
EasyChair Preprint
№ 8260

Learning to Self-Modify Rewards with Bi-Level
Gradients

Aiden Boyd, Shibani and Will Callaghan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 21, 2023



Learning to Self-Modify Rewards with Bi-Level Gradients

Aiden Boyd

Shibani Syambhale

Will Callaghan

Abstract

Reward shaping is a technique used to improve the efficiency of learning optimal policies
in sequential decision-making problems. However, it can be difficult to design auxiliary
rewards that effectively guide the agent’s learning, and this often requires significant time and
expertise from domain experts. In this paper, we propose an approach based on the optimal
rewards methodology that learns a new reward function for better learning by adapting a
given reward function. This can be formulated as a meta-learning problem, and we propose
to solve it using a bi-level optimization framework. However, standard methods used in
literature for this type of problem are not scalable, so we propose to use an implicit-gradient
technique. Our method is shown to be effective in both a) learning optimal rewards and b)
adaptive reward shaping.

1 Introduction

The reward function is a key component of any reinforcement learning (RL) algorithm. It defines the goals of
the agent and the feedback it receives for its actions. Providing a reward function that is dense, meaning
that rewards are received frequently and consistently, and useful, meaning that it effectively guides the agent
towards the desired behavior, can significantly improve the sample efficiency of RL algorithms (Dorigo &
Colombetti, 1994). Early work in RL often relied on hand-crafted reward functions for simple tasks such as
controlling a bicycle(Randløv & Alstrøm, 1998). However, as RL has been applied to more complex tasks,
reward shaping has become a popular technique for improving the efficiency of learning. Reward shaping
involves modifying the rewards the agent receives to guide it towards the optimal policy. In recent years,
reward shaping has been successfully applied in a variety of complex tasks such as solving the video game
Doom. (Lample & Chaplot, 2017; Song et al., 2019).

One of the main challenges in reward design is ensuring that the rewards are dense and informative. Dense
rewards are those that are received frequently and consistently, which is important for the agent to learn
quickly. Informative rewards are those that provide useful feedback about the agent’s actions, which is
essential for the agent to learn the correct behavior. It is also important to ensure that the rewards are
aligned with the desired behavior of the agent. Even small changes to the reward function, that may seem
intuitive, can often result in sub-optimal or undesired behavior (Ho et al., 2019; Asmuth et al., 2008). As
such a lot of work in reward shaping has focused on potential based rewards (PBRS); as one can guarantee
policy invariance (Ng et al., 1999; Laud & DeJong, 2003; Marthi, 2007; Harutyunyan et al., 2015)

Even with potential based methods, it can be challenging to translate human intuition about the problem
into actual rewards. For example, in most games an agent would need to keep an eye on various resources like
health and mana and promote building of skills and inventory items (OpenAI, 2018). However it is difficult
to translate these into specific numerical rewards. Furthermore even if converted to numerical rewards, their
relative combinations can be very dynamic, and designers usually have to experiment with many different

1



functions to see which work best. Finally even after all such considerations the new rewards may be not be
very reliable or in some cases counter-productive. This raises the main challenge we try to address here, a
method that allows for a) easy specification of rewards while helping learning and b) robustness to ill-specified
rewards.

To address these challenges of designing rewards, we propose an approach regarding utilization a given
auxiliary reward function. The term "auxiliary" is used to distinguish it from the primary reward, whose
optimization is guaranteed to solve the given task. The auxiliary or helping reward is an additional reward
provided by the user to aid in the learning process. Our goal is to utilize the guidance of the given reward
function while ignoring the mis-specified or unbeneficial signal it might contain. This is done by adapting the
auxiliary reward function in a way that aligns it with the primary reward, by doing so, the agent can make
use of the guidance provided by the auxiliary reward function to learn more efficiently.

This naturally produces an online bi-level optimization problem. The inner-level constitutes of policy optimiza-
tion under an auxiliary shaping reward function, and the outer-level optimizes the parameterized auxiliary
reward function for maximization of the true primary reward. Changing auxiliary rewards dynamically
shapes the inner policy optimization procedure and allows ensuring that the policy converges to the one that
exhibits the desired behavior. We use the method of implicit gradients(Krantz & Parks, 2002) to do the outer
optimization in a scalable fashion. We then conduct experiments on different environment with our proposed
method for both a) optimal reward learning and b) adaptive reward shaping.

2 Preliminaries

We first describe the notations followed in the paper followed by a description of and . We also summarize the
implicit gradient method which is used in this work for the outer optimization via gradient based methods.

2.1 Reinforcement Learning with Learnt Rewards

In this section we provide a brief summary of using dynamic objectives for reinforcement learning. Unlike
structure prediction there is a larger body of work which uses some form of meta-learning in reinforcement
learning(Sorg et al., 2010; Singh et al., 2010; Zheng et al., 2018). Our formulation of reward learning follows
from the work of Lewis et al. (2010); Singh et al. (2010) and recently Zheng et al. (2018)

Notation A Markov Decision Process (MDP) is specified by a tuple (S,A, P, rp, γ, d0). S is the state space,
A is the set of actions, P : S ×A× S → [0, 1] are the transition probabilities, rp : S ×A → [−Rmax, Rmax]
is the primary reward function, γ ∈ [0, 1] is the discount factor and d0 is the inital state distribution. A
policy π : S ×A → [0, 1] takes as input a state action pair (s, a) , and provides the probability with which
the agent takes the action a when observing state s, i.e. π(s, a) = Pr(at = a|st = s). The goal in this case is
to optimize the cumulative discounted primary rewards J obtained by the policy. If we denote by St, At, Rt

be the state, action and reward at time t, then the objective is J(θ, rp, γ) = Eπθ
[
TP
t=0

γtrp(St, At)]. The policy

gradient theorem (Sutton et al., 2000) provides a way to obtain gradient estimates of the value J(θ) via
sample runs on the MDP. The optimal parameter θ∗ = argmax J(θ) can then be obtained using gradient
based optimization using these estimated gradients. The policy gradient is given by:

∇J(θ) = Eπθ




TX

t=0
∂θ log(πθ(s, a))

TX

j=t

γj−trp(Sj , Aj)


 (1)

Auxiliary Rewards In many cases the objective J(θ, rp) can be difficult to optimize due to lack of strong
supervision (Ng et al., 1999). A natural method to help training is to modify the original reward function
with an auxiliary reward function which incorporates domain knowledge. Formally we include a new reward
function raux such that the objective to optimize is now J(θ, rp + raux). However adding such an auxiliary
reward can change the optima of the objective and lead to the agent learning a different policy than the one
desired(Ng et al., 1999). Ng et al. (1999) provides an approach which guarantees the invariance of policy

2


















