
EasyChair Preprint
№ 3258

Green Computing with Regular Language Perl

Venkata Subba Reddy Poli

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 25, 2020

Green Computing with Regular Language Perl
P.oli VenkataA Subba Reddy

Department of Computer Science and Engineering,

College Aof Engineering,

Sri Venkateswara University,

Tirupati-517502, India.

e-mail:vsrpoli@hotmail.com

Abstract-Perl is regular language. Perl is powerful in server

side programming. The software is made faster by using Perl It

is powerful for POST method for Web programming

particularly serves side programming. It is regular (RE)

language, Apart from all the features, it portable and green

programming language. The advantage of Perl is it can be used

as object-oriented (OO) or non object-oriented (Non O-O)

programming language.

Keywords— regular expressions object oriented, client/server, parallel

and distributed, Perl

1. Introduction

Software Engineering is mainly facing challenging

with Project Development. Software Engineers are going
with Object-Oriented for Project Development. Still they
are needed for better computing i.e., Green Computing.
The Green Computing is the Design and Programming
skills to develop the software projects. There are different
stages algorithms level, design and analysis level and
programming level for Green Computing. For instance
recursion, parallelism, time complexity at algorithm level
,Object-oriented at analysis and design level and regular
expression at programming level.

Green Computing or Clean Computing is portability
and performance of Programming to solve different type
of problems like Scientific, Business, Engineering,
Medical. The Green Computing is the Programming skill
in which the Program has portability of the code,
suitability of the problem and less computation time.
There are different techniques for Green Computing like
recursion, parallelism, regular expression and Object-
oriented. The recursion is calling function itself. The
parallelism is computing the number of risks at a time.
The regular expression is simplifying number of
instructions. The Object-Oriented is module of program is
independent
The Programming Languages fall under different

paradigms Imperative, Functional, Logical, and Object-

Oriented and regular it is difficult to learn all the

programming languages. It made easy to learn

programming languages through common principles like

iteration, recursion, control statements, functions,

functions, subroutines, Object-oriented etc. All principles

and techniques are not available in single programming

language. The selected Programming Languages are

discussed for Green Computing.

 Programming languages are designed based on

Automata. Context-Free Language is recursive

representation of Finite Automata. For instance C, PL,

Pascal is designed based on FA.

The regular language is designed based on regular

expressing. Regular expression is simple representation of

Finite Automata. For instance Perl is designed based on

RE.

The advantages of Perl are

Perl is used as General purpose language

Perl is used as Regular Language

Perl is used as Object-Oriented language.

 The language is intended to be practical (easy to use,

efficient, and complete)

 Rather than beautiful (tiny, elegant, minimal).

 It supports both procedural and object-oriented (OO)

programming,

Green Computing may be studied at three stag of

Algorithms

Analysis and Design

Programming

Algorithm is defined as step by step procedure to solve

particular problem.

There are different methods. Mainly consist of

Brute force

Divide and Conquer

Decrease and Conquer

Transfer and Conquer

Dynamic

Sequential and Binary

Depth-First, Depth-First and Heuristic

Backtracking

Iteration

Recursive

Time Complexity

Space Complexity

Some of the above methods are used to design

Algorithms.

For example to design the algorithm for particular

problem, the Iterative or Recursive may be used. For green

computing, Recursive Algorithms is used. Similarly, the

divide and conquer method may be used for green

computing with the parallel computing.

Instead of designing conventional algorithms, the above

methods are useful for green computing.

2 Analysia and Design

They are mainly tow analysis and design methods Non

Object-Oriented or Conventional and Object-Oriented.

The Object-Oriented technology is better. The

Componentware Technology with Object-Oriented is

more helpful for green computing

Some basics of Component ware Technology are

discussed in the following.

Componentware Technology (CWT) is emerging

discipline in application software development. Many

researchers contributed to bring out this new Component

Technology [1, 2, and 3], applications and implementation

tools [3, 4, and 5]. The Organizations are expecting new

technologies for their expansion of their business and

activities, instead of going for new software for their

needs. They are looking for existing system is to be reuse

and add off-the-self software The Componentware

technology provides the Organization needs in which the

components shall be reuse and expandable, and

incorporate other software systems.

Components: A component is independent, non-trivial

and replaceable unit of a system. The component may be

enterprise, Domain subsystem, domain objects and

semantic primitives.

Software component: A software component is a package

of one or more programs as a unit of specified interfaces

and dependencies. A software component is deployed

independently, substituted, reuses and Composition the

Components of the system. For example, Business

component system is implementation of business system

and the component such as Sales order processing execute

independently.

Component Analysis Technology: CAT is defined as

abstract components. These abstract components require

technologies to define components, relationships,

interfaces, actions, security and distribution. There is no

need to define new techniques for the analysis. The

existing Object-Oriented Analysis techniques CAT such

as OMT of Rumbaugh [9] and Rose of Booch [10]

technologies shall be extended.

Component Design Technologies: CDT is defined as

system architecture that understands by CAT. This will

concentrate on well-defined architecture and configuration

of components. The Components are deployed,

maintained and evaluated continuously. Multiple

configurations will also provide similar configurations.

The existing Object-Oriented Design technologies CDT

such as OMG’s UML [11] shall be extended

Composition of the Components: Composition of

Components may be defined as Composition of nested

types, Composition of Components are subsystems and

composed components from semantic primitives such as

rules and relationships.

The Component model consists of mainly components are

connected to the infrastructure and making references to

the other components, defining messages between

components, and multiple interactions among

components to provide secure communications between

components. The components are extracted from entire

enterprise. Semantics primitives of enterprise, interfaces,

communication among components, threading and

distribution must share the infrastructure. The examples of

connectional distributing infrastructure are such as

DCOM, OMG’s Corba. Enterprise Java Beans and

OMG’s Corba are uses to define Component models and

Structured domain specific concepts. Feature trend is the

integration of Microsoft COM+ and DNA and Sun’s J1NI

for component ware for application software development.

The Component model is defined by Communication

among Components and interfaces for use in distributing

Computing Infrastructure. The Component Based

Development is based on the Object-Oriented

Technologies such as Object- Oriented Analysis

Technology (OOAT) and Object-Oriented Design

Technology (OODT). The Component model consists of

Component semantic model and Component Architecture.

Component semantic model describes domain concepts.

Sometimes it may refer to component conceptual model.

The component model consists of two levels component

semantic model and component architecture.

2.1 Characteristics of Components

All components are specialized, independently deployed

and extendable for the product. These components are also

extendable to multi versions of the components. The

following are the characteristics of the components.

The components have externally accessible view.

The semantics such as business rules and regulations are

defined for the composition for composition of

components.

As Component software extended, the components are

extendable.

The component must be relocate and replace a

component for other implantations or development of new

software system.

The semantic primitives must be extendable to new

components.

The composition of components is tightly coupled.

The components are substituted and integrated in to the

other systems. Sometimes this maybe referred as off-the-

components.

2.2 Component Semantic Model

Component semantic model has set of semantic concepts

that support component technology. Some of the concepts

are attribute changes and specifications.

Attribute changes: Notification mechanism will perform

attribute changes in which the changes are only imposed

within the components.

Specifications: Specification is the structure relationship

between the components. The operations must incorporate

in change-delete-create mechanisms during

implementation.

The operations are such as contrast, domain specific

concepts such as distributed and communication among

the components. The following are characteristics of

semantic model.

Object model: It includes interface and type definitions,

abstract data types, and operations, accepts, and attributes,

multiple inheritance and modules.

Structured semantics: These will specify the relationship

between types within the component.

Component assembles semantics: These semantics are

used to assemble components and generated into

framework specific implementation.

Extendable semantic components: The components are

extensible to multi versions of components and semantic

concepts can be applied to domain architecture.

Life cycle partitioning: The partition defines explicitly

behavioral and structured semantics with state model. The

behavioral abstraction includes state transactions, event-

condition- action rule. An event is observable change in

what may happen to an object. Event triggers specify rules

and dependencies. The components are produced and

defined it from UML diagrams.

3 Component Architecture

The component architecture mainly consists of

Conceptual component model, infrastructure

technologies and structured domain concepts. The

component architecture comes across distributed,

heterogeneous and new infrastructure technology.

Integrated component architecture is the mechanism

universal Component architecture and it may be referred

to integration of independent component architectures.

The integration may be loosely coupled and tightly

coupled. It Describes Implementation of Component

Infrastructure, Structured Conceptual model and domain

concepts.

Fig. 1 Component Architecture

3.1 Component Conceptual Model

This model mainly consists of two techniques OOA and

OOD of the product how to components share and

communicate and understanding of infrastructure. Some of

the characteristics are, components are connected to the

infrastructure, making references to other components via

naming scheme, Guarantee of message transfer,

transactions consisting of multiple interactions and

providing security constraints. The components are

defined using component technologies and these

components are integrated and developed based on the

component conceptual model.

3.2 Component

Infrastructure technologies provide the execution

environment for of component semantic model and

implement domain concepts with framework the main

requirement of component of infrastructure is component

interface by some component infrastructure. Components

is implemented as functional that reflects role in the

system and an extra functional.

The prominent component infrastructure is Enterprise

Java Beans, Active X, Visual Basic Controls, Corba,

DCOM, COM+ etc. The Microsoft with DCOM and SUN

with Enterprise Java Beans, these two infrastructure

technologies provide semantics of interfaces,

communication among the components, threading and

distribution. The integration of these technologies are

emerging such, as Microsoft integration of COM+ANA

and Sun’s Jini will be used for further component of

application software development.

3.3 Structure Domain Concepts

The Structure domain concepts are instantiated as

framework-specific to implement the component solutions

for problems. These concepts provide services and

facilities using framework-specific conventions.

Frame-work: A framework provides services and

facilities. It provides an execution environment for domain

concepts implementation. It provides formal mechanism

for defining interface such as OMG’s interface language,

Corba infrastructure transparencies incorporation and

Enterprise Java beans.

Universal Component Architecture (UCA): Universal

Component Architecture is integration of independent

Component Architectures(ICA) using interfaces. These

interfaces provide distributed environment and remote

access. The infrastructure technologies used for UCA

implementation such as JavaRMI.

 Fig. 2 Universal Component Architecture

3.4 Componentware Implementation

The component model is translated in to component ware

with tools for automation and management of

components and interfaces. Interface to understand

system architecture with the interface specifications that

implement, reuse and replacement of components. They

are two types of component ware implementation for

products.

Self-development in which component ware developed

from the scratch.

Off-the-self components in which component ware

developed by black box assembling commercial available

components and such components are documented,

assembled and adapted.

The following are the characteristics of implementation

Enterprise model. The components of the product may

represent entire system

Generosity: It is stepwise instantiation and controlled

processes that uses specifications, inheritance,

relationships and contexts.

Domain system: It represents a particular are of

components.

Domain object: It represents a particular process of

components.

Semantic primitives: These are rules and kind of

relationships between objects.

These domain concepts are used to compose domain

components of individual components.

3.5 Componentware testing

The main advantages of components are independent,

reusable and extendable to new developing software

product. The testing is more important when reusing the

components and off-the-self components. There are

number of testing techniques described based on the

source code availability. The software components which

are developed for one project cannot be used to another

project without proper checking.

Unit testing: The Unit testing is testing of individual

testing. This is white-box testing using component’s

actual source code.

Integrated testing: Individual tested components are

integrated and system is formed. This will be on interface

code such as Java RML.

System testing: This will be done without reference to

the code details.

4 Perl Programming

The Programming Languages fall under different

paradigms Imperative, Functional, Logical, Object-

Oriented and Regular It is difficult to learn all the

programming languages. It made easy to learn

programming languages through common principles like

iteration, recursion, control statements, functions,

functions, subroutines, Object-oriented etc. All principles

and techniques are not available in single programming

language. The selected Programming Languages are

discussed for Green Computing.

The Programming Languages are constructed mainly

based on Finite Automata(FA) and Regular(RE).

The Formal Languages(FL) are simple representation of

Context-Free Language)CFL). The CFL is recursion of

FA.

FA M={Σ, Q, δ, q0, F}

Regular M={Σ*, Q, δ, q0, F}

The CFL is defined as M= < V, T, P, S>

The grammar G= { Aαw}, where αЄV, wЄ { N UΣ}

The regular grammar G*= { Aαw*}, where αЄV, w*Є

{ N UΣ*}

For instance,

Σ=a-z(a-z, 0-9)

Id= num, id=x1 etc.

Σ*={a-z, 0-9}*

Id=a-z(A-Z, 0-9)*

Id={x, x11, num, sum, sum12, …}

Programming Languages mainly four paradigms.

Imperative, Regular, functional, Logical paradigms. C,

Java, FORTRAN, Cobol etc., comes under Imperative.

Perl is for Regular, Lisp is for Functional and Prolog is for

Logical.

Programming is the main component for problem

solution. The Green programming has some of the main

features.

Portable

Debugging

Reusability

The Computer Programming may be defined as

combination of Data Types, Data Structure and Algorithm.

For instance

Data Types + Data Structures + Algorithm= C language

Data Types + Algorithm= java

 Algorithm= Perl

Perl is only Regular Language. Perl can be used as Non

Object-Oriented and Object-Oriented. Perl is Portable

because Algorithms are directly defined in Program. Perl

is mainly considered for green computing or green

programming. Perl is also a general-purpose programming

language

$n=<STDIN>;

$factorial=fact($n);

print "$factorial\n";

sub fact($num)

{

 if ($num==1) {return 1;}

else { return $num*fact($num-1);}

}

#Threads Acending and decending Order

use threads;

 $thr1= threads->new(\&ascending);

 $thr2= threads->new(\&decending);

 ;

 sub ascending {

 my $num=0;

do { $num=$num+1;

 print " $num\n";

 }

 while ($num<10)

}

sub decending {

 my $num=10;

do { print " $num\n";

$num=$num-1;

 }

 while ($num>0)

}

$thr1-> join;

$thr2->join;

#include <unistd.h>

 pid_t fork(void);

 if (fork())

 {

my $num=0;

do { $num=$num+1;

 print " $num\n";

}

 else

 {

 my $num=10;

do { print " $num\n";

$num=$num-1;

4.1 Perl as Regular Language

A regular expression is simply Expression of Finite

Automate.

Consider the Regular Expression

num=digit*. digit)+

digit=0-9

matching

 Regular expressions are used to match the pattern, sting

with

 "m//", "s///", "qr//" and "split" operators

Simple string matching

 "Hello pvsr" =~ /pvsr/; # matches “pvsr” in Hello

World”

 The metacharacters are

 {}[]()^$.?*+?\

 /item[0-9]/; # matches 'item0' or ... or 'item9'

For instance

$a="Deer will eat food in food items"

 $a =~ s/food/grass/; # replaces food with

grass in $a

 $a =~ s/food/grass/g; # it replaces all

instances of food with grass in $a

4.2 Perl as Object-Oriented

The advantage of Perl is besides Regular, it is used to

write programs in Object-Oriented and non Object-

Oriented.

Perl supports Object Oriented programming. It simple

and easy to write OO programs. OO Perl is based on

Perl's concept of packages. OO program is a package in

Perl. A method is simply a Subroutine.

1. An object is simply a reference that happens to know

which class it

 belongs to.

 2. A class is simply a package that happens to

provide methods to deal

 with object references.

 3. A method is simply a subroutine that expects an

object reference

 (or a package name, for class methods) as the first

argument.

A class is a package. An object is reference.

 A class contains data and methods. An OO programming

is set of classes and is called package in Perl.

 different approach the with object experi-

 ence knowing about subroutines , references

 and packages

 object are often called instance data or object

attributes, and data fields

 sub teacher ::pvsr{

 print "teaching dbms\n";

 }

 sub student::syam{

 print "tacking dbms course \n";

 }

 sub room::cse201{

 print "course in a201\n"

 }

 teacher::pvsr;

 student::dbms;

 room:cse201;

 "Class->method" invokes subroutine "method" in

 package "Class “

 teacher->dbms;

 student>dbms;

 room->cse201;

Inheritance

 Object-oriented programming systems all support

some notion of inheritance. Perl has @ISA method.

 Consider this class:

 package Employee;

/ use Person;

 @ISA = ("Person");

 1;

4.3. perl threds

The “use thread” creates one or more threads.

 use threads;

 $thr1= threads->new(\&ascending);

 $thr2= threads->new(\&decending);

 my $num ;

 sub ascending {

 my $num;

 while (10)

 print " $num++\n";

 }

sub decending {

 my $num=10;

 while (0)

 print " $num--\n";

 }

$thr1-> join;

$thr2->jpin;

4.4, Perl fork

The fork is function shall create a new process

from the existing process which is main process

or parent process by defining as

 #include <unistd.h>

 pid_t fork(void);

 The fork() crete chilp process with unique id.

for instance

 #include <unistd.h>

 pid_t fork(void);

 if (fork())

 {

child process

}

 else

 {

 parent processing

 }

for example

#include <unistd.h>

 pid_t fork(void);

 if (fork())

 {

 print “ pvsr1\n”;

}

 else

 {

 print “pvsr2\n”;

This program sall print

pvsr2

pvsr1

4.2 Perl as Object-Oriented

 The protocols are based on one-line

messages and responses end with “\n” and in

case of multi-line messages and responses that

end with "\n.\n" terminates a message/response.

Internet Line Terminators

 The Client-server communication

 that might extend to machines outside of

your own system using Internet-domain sockets

. #!/usr/bin/perl -w

 use strict;

 use Socket;

 my ($remote,$port, $iaddr, $paddr,

$proto, $line);

 $remote = shift ?? 'localhost';

 $port = shift ?? 2345; # random port

 if ($port =~ /\D/) { $port =

getservbyname($port, 'tcp') }

 die "No port" unless $port;

 $iaddr = inet_aton($remote) ??

die "no host: $remote";

 $paddr = sockaddr_in($port, $iaddr);

$proto = getprotobyname('tcp');

 socket(SOCK, PF_INET,

SOCK_STREAM, $proto) ?? die "socket: $!";

 connect(SOCK, $paddr) ?? die

"connect: $!";

 while (defined($line = <SOCK>)) {

 print $line;

 }

 close (SOCK) ?? die "close: $!";

 exit;

 The kernel shall choose the appropriate

interface on multihomed hosts for address

5 Conclusion

Green Computing is defined as portability in design and

coding. Component technology is new trend for software

development. The organizations for their software product

are expecting reuse and extendable whenever they have

be*en expanding or restructuring the business. The

component technology will provide domain application

needs. The cost of the software product is reduced vastly

whenever they go for further expansion or new developing

system. The Green Computing with Componentware

Technology and Perl programming will simplify the

design and programming

REFERENCES

[1] Wojtek Kozaczynski and Grady Booch, “Component-Based

Software Engineering”, IEEE Software, 1998,pp.34-36.
[2] Alan W. Brown and Kurt C. Wallnau, “The current state of

CBSE”, IEEE Softwarepp.3 pp.7-36, 1998.
[3] Elaine Weyuker, “Testing Component-Based Software: A

cautionary Tale”, IEEE Software, 1998,pp.54-59.
[4] Tom Digre, “Business Object Component Architecture”, IEEE

Software, pp.60-69,1998.
[5] Pamela Zave and Michael Jackson,”A Component-Based

Approach to Telecommunication Software”, IEEE Software,
1988,pp.70-78.

[6] Israel Ben-Shaul, James W. Gish, and William Robinson, “An
Integrated Network Component Architecture”, IEEE
Software1998,,pp.79-87,1998.

[7] Szyperski, C., Component software: Beyond Object-Oriented
Programming, Addision Wesley Longman, and
Reading,Mass.,1998.

[8] Cox, B.J., Object Oriented Programming: An Evolutionary
Approach, Addison Wesley Longman, and Reading, Mass., 1987.

[9] Rumbaugh, J, Blaha, M, Premerlani, W, Eddy, F, Lorensen, W,
Object- Oriented Modeling and Design, Prentice-Hall, NJ, 1991.

[10] Booch, G, Object-Oriented Analysis and Design with
Applications, Second Edition, Benjamin/Cummings, Redwood
city,CA,1994.

[11] Booch, G., Roumbaugh, J. and Jacobson, I., The Unified
Modeling Language-Use Guide, Addison-Wesley Longman
mc,Reading,MA, 1999.

[12] P. Venkata Subba Reddy, “Object-Oriented Software
Engineering through Java and Perl”, CiiT International Journal
of Software Engineering and Technology, vol.5,2010, pp.29-31.

