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Abstract. Although large language models and temporal knowledge graphs
each have significant advantages in the field of artificial intelligence, they also
face certain challenges. However, through collaboration, large language models
and temporal knowledge graphs can complement each other, addressing their
respective shortcomings. This collaborative approach aims to harness the
potential feasibility and practical effectiveness of large language models as
external knowledge bases for temporal knowledge graph reasoning tasks.In our
research, we have meticulously designed a synergized model that leverages the
knowledge from the graph as prompts. The answers generated by the large
language model undergo careful processing before being seamlessly
incorporated into the training dataset. The ultimate goal is to significantly
enhance the reasoning capabilities of temporal knowledge graphs. Experimental
results underscore the positive impact of this synergized model on the
completion tasks of temporal knowledge graphs, showcasing its potential to
address gaps in knowledge and improve overall performance. While its
influence on prediction tasks is relatively weak, the collaborative synergy
demonstrates promising avenues for further exploration and development in the
realm of AI research.

Keywords: Large language models, Temporal knowledge graphs, Synergetic
pattern, Completion task, Prediction task.

1 Introduction

The concept of knowledge graphs can be traced back to the Semantic Net in 1956,
and it gained renewed attention in 2012 when Google officially introduced the term
"knowledge graph" . Various knowledge graphs, such as Google Knowledge Graph,
financial knowledge graphs, and legal knowledge graphs, have been developed,
enhancing search engine effectiveness and contributing to the development of
intelligent assistants. Knowledge graphs are essentially graph databases storing
information in triplets [entity, relation, entity] or [entity, attribute, attribute value]. For
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example, [Yaoming, was born in, Shanghai] represents a relationship between the
entity "Yaoming" and "Shanghai."

Traditional knowledge graphs primarily describe static common knowledge, often
neglecting temporal information. In 2018, Leblay et al. introduced temporal
knowledge graphs [1], incorporating temporal concepts into traditional knowledge
graphs with a four-tuple format, including a time attribute. Temporal knowledge
graphs consider temporal information, effectively managing dynamically evolving
temporal knowledge and supporting time-coupled applications. For instance, [LeBron
James, played for, Cleveland Cavaliers, 2003 to 2010] and [LeBron James, played for,
Los Angeles Lakers, 2018 to present] reflect changes over time.

However, real-world temporal knowledge graphs cannot cover all knowledge,
leading to significant knowledge gaps affecting downstream application performance.
For example, knowledge base question-answering systems struggle with queries about
information not present in the knowledge base, requiring inference models to
automatically discover missing knowledge. Additionally, downstream applications
need to predict future knowledge, such as e-commerce recommendation systems
suggesting the next possible purchase for users and medical decision support systems
predicting disease development based on patient historical clinical data. Therefore,
knowledge inference tasks are crucial for temporal knowledge graphs, involving
completion and prediction tasks. Completion utilizes historical and future knowledge
relative to the knowledge to be completed, emphasizing bidirectional time
characteristics, while prediction relies on historical knowledge, using time
unidirectional feature learning for evolution patterns.

Large Language Models (LLMs) represent a significant breakthrough in artificial
intelligence, with parameters reaching billions of weights. Trained on millions to
billions of text data, LLMs can adapt to various contexts, generating more natural
language in tasks such as text summarization, question-answering systems, and
machine translation. However, LLMs, as parameterized implicit knowledge, face
challenges like factual fabrication and lack of interpretability. Temporal Knowledge
Graphs (TKGs), as structured explicit knowledge, offer natural interpretability and
demonstrate high-quality knowledge representations in specific domains. Although
TKGs have higher construction costs, may not be exhaustive, and lack natural
language processing capabilities, their structured features aid in a deeper
understanding of model outputs. To overcome individual deficiencies and leverage
complementary advantages, LLMs and TKGs can collaborate, enhancing natural
language processing capabilities and expanding application scope. Specifically, TKGs
can provide additional, structured, high-quality knowledge to LLMs, improving
model generalization. Simultaneously, LLMs can automatically extract knowledge
from text data, reducing TKG construction and maintenance costs, making it more
comprehensive. The synergy between TKGs and LLMs is still in its early stages and
holds significant research value.

The large language models can be classified into open-source and closed-source
categories. This paper utilizes the closed-source large language models, and its main
contributions are as follows:(1)We introduce a novel collaborative mode between
large language models and temporal knowledge graphs.(2)This collaborative
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approach has a positive impact on the task of completing temporal knowledge graphs,
leading to significant improvements in TeLM's inference performance. The MRR
metric shows performance improvements of 3.2% and 2.7% on the Yago11k and
Wiki12k datasets, respectively.

2 Related Work

2.1 Static Knowledge Graph

Various methods have been developed to model static Knowledge Graphs (KGs)
without incorporating temporally dynamic facts, as summarized in recent surveys [2].
One category of these methods includes translational models [3], which represent the
relation between two entities as a translation vector. Another category involves
semantic matching models that assess the plausibility of facts using a triangular norm
[4]. Additionally, there are models based on deep neural network approaches,
utilizing feed-forward or convolutional layers on top of embeddings [5]. However,
these approaches do not account for temporally dynamic facts.

2.2 Temporal Knowledge Graph

Recent efforts have aimed to capture the evolving nature of facts in Temporal
Knowledge Graphs (TKGs). TTransE [6] extends TransE [7] by incorporating
temporal information into the score function. HyTE [8] introduces a time-specific
normal vector in place of the unit normal vector in the hyperplane projection of
TransH [9]. Know-Evolve [10] focuses on learning non-linearly evolving entity
representations over time, treating the occurrence of a fact as a temporal point
process.

Models like ConT [11], based on the Tucker decomposition, learn a new core
tensor for each timestamp but lack a mechanism to capture long-term dependencies in
consecutive time snapshots.

Other methods are designed to model graph sequences for capturing the long-term
dependency of TKG facts. TA-DistMult [12] uses a recurrent neural network to learn
time-aware representations of relations, employing standard scoring functions from
DistMult [13]. GCRN [14] combines Graph Convolutional Networks (GCN) for
graph-structured data with RNN to identify meaningful spatial structures and dynamic
patterns simultaneously. DyREP [15] divides the dynamic graph network into two
processes: global and local topological evolution. It proposes a two-time scale deep
temporal point process to model these processes jointly. Know-Evolve, DyREP, and
GCRN have also been integrated with MLP decoders for predicting future facts, as
demonstrated by Jin. A previous state-of-the-art method in this research line, RE-NET
[16], jointly models event (fact) sequences using an RNN-based event encoder and an
RGCN-based [17] snapshot graph encoder.
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2.3 Large Language Models

The application scope of large language models is increasingly extensive, making it
essential to comprehensively understand and effectively evaluate their various
capabilities. This is crucial for designing new paradigms for human-machine
interaction. For natural language processing tasks, these capabilities encompass
sentiment analysis [18], text classification [19], natural language inference [20],
question-answering systems [21], natural language generation [22], authenticity
verification [23], and the ability to handle multilingual tasks [24].

2.4 Synergized LLMs and KGs

In recent years, the collaborative interaction between Large Language Models
(LLMs) and Knowledge Graphs (KGs) has gained increasing attention. The fusion of
the strengths of LLMs and KGs aims to mutually enhance performance in various
downstream applications, primarily manifested in the following three aspects.

Firstly, Collaborative Knowledge Representation of LLMs and KGs involves
combining Large Language Models (LLMs) with Knowledge Graphs (KGs) to jointly
represent and utilize information from both textual corpora and structured knowledge.
A representative method, BERT-MK [25], employs a dual-encoder architecture,
enhancing the knowledge encoder component with additional information about
adjacent entities during the pre-training phase of LLM. However, certain adjacent
entities in the knowledge graph may not have direct relevance to the input text,
introducing unnecessary redundancy and noise. Therefore, CokeBERT [26] proposes
an innovative approach, introducing a Graph Neural Network (GNN)-based module
capable of intelligently filtering out irrelevant KG entities based on the input text.
Simultaneously, JAKET [27] suggests another strategy, integrating entity information
in the intermediate stage of the large language model to optimize the knowledge
integration process.

Secondly, Collaborative Reasoning of LLMs and KGs involves inferring
knowledge by combining the sources of knowledge from Large Language Models
(LLMs) and Knowledge Graphs (KGs). To enhance interaction between text and
knowledge, KagNet [28] proposes a strategy of first encoding the input KG and then
using the encoded KG information to augment the representation of the input text. In
contrast, MHGRN [29] adopts a different approach, using the final output of the LLM
to guide the reasoning process on the KG. However, both these methods only design
unidirectional interaction between text and KG, which limits the effectiveness of
knowledge fusion.

To address this limitation, QA-GNN [30] introduces a Message Passing Graph
Neural Network (GNN) model for joint reasoning on input context and KG
information obtained through message passing. Specifically, QA-GNN represents
input text information as a special node and connects this node with other entities in
the KG through pooling operations. However, a limitation of this approach is that the
text input is aggregated into a single dense vector, potentially restricting the
performance of information fusion.
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To further enhance the interaction between text and KG, JointLK [31] proposes a
novel framework. This framework achieves fine-grained interaction between any
token in the text input and KG entities through a bidirectional attention mechanism
between LM-to-KG and KG-to-LM. In contrast, GreaseLM [32] designs deep and
rich interactions between input text tokens and KG entities at each layer of the LLM.
This design allows GreaseLM to better leverage complementary information between
text and KG during the reasoning process, thereby improving the accuracy and
efficiency of reasoning.

3 Methodology

In this section, we will introduce the detailed overview of the collaborative
framework between the Large Language Models (LLMs) and the Temporal
Knowledge Graphs (TKGs) designed in this paper.Figure 1 shows the synergized
LLMs and TKGs.

Fig. 1. Synergized LLMs and TKGs.We convert the structured data from the temporal
knowledge graph datasets Wiki12k and Yago11k into natural language sentences to construct a
large language model question-answer dataset. Then, we process the responses returned by the
large language model and add the data to the training set of the inference task.

3.1 Construct the LLM Question-and-answer Dataset

In this paper, we primarily utilized two temporal knowledge graph reasoning task
datasets: Wikidata12k [33] and YAGO11k [34].

Wikidata12k is a temporal knowledge graph dataset constructed based on
Wikipedia, selecting the top 24 most frequent relations from the open knowledge
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graph Wikidata. The dataset spans from the year 1709 to 2018, comprising 12,554
entities, 24 relations, and 40,621 relation facts. Encompassing various domains such
as history, science, and culture, this dataset provides detailed temporal information,
offering researchers a rich resource for in-depth exploration and experimentation in
temporal knowledge graph reasoning tasks.

YAGO11k, derived from the YAGO (Yet Another Great Ontology) project, is a
dataset selected from the temporal knowledge of the open knowledge graph YAGO3,
focusing on the top 10 most frequent relations. The temporal scope of this dataset is
more extensive, ranging from 453 BC to 2844 AD. With 10,623 entities, 10 relations,
and 20,509 relation facts, the dataset covers various entity types, including persons,
organizations, and locations, accompanied by temporal annotations. It serves as a
valuable resource for researchers to explore temporal relationships among
entities.Table 1 summarizes the statistics of the datasets.

Table 1. Statistics of the datasets.

#Data #Entities #Relations #Time Span #Training #Validation #Test
Wiki12k 12,554 24 1709-2018 32,197 4,062 4,062
Yago11k 10,623 10 -453-2844 16,408 2,050 2,051

We need to transform the structured data of these quadruples into natural language
sentences. As the textual information in the data typically consists of simple keywords
for entities and relationships, it is insufficient to fully describe an event. Therefore,
based on the characteristics of the data, we need to convert relationship nouns into
appropriate predicate verbs and add prepositions as needed to form complete natural
language sentences. For example, the quadruple [Obama, place of birth, Hawaii,
1961] is transformed into the natural language sentence "Obama was born in Hawaii
in 1961."

In addition, we also need to handle time attributes, which can be classified into
four types: time points, time intervals with both start and end times, time intervals
with only end times, and time intervals with only start times. For the first type, i.e.,
time points, such as [Obama, place of birth, Hawaii, 1961], the transformation into a
natural language sentence would be "Obama was born in Hawaii in 1961." For the
second type, i.e., time intervals with both start and end times, like [LeBron James,
plays for, Cleveland Cavaliers, 2014, 2018], the transformation would be "LeBron
James played for the Cleveland Cavaliers from 2014 to 2018." The third type of time
interval only includes an end time, as in [Hans Helfritz, country of citizenship,
Germany, ####, 1948], and the transformation would be "Hans Helfritz's nationality
was Germany until 1948." Lastly, the fourth type of time interval only includes a start
time, such as [Oleh Mishchenko, member of sports team, FC Amkar Perm, 2016,
####], and the transformation would be "Oleh Mishchenko has been a member of the
FC Amkar Perm since 2016."

The example is as follows:Obama(head entity) was born(relation) in Hawaii(tail
entity) in 1961(time).Please list as many relevant events as possible that contain time
information for the entities or relation mentioned in the above events.
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3.2 Knowledge Acquisition

We utilize large language models such as ChatGPT 3.5, Bard, Claude, and ERNIE
Bot for knowledge acquisition.The next step is the design phase for prompts. Our goal
is to guide the large language model to provide as many event details related to the
entities mentioned in the previous events and rich in time information.The answers
are typically in natural language by default. We can save these answers and then, with
the help of a large language model, extract structured quadruple data from the
unstructured natural language data. However, this undoubtedly adds a lot of
workload. Therefore, we hope the answers are in the form of structured quadruple
data. Figure 2 shows the Large Language Model Knowledge Acquisition.

Fig. 2. The Large Language Model Knowledge Acquisition.We use the relevant information of
Pieter Zeeman in the question-and-answer dataset as a prompt and design prompts to retrieve
more related quadruple information through large language models.

3.3 Data cleaning

Due to the diverse formats of answers generated by large language models, they do
not always conform to standard structured data formats. To ensure the integrity,
accuracy, consistency, and usability of the data, we need to perform meticulous
identification, modification, or removal operations on these data. The entire data
cleaning process includes the following key steps:

Extracting Quadruple Data.
Quadruple data generated by large language models often use symbols such as "[]",
"**", "()", etc., for enclosing, while entities, relations, times, and other elements are
typically separated by "|" or ",". In standard quadruple data, you would usually see
three "|" or three ",". For those with fewer than three "|" or ",", their structure is
incomplete, and we can directly delete them.
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Removing Invalid Data.
Due to the incomplete nature of answers generated by large language models, we
need to remove quadruples with missing data, specifically those with missing entities
or time attributes. Examples of missing data include "| - |", "unknown", "N/A", "?",
"None", etc. To handle these incomplete data, we can read quadruple data line by line
and use string matching to identify and delete entire lines containing any of the
mentioned strings.

Performing Data Type Conversion.
For explicit time ranges like "[1996 to 2024]", we can directly convert it to the format
"[1996-##-##\t2024-##-##]". As for time representations like "[before 1996]" and
"[after 1996]", we can respectively transform them into the formats "[####-##-
##\t1996-##-##]" and "[1996-##-##\t####-##-##]".

Eliminating Duplicate Values.
For duplicate answers, we need to remove them, and the set() data structure in Python
can efficiently accomplish this task. By converting the data into a set, we can ensure
that there are no duplicate elements in the dataset.

3.4 Entity disambiguation

Entity disambiguation is a crucial task in natural language processing, aiming to
address the issue where the same entity has multiple surface forms (such as names,
spelling variations, abbreviations, etc.) in different contexts. In texts generated by
large language models, this ambiguity is particularly pronounced due to the lack of
specific contextual knowledge and standardized datasets. To tackle this problem,
knowledge graphs like Wikidata can be utilized for entity linking and disambiguation.

4 Experiments

We leverage advanced large language models such as ChatGPT 3.5, Bard, Claude,
and ERNIE Bot to acquire rich new knowledge. Subsequently, we integrate this
valuable knowledge into the original Wiki12k and Yago11k datasets to effectively
enhance the data. Building upon this, we employ temporal knowledge graph
completion tasks and prediction tasks to validate the practical application value of the
newly added knowledge. Finally, by comparing the model inference performance
using the augmented dataset with the original dataset, we can assess the extent to
which this new knowledge improves the model's performance.

4.1 Datasets

The two datasets used in this paper are enhanced versions of Wiki12k and Yago11k.
Wiki12k represents the original dataset, while GPT-Wiki, Bard-Wiki, Claude-Wiki,
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and ERNIE-Wiki represent Wiki12k datasets that have undergone data enhancement
using large language models ChatGPT 3.5, Bard, Claude, and ERNIE, respectively.
The processing approach for the Yago dataset is similar.Figure 3 shows the statistics
of the training data.

Fig. 3. The Statistics of Training Data.The data volume of ERNIE-Wiki and ERNIE-Yago is
the highest, with an increase of 5990 and 3398 respectively compared to the original dataset.

4.2 Evaluation Protocols

In this context, two evaluation metrics are employed: Mean Reciprocal Rank (MRR)
and Hits@k. Mean Reciprocal Rank is calculated as the mean of the reciprocal values
of all computed ranks. Hits@k represents the fraction of test quadruples that rank
within the top k.

4.3 Model Configurations

We validated the impact of this collaborative mode on the performance of the
temporal knowledge graph completion task using the ATiSE [35] and TeLM[36]
models. Additionally, we employed the CyGNet [37] and RE-Net [16] models to
assess the effect of this collaborative mode on the performance of the temporal
knowledge graph prediction task.The hyperparameters for the above-mentioned
models are set based on the optimal values provided in the respective papers.
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5 Results and Analysis

5.1 Completion Tasks

This task employed the ATiSE model and TeLM model. Tables 2 and 3 respectively
describe the results of TeLM and ATiSE on the Yago11k and Wiki12k datasets. In
these experiments, Claude, Bard, ERNIE, and GPT-3.5 represent the names of the
datasets enhanced by the corresponding large language models, while "Origin"
denotes the original dataset.

From the results, it is evident that the dataset enhanced by the large language
model Bard achieved optimal performance for both the TeLM and ATiSE models.On
the other hand, the dataset enhanced by the large language model ERNIE did not
perform as well on the ATiSE model.Overall, the dataset enhanced by the large
language models showed a significant improvement in performance on the TeLM
model.

The improvement in the performance of the completion model demonstrates that
the majority of the data generated by the large language model is accurate. When this
data is added to the training set of temporal knowledge graph reasoning tasks, it
provides the model with more effective language information and background
knowledge. This aids the model in better understanding and memorizing information
related to time.

Table 2. TeLM results on Yago11k and Wiki12k.

Method
Yago11k Wiki12k

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
Claude .195 .134 .194 .326 .340 .239 .372 .556
Bard .220 .161 .224 .344 .353 .251 .387 .570

ERNIE .180 .118 .180 .314 .333 .231 .367 .545
GPT-3.5 .195 .131 .198 .331 .330 .231 .360 .538
Origin .188 .128 .189 .320 .326 .227 .355 .534

Table 3. ATiSE results on Yago11k and Wiki12k.

Method
Yago11k Wiki12k

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
Claude .171 .113 .170 .290 .283 .181 .318 .487
Bard .176 .116 .180 .299 .290 .183 .331 .497

ERNIE .166 .106 .171 .287 .275 .179 .309 .461
GPT-3.5 .170 .107 .172 .304 .274 .174 .310 .473
Original .168 .109 .169 .289 .280 .175 .318 .481
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5.2 Prediction Tasks

This task employed the CyGNet model and RE-NET model.Tables 4 and 5
respectively describe the results of CyGNet and RE-NET on the Yago11k and
Wiki12k datasets. In these experiments, Claude, Bard, ERNIE, and GPT-3.5 represent
the names of the datasets enhanced by the corresponding large language models,
while "Origin" denotes the original dataset.

Overall, the dataset enhanced by the large language models did not perform well
on the prediction models CyGNet and RE-NET.Especially in the case of the CyGNet
model, its performance showed a noticeable decrease.However, the dataset enhanced
by Claude showed a relatively promising performance on the RE-NET model.

Temporal knowledge graph reasoning tasks and prediction tasks have different
requirements and characteristics. The distribution of temporal data at different
timestamps has a significant impact on prediction tasks. This may be a contributing
factor to the suboptimal performance of the data enhanced through data augmentation
on prediction tasks.

Table 4. CyGNet results on Yago11k and Wiki12k.

Method
Yago11k Wiki12k

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
Claude .627 .588 .651 .693 .449 .404 .476 .530
Bard .626 .587 .650 .689 .448 .404 .474 .529

ERNIE .627 .587 .651 .692 .448 .403 .475 .529
GPT-3.5 .626 .586 .648 .692 .450 .406 .477 .534
Origin .634 .598 .656 .690 .453 .411 .479 .530

Table 5. RE-NET results on Yago11k and Wiki12k.

Method
Yago11k Wiki12k

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
Claude .649 .632 .653 .681 .522 .511 .524 .540
Bard .646 .629 .651 .676 .520 .511 .523 .538

ERNIE .647 .630 .652 .676 .520 .510 .521 .539
GPT-3.5 .644 .627 .647 .670 .521 .511 .523 .540
Origin .647 .631 .649 .676 .520 .510 .522 .538

6 Conclusions

This paper aims to explore the feasibility and effectiveness of large language models
as external knowledge bases for temporal knowledge graph reasoning tasks. By
integrating the collaborative mode of large language models and temporal knowledge
graphs, we aim to validate the specific impact of this combination on the performance
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of temporal knowledge graph reasoning. Through experimental validation, we
observed that this collaborative mode had a positive impact on temporal knowledge
graph completion tasks. However, its influence on prediction tasks was not
significant.
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