) | ~q 2(X) | ... | ~q n2(X) |

~r 1(X,Y) | ~r 2(X,Y) | ... | ~r m(X,Y)

where (n1 + n2) ≥ 1, and m ≥ 1

{
dm

k=1 ∃r k.(
dn1

i=1(¬p i) u
dn2

j=1 q j)
v Nothing }

14 ~r(X,Y) | s(X,Y) { r v s }
15 ~r(X,Y) | s(Y,X) { inv s = s−,

r v inv s }
16 ~r 1(X,Y) | ~r 2(Y,Z) | s(X,Z) { s w ( r 1 ◦ r 2 ) }
17 ~r 1(X,Y) | ~r 2(X,Z) | s(Y,Z) { inv s = s−,

inv r 2 = r 2−,
inv s w ( inv r 2 ◦ r 1 ) }

18 ~p(X) {Thing = ¬p}
19 p 1(X) | p 2(X) | ... | p n(X) |

~q 1(X) | ~q 2(X) | ... | ~q m(X) |

where m ≥ 0, n ≥ 0, and (m + n) ≥ 2

{Thing = (
⊔n

i=1 p i t
⊔m

j=1 ¬q j) }

20 X = a 1 | X = a 2 | ... | X = a n

where n ≥ 1
{Thing = {a 1, a 2, . . . , a n} }

21 r(X,a 1) | r(X,a 2) | ... | r(X,a n)

where n ≥ 1
{Thing = ∃r.{a 1, a 2, . . . , a n} }

22 p 1(X) | p 2(X) | ... | p n(X) |

~q 1(X) | ~q 2(X) | ... | ~q m(X) |

r(X,a 1) | r(X,a 2) | ... | r(X,a n)

where (m1 + m2) ≥ 1, and n ≥ 1,

{Thing = (
⊔n

i=1 p i t
⊔m

j=1 ¬q j t
{a 1, a 2, . . . , a n}) }

of schemas, namespaces and the ontology. The body of the problem in RDF/XML syntax is
expressed as a set of RDF/XML tags. An RDF/XML tag might include sub-tags. The body
of the problem in DLF syntax is expressed as a set of DLF formulae.



4.1 The translation Module

For each CNF clause, the translation module tries to translate the clause. If the clause is not
DL-able, it is kept as an untranslated clause to be used later for statistics purposes, such as cal-
culating the translation percentage. The translation module uses a translation table that maps
clause structures to their translation in DL. The translation table used in the implementation
of Saffron is of the form of Table 3, with over 30 rows. Table 3 illustrates the translation of
DL-able clauses with no constants, no predicates, two or three binary predicates, and two or
three variables.

To translate a CNF clause c, all the constants, unary predicates, binary predicates, and
distinct variables of the clause c are extracted. The clause c is then filtered out if it is obvious
that c is not DL-able. The filtering is done by checking the sizes of the sets of constants, unary
predicates, binary predicates, and distinct variables of the clause. If the sizes of these sets does
not match any of the DL-able clause structures in the translation table, then c is filtered out,
and kept as untranslated. The filtering process narrows down the search space for a possible
translation of the clause c.

The CNF clauses of Example 1 have no constants, no unary predicates, and two binary
predicates. Clause 1.a has four distinct variables, and other clauses have two distinct variables.
There is no DL-able clause structure with four distinct variables, so the clause 1.a is filtered
out. However, clauses 1.b, 1.c, and 1.d are kept for the next step because the sizes of their
sets of constants, unary predicates, binary predicates and variables match the DL-able clause
structures in the first two rows of Table 3.

Example 1.

1.a. dad(X,Y) | child(Z,T)

1.b. ~dad(X,X) | child(Y,Y)

1.c. ~dad(X,Y) | child(X,Y)

1.d. ~dad(X,Y) | child(Y,X)

Table 3: Examples of CNF and DL Equivalent Formulae
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saffron(c)

~r(X,Y) | s(X,Y) {} {} {r,s} {X,Y} { r v s }
~r(X,Y) | s(Y,X) { inv s = s−,

r v inv s }
~r1(X,Y) | ~r2(Y,Z) | s(X,Y) {} {} {r1,r2,s} {X,Y,Z} { s w ( r 1 ◦ r 2 ) }
~r1(X,Y) | ~r2(X,Z) | s(Y,Z) { inv s = s−,

inv r 2 = r 2−,
inv s w ( inv r 2 ◦ r 1 ) }



The last step of the translation is to determine if there is an exact match for c. All features
of the clause c, such as polarity of its literals, and the order of appearance of variables and
constants in the arguments of binary predicates, are taken into account when finding a match.

In Example 1, the clauses 1.b, 1.c and 1.d share same sets of constants, unary predicates,
binary predicates, and distinct variables. However, the clause 1.b is not DL-able, and the
clauses 1.c and 1.d match the clause structures in the first and second rows of the Table 3.
Examples 2.a and 2.b are the translation for clauses 1.c and 1.d correspondingly.

Example 2.

2.a. {dad v child}

2.b. {inv child = child−,
dad v inv child }

In the RDF/XML implementation, the output of the translation module on a DL-able
clause c is a set of pairs. The first argument of the pair contains information that uniquely
specifies an RDF/XML tag. The second argument of the pair is a DL formula expressed as a
sub-tag. All the pairs are passed to the gather module to create completed RDF/XML tags.

In the DLF implementation, the output of the translation module on a DL-able clause c
is a set of DL formulae and the list of the names of the constants, unary predicates, and binary
predicates of c. DL formulae expressing that an individual belongs to a class, along with the
names of constants, unary predicates and binary predicates of the clause c, are passed to the
gather module. All other DL formulae are created in DLF syntax, and are passed directly to
the generate-output module.

4.2 The gather and generate-output Modules

The characteristics of a specific individual, class or role, and the description of the class Thing
are distributed in a CNF problem. After the translation module has translated all the DL-
able clauses, the gather module processes the data received from the translation module.

In the RDF/XML implementation, the gather module collects all the resultant pairs from
the translation module. It merges the sub-tags of all the pairs whose first arguments specify
the same RDF/XML tag, to create a completed RDF/XML tag that describes the individual,
class, role, or Thing. The output of the gather module is a set of RDF/XML tags that are
passed to the generate-output module.

In the DLF implementation, the gather module collects all the DL formulae and the list
of names received from the translation module. A type formula needs to be created for each
individual, each class, and each role in DLF syntax. If an individual belongs to more than
one class, then the type of the individual is the intersection of those classes. If an individual
does not belong to any class, the type of the individual is &thing (the TPTP DLF syntax
for Thing). The types of classes are always $tType (the kind of types in the typed TPTP
languages). The types of roles are always &thing * &thing > $o ($o is the TPTP boolean
type for formulae), because no CNF clause is translated in a way to provide the domain or
range of a role. The output of the gather module is a set of DLF type formulae that is passed
to the generate-output module.

The generate-output module creates an appropriate definition header for the DL problem,
depending on the desired syntax of the output DL problem. The definition header and the set
of either RDF/XML tags or DLF formulae are written to an output file.



5 Experiments

An experiment was carried out to compare solving problems by translation to DL, and solving
by other possible combinations of translators and ATP systems. The comparison is done in
terms of the number of problems solved, and the average time of the whole reasoning process
through the path (including translations) over all solved problems. It is also interesting to note
how many problems are solved exclusively by translation to DL.

The source of the problems for the experiment was the TPTP. Three sets of problems were
attempted: (i) all DL-able CNF problems in the TPTP, (ii) EPR SoftWare Verification (SWV)
problems that are DL-able after applying the splitting technique, and (iii) the set of all TF1
problems in the TPTP. The time limit for each stage of the reasoning process was 300 seconds,
and the experiment was done on a machine with the following specifications.

NumberOfCPUs : 4
CPUModel: Intel(R) Xeon(TM) CPU 2.80GHz
RAMPerCPU: 756MB
OS: Linux 2.6.32.26-175.fc12.i686.PAE
The results of the experiments over each set of problems are discussed in Sections 5.1, 5.2,

and 5.3. In the result tables “Total Available” is the number of problems available for the final
translation step (or the ATP run, if there is no further translation) of the path. “Success” is the
number of problems solved, and the percentage with respect to “Total Available”. “Time” is the
average CPU time for the whole reasoning process for solved problems. “Common Time” is the
average CPU time for the common problems solved through all paths up to and including that
row. “Translation Time” is the average CPU time for the translation steps for solved problems.
“Solving Time” is the average CPU time for the ATP system to solve the (translated) problems.
“Timeout” is the number of problems for which the last translation step or the ATP system
timed out, and the percentage with respect to “Total Available”. “Failed” is the number of
problems for which the last translation step or the ATP system failed, and the percentage with
respect to “Total Available”.

5.1 DL-able Problems

The first set of problems was the DL-able CNF problems in the TPTP. This set was chosen to
experiment with solving by translation to DL, without the effects of splitting, partial CNF to
DL translation, and the translation from logics more expressive than CNF to CNF. There are
23 unsatisfiable and 3 satisfiable DL-able problems in the TPTP. Table 4 shows the results of
the experiment.

Since all these problems are EPR, iProver is used to solve the problems in their original CNF
form. As illustrated in this table, iProver can solve more problems than EGround > MiniSAT,
and EGround > MiniSAT can solve more problems than Saffron > Konclude.

The results of the experiment suggest that solving an EPR problem by Saffron > Konclude

is an alternative, despite the fact that iProver is a well-tuned and powerful ATP system for
EPR problems. The average time of the translation of all problems by Saffron is 0.43 second,
but Konclude timed out with the time limit of 300 seconds over the “Timeout” problems.

5.2 Software Verification Problems

The second set of problems was all the EPR SWV problems in the TPTP that were DL-able
after applying splitting technique. This set was chosen to experiment with solving by translation
to DL with the splitting technique, but without the effects of partial CNF to DL translation,



Table 4: Results of Comparing Paths from EPR over 26 DL-able Problems
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EPR iProver 26 (100%) 34.76 0.00 34.76 0 (0%) 0 (0%)

EPR.PL EGround> MiniSAT 13 (50%) 1.40 0.00 1.40 0 (0%) 13 (50%)

EPR.DL Saffron> Konclude 12 (46%) 0.54 0.00 0.54 14 (54%) 0 (0%)

and the translation from logics more expressive than CNF. There are 40 unsatisfiable such SWV
problems. They all have only one proposition. Splitting technique produces two unsatisfiable
proposition free versions of each problem. The problem is considered solved by translation to
DL if the unsatisfiability of the both proposition free versions of the problem is confirmed by
Konclude.

The two versions of the problem can be solved in parallel if more than one CPU is available.
Table 5 shows the results of the experiment. In Table 5, EPR.DL(serial) and EPR.DL(parallel)
show the statistics for solving the two versions of SWV problems in serial and parallel through
the path EPR.DL. The success rate of solving by translation to DL is 80%. This results suggest
that solving by translation to DL is an alternative way of solving EPR SWV problems.

Table 5: SWV Problems with Splitting Technique
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EPR iProver 40 (100%) 13.87 0.00 13.87 0 (0%) 0 (0%)

EPR.DL (parallel) Saffron> Konclude 32 (80%) 22.00 2.11 19.89 8 (20%) 0 (0%)

EPR.DL (serial) Saffron> Konclude 32 (80%) 29.92 4.21 25.71 8 (20%) 0 (0%)

EPR.PL EGround> MiniSAT 3 (8%) 0.38 0.27 0.12 24 (60%) 13 (33%)

5.3 Typed First Order From - polymorphic Problems

The last set of problems was all the TF1 problems without arithmetic in the TPTP. There are
538 TF1 problems. This set was chosen to experiment with solving problems expressed in logics
more expressive than CNF by translation to DL. TF1 problems can be translated to TF0 or
FOF. If a problem is translated to TF0, then it can be translated to FOF or CNF. If a problem
is translated to FOF, then it can be translated to CNF. None of the problems translated to
CNF are EPR.

Table 6 shows the results of the experiment. The results suggest that solving by translation
down to FOF or CNF solves more problem than than using the ATP system for TF1. The



reason is that Vampire, the ATP system for FOF and CNF problems, is a very powerful ATP
system. The TF1 problems are mostly very hard problems, and the best approach can solve
44% of the problems within the time limit of 300 seconds. The best translation to DL approach,
through the path TF1.TF0.CNF.DL, can solve 3% of the problems. The other two translation
to DL approaches can solve 2% and 1% of the problems. All the translated problems to CNF
are partially translated to DL.

Table 6: Results of Comparing Paths from TF1
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TF1.FOF Why3-FOF>Vampire 538 238 (44%) 9.34 9.34 0.08 9.26 288 (54%) 12 (2%)

TF1.TF0.FOF Why3-TF0>
Monotonox-2FOF>
Vampire

538 234 (43%) 2.95 3.77 0.12 2.82 225 (42%) 79 (15%)

TF1.TF0.FOF.CNF Why3-TF0>
Monotonox-2FOF>
ECNF>Vampire or
iProver

495 233 (47%) 7.72 8.47 0.19 7.52 225 (45%) 37 (7%)

TF1.FOF.CNF Why3-FOF>ECNF>
Vampire or iProver

538 231 (43%) 7.51 3.70 0.09 7.42 303 (56%) 4 (1%)

TF1.TF0.CNF Why3-TF0>
Monotonox-2CNF>
Vampire or iProver

538 208 (39%) 7.48 5.82 0.14 7.35 257 (48%) 73 (14%)

TF1 Alt-Ergo 538 197 (37%) 0.79 0.25 0.00 0.79 158 (29%) 183 (34%)

TF1.TF0 Why3-TF0>CVC4 538 184 (34%) 11.00 5.09 0.25 10.75 295 (55%) 59 (11%)

TF1.TF0.CNF.DL Why3-TF0>
Monotonox-2CNF>
Saffron>Konclude

486 14 (3%) 0.68 0.71 0.11 0.56 0 (0%) 472 (97%)

TF1.TF0.FOF.
CNF.DL

Why3-TF0>
Monotonox-2FOF>
ECNF>Saffron>
Konclude

495 8 (2%) 0.71 0.71 0.15 0.56 0 (0%) 487 (98%)

TF1.FOF.CNF.DL Why3-FOF>ECNF>
Saffron>Konclude

538 3 (1%) 0.66 0.67 0.12 0.54 0 (0%) 535 (99%)

When more than one CPU is available, different approaches can be executed on one problem
simultaneously to increase the chance of the problem being solved. Therefore, with N proces-
sors, the N paths that provide the maximum number of problem solved in this experiment
are chosen. Table 7 shows which path is the best to be added to maximize the number of
problems solved when increasing the number of CPUs. Out of the 538 problems, 300 problems
can be solved through all paths together. The five paths shown in Table 7 can solve all these
problems, so using more than five CPUs will not increase the chance of a problem being solved.
It shows that using multiple CPUs significantly increases the chance of a problem being solved.
Using the five approaches in Table 7 solves 300 problems, which is an over 26% increase in the
number of problems solved. The two translation to DL approaches can exclusively solve 2% of



the problems. This result is interesting since the TF1 ATP system cannot solve any problems
exclusively.

Table 7: Paths from TF1 in Parallel
N Path Exclusive Problems Total Solved Average Time

1 TF1.FOF 238 238 9.34
2 TF1.TF0.FOF.CNF 55 293 7.18
3 TF1.TF0.CNF.DL 4 297 7.03
4 TF1.FOF.CNF 2 299 7.47
5 TF1.FOF.CNF.DL 1 300 7.45

6 Conclusion

There are different ways of solving a problem expressed in a logic. It can be solved directly by
using the ATP system for that logic, or it can be translated to a less expressive form. When it
is translated to a less expressive form, again the same two options are available.

DL is more expressive than PL, and less expressive than EPR. There used to be a gap
between DL and more expressive logics because no CNF to DL translator was available before.
In this research, Saffron, a CNF to DL translator was developed. DL, as a specific logic for
expressing ontologies was not a part of TPTP world. DLF is a TPTP syntax was designed in
this research. Now, DL can be embedded in the TPTP world. The successful application to
software verification problems introduces another application for DL.

Experiments have been carried out to evaluate solving problems by translation to DL. The
results of the experiments suggest that solving problems by translation to DL is an alternative
way of solving DL-able CNF problems, CNF SWV problems, and TF1 problems. Moreover,
solving by translation to DL is the only way of solving some TF1 problems.

Future work includes adding more features to Saffron to translate CNF clauses with wider
range of clause structures. DLF and DLF tools can be integrated into the TPTP world. This
is possible by developing tools for importing problems in other DL syntaxes into the TPTP
in the DLF syntax, and adding features to TPTP tools for exporting problems in other DL
syntaxes. DL problems can be collected and released in the TPTP problem library. Solutions
for DL problems can be collected and released in the TSTP solution library. Eventually, DL
ATP systems and tools can be added to the SystemOnTPTP.

A Description Logic Form

Description Logic Form (DLF) is the new TPTP syntax for the DL SROIQ. The design of
DLF is a first step toward adding DL to the TPTP world, so the DL community will be able
to benefit from the TPTP tools. DLF, which is compact, natural and easily processable by
both human and computers, was designed in this research. A BNF for DLF was designed to
enable the construction of parsers for DLF problems and solutions in other languages other
than Prolog.

Like all TPTP problem files, DLF problem files include up to three sections: the header,
include directives, and the annotated formulae. The header and include directives are the same



as all TPTP problems. The annotated formulae of a DL problem can include definitions, type
formulae, and logic formulae.

Definitions are used to set aliases for repeatedly-used identifiers, such as namespaces and
schemas. Example 3 shows the definition of the OWL namespace and the default class Thing
in the OWL namespace. The aliases &owl and &thing can be used in the problem instead of
their long URIs.

Example 3.

dlf(owl defn,definition,

owl := ’http://www.w3.org/2002/07/owl’ ).

dlf(thing defn,definition,

thing := &owl#’Thing’ ).

DLF type formulae are used to declare individual, classes, and roles. In addition to the
declaration, the type formulae for individuals specify the classes that the individual belongs
to, and the type formulae for roles specify their domain and range. In Example 4, student is
a class, joe is an individual belonging to the class student, and register is a role with the
domain student and the range &thing.

Example 4.

dlf(student type,type,

student: $tType ).

dlf(joe type,type,

joe: student ).

dlf(register type,type,

register: ( student * &thing ) > $o ).

The DLF logic formulae are used to express any DL formula other than type formulae, such
as DL axioms and conjectures. In Example 5, math101 is declared to be an individual belonging
to the class &thing. The DLF logic formula joe registered math101 is a DL axiom expressing
that joe is registered in math101.

Example 5.

dlf(math101 type,type,

math101: &thing ).

dlf(joe registered math101,axiom,

register(joe,math101) ).
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