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Exploiting Correlation in Stochastic Computing
based Deep Neural Networks

Abstract—A new trans-disciplinary knowledge area, Edge Ar-
tificial Intelligence or Edge Intelligence, is beginning to receive a
tremendous amount of interest. Unfortunately, the incorporation
of AI characteristics to edge computing devices presents the
drawbacks of being power and area hungry for typical machine
learning techniques such as Convolutional Neural Networks
(CNN). In this work, we propose a new power-and-area-efficient
architecture for implementing Artificial Neural Networks (ANNs)
in hardware, based on the exploitation of correlation phenomenon
in Stochastic Computing (SC) systems. The architecture purposed
can solve the difficult implementation challenges that SC presents
for CNN applications, such as the high resources used in binary-
to-stochastic conversion, the inaccuracy produced by undesired
correlation between signals, and the stochastic maximum func-
tion implementation. Compared with traditional binary logic
implementations, experimental results showed an improvement
of 19.6x and 6.3x in terms of speed performance and energy
efficiency, for the FPGA implementation. For the first time, a
fully-parallel CNN as LENET-5 is embedded and tested in a
single FPGA, showing the benefits of using stochastic computing
for embedded applications, in contrast to traditional binary logic
implementations.

Index Terms—Stochastic Computing, Edge computing, Convo-
lutional Neural Networks.

EDGE computing (EC) is characterized by the implemen-
tation of data processing at the edge of the network [1]

instead of at the server level. This has produced great interest
in the Microelectronic industry due to the proliferation of
the Internet of Things (IoT). At the same time, incorporating
Artificial Intelligence (AI) capacities in everyday devices has
been in the spotlight in recent times, and it continues to be a
hot topic, making the development of new techniques to extend
AI to edge applications a must [2]. The idea behind these
research efforts is to assist EC devices to further reduce their
dependence on cloud processing by considerably reducing the
energy associated with data transmission considering only the
relevant information exchange with the cloud server. However,
research on Edge Intelligence is still in its early days, since
edge nodes normally present considerable limits in terms of
area and power consumption, producing an intrinsic complex-
ity for typical state-of-the-art deep learning implementations
in embedded devices. That is why new solutions for efficient
hardware implementations for machine learning applications
such as Convolutional Neural Networks (CNNs) have become
a trending topic.

Stochastic Computing (SC), developed during the sixties [3]
as an alternative to traditional binary logic, is an approximate
computing technique that has been arousing increasing interest
over the last decade thanks to its capacity to compress complex
functions within a low number of logic gates. Such charac-
teristic has motivated the development of different proposals
for the use of SC to implement ANNs in hardware [4], [5],
[6], [7], [8], [9], and more specifically to implement CNNs

[4], [5], [10], [11]. However, SC implementations face their
own challenges such as: (a) the cost in terms of hardware
resources required to implement different Random Number
Generators (RNG), (b) the precision degradation between
layers produced by the lack of full decorrelation between
signals, and (c) the implementation of an efficient stochastic
maximum function. Tackling these issues is not trivial, Lee
et al. [12] has approached them by implementing only the
first convolutional layer using stochastic computing. Sim et
al. [13] has created an hybrid stochastic-binary architecture,
where only the multiplications are implemented in SC. Both
approaches are not fully-stochastic, and therefore the benefits
are limited.

In this work, we propose an efficient and compact hardware
architecture to deal with these hurdles by exploiting the
correlation and decorrelation between SC signals in such a
way as to implement the CNN basic building blocks. As a
proof of concept, we implement a fully-parallel SC CNN in a
single FPGA chip and compare its performance with different
CNN FPGA implementations using traditional binary logic.

I. STOCHASTIC COMPUTING

A. Unipolar and bipolar codification

Stochastic computing (SC) is an approximate computing
methodology that represents signals using the switching fre-
quency of time-dependent bit-streams. The SC signal is com-
posed of pulses that represent the probability of finding a
TRUE value (logic ’1’) at any arbitrary position throughout
the sequence of bits. For instance, the number 0.75 could
be represented by a bit-stream in which the probability of
finding a logic ’1’ along the bit-stream is 75%: (1,1,0,1)
for a four bit-stream or (0,1,1,0,1,1,1,1) for an eight bit-
stream. Representing only positive values (between 0 and 1) is
known as unipolar codification. To represent negative values,
a different codification is required: the bipolar codification. In
bipolar codification the number of zeros is subtracted from
the number of ones, and finally divided by the total number
of bits in the stream: p∗ = (N1 −N0)/(N0 +N1), where N0

and N1 are the number of zeros and ones respectively, and
the ∗ symbol denotes bipolar codification. This expression is
equivalent to implementing a change of variable: p∗ = 2p−1,
where p is the unipolar representation of the number. As noted,
the bipolar codification provides a range of possible values in
the interval [−1, 1].

In the SC paradigm, each magnitude X is converted to its
time-dependent stochastic counterpart x(t) by using a random
number generator R(t) and a comparator, so that the stochastic
signal may be understood as a sequence of booleans x(t) =
{X > R(t)}. If the number X is greater than the random
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number R(t), the output is set to ’1’ (assigned to the TRUE
value of the comparison), otherwise it is set to ’0’ (FALSE
value). If the random variable generated by R(t) is uniform
in the interval of all possible values of X , the mean switching
probability x̄ of the stochastic signal x(t) is proportional to
the converted magnitude X . In order to recover the X value,
a digital counter is incremented every high pulse of the bit-
stream during a fixed period of time. The time length over
which the sum is performed is related to the conversion error,
so that the longer the time, the lower the error.

One of the main advantages of using SC is the low cost
in hardware resources of implementing complex functions.
Take for instance the multiplication operation, which is im-
plemented in SC using just a single logic gate: an AND
gate for unipolar codification and an XNOR gate for bipolar
codification. Fig. 1 shows how the same arithmetic operation
could be achieved using different logic gates for different
codification techniques in the presence of the same input
waves.

(a) (b)

(c) (d)

Fig. 1. Stochastic multiplication using different codification techniques with
the same input bit-streams: (a) unipolar multiplication gate, (b) time diagram
for unipolar multiplication circuit, (c) bipolar multiplication gate, (d) time
diagram for bipolar multiplication circuit.

B. Stochastic correlation

In order to generate stochastic bit-streams x(t) from value
X , a converter circuit must be implemented. The most com-
monly used circuit is based on a pseudo-random number
generator, normally a Linear Feedback Shift Register (LFSR)
and a comparator. The converter circuit is noted as BSC
(Binary-to-Stochastic-Converter) in Fig. 2, where for the upper
block the X represents the signal to be converted, R(t) the
random value provided by the LFSR, and x(t) the stochastic
bit-stream generated.

Two bit-streams are said to be correlated when both have
some statistical similarities as discussed in [14]. To produce
the maximum correlation between two bit-streams, we can
connect the same LFSR output R(t) to the reference input
of both comparators when performing the BSC conversion. A
different pseudo-random number generator R′(t) is used in
case decorrelation is desired to operate the stochastic signals,
producing a different outcome.

To quantify the correlation, we can use the independence
factor defined in [15] or its dual, the stochastic computing

X

BSC

R(t)

> x(t)

Y

R(t) or R′(t)

> y(t)

min(x̄, ȳ)
or
x̄ · ȳ

Fig. 2. Correlation impact over stochastic operations. Correlation between
signals changes the operation computed by the logic gate. Stochastic signals
x(t) and y(t) are said to be totally correlated when they share the same
random number generator R(t), producing the function min(x̄, ȳ); otherwise,
if R′(t) is connected, they are said to be decorrelated and the output function
is different: x̄ · ȳ.

correlation factor:

C(x(t), y(t)) =
Cov(x(t), y(t))

min(x̄, ȳ)− x̄ȳ
(1)

where function Cov is the covariance between the two time-
dependent stochastic signals x(t) and y(t), while parameters
x̄, ȳ are their mean values (their probability of being ’1’).
A correlation value of +1 implies maximum probabilistic
similarity, obtained by sharing the same random number
generator; whereas a 0 value implies a complete decorrela-
tion, produced by connecting two independent RNG as input
reference comparison.

The stochastic output of a two-input gate can be expressed
as a function of the correlation between its inputs. For the case
of the AND and OR gates we have:

AND(x, y) = x̄ȳ +
(
min(x̄, ȳ)− x̄ȳ

)
C(x, y)

OR(x, y) = x̄ + ȳ − x̄ȳ +
(
x̄ȳ −min(x̄, ȳ)

)
C(x, y)

(2)
where as noted, the arithmetic operation is altered by the

correlation level between the stochastic inputs.
Most of the errors produced by SC systems come from

operating two stochastic signals with an undesired degree of
correlation between them. Different efforts in literature have
tried to operate with fully-uncorrelated stochastic signals in
order to avoid the stochastic correlated imprecision. The main
approach is done by generating all the aleatory R(t) signals
with independent LFSRs, thus, employing a high amount
of hardware resources in the conversion circuits, and there-
fore, limiting the contributions that SC offers for hardware
implementations. But despite the fact that decorrelation is
necessary for many operations, there are some cases where
correlated signals may be preferable. Consider the case of the
AND gate of Fig. 2. In presence of two decorrelated signals
(produced by using R(t) and R′(t) on each BSC), performs
the multiplication operation: x̄·ȳ; while the minimum operation
min(x̄, ȳ) is performed if the stochastic inputs are totally
correlated (produced by sharing the same random generator
R(t) in the conversion circuit). This interesting feature can
be exploited to produce high performance architectures that
reduce area and power.
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C. Stochastic addition

Due to boundaries of stochastic bit-stream representation,
accurate implementations for the stochastic addition keeps
being a challenge. Different circuits have been proposed to
approximate the addition: a simple OR gate, a multiplexer,
and an Accumulative Parallel Counter (APC). Fig. 3 shows
the different stochastic addition circuits, where for the sake of
clarity, and from now on, the stochastic signals are denoted
without the time-dependant reference (t).

(a) (b) (c)

x
y

YX+

x
y

x
yz z APC

0.5

ZMUX

Fig. 3. Stochastic addition circuits: (a) Stochastic addition using an OR
gate, where x · y must be close to zero in order to compute the addition
accurately. (b) Stochastic scaled addition using a multiplexer, where the
accuracy outcome is dependant of the number of inputs. (c) Stochastic addition
using an Accumulative Parallel Counter (APC), where the accuracy has no
degradation and the output is represented in binary format.

The OR gate is the smaller circuit in terms of hardware
footprint, but it has the drawback of high inaccuracy outcomes
when the input values are not close-to-zero. Not to mention
its correlation dependant feature, discarding its use as an
stochastic addition circuit in most applications.

The multiplexer is one of the most popular circuits to
achieve the addition. The circuit is low-cost in terms of area
and the precision is not affected by the correlation among the
inputs. The main disadvantage is the inaccuracy increment as
the number of inputs grow, being not suitable for deep learning
implementations, where the number of inputs for the addition
operation are high demanding.

The last case is the APC, which counts the number of the
input high pulses and accumulates the counted value for a
period of time, producing a complement-2 output (bipolar
format). The APC solution is the most accurate from the cir-
cuits presented. Additionally, correlation among input signals
does not disturb the result. The use of APC is the preferable
approach for high precision implementations in spite of the
higher resource utilization produced.

D. The Stochastic Neuron

Convolutional Neural Networks (CNNs) are constructed of
several interconnected layers of neurons. The core neuron em-
ployed is composed of a scalar product block and a Rectified
Linear Unit (ReLU) transfer function, which implements the
operation: max(0, input). The common base operations used
in CNN implementations are: the multiplication, the addition
and the maximum function, employed for the max-pooling
operation and the ReLU transfer function. They can be easily
implemented in stochastic computing systems if correlation is
properly used. In literature, different stochastic neuron designs
have been proposed [4], [5], [6], [7], although non of them

have exploited the signal correlation properties, which can
simplify the CNN hardware in a considerable way.

Fig. 4 shows the proposed stochastic neuron design with the
correlation exploiting architecture. The incoming stochastic
vector x∗ (composed of n elements) is generated using the
output of one LFSR circuit Rx(t), whereas the stochastic
weight vector w∗i (where i represents the ith neuron of the
current layer) is generated using the output of a second LFSR
circuit Rw(t) (not shown in the diagram); therefore, producing
decorrelation between them. As a result, and considering a
bipolar codification, the n-XNOR-gate array calculates the
stochastic product between neuron inputs and weights.

Considering the APC is adding all the incoming signal
products into a single complement-2 number, we can take
advantage to connect the same pseudo-random number Rx(t)
used to generate a zero-bipolar (0∗) reference signal, to the
BSC block that re-converts the APC outcome to the stochastic
domain, thus producing fully correlation between both stochas-
tic signals. Once in the stochastic domain, the ReLU activation
function is easily implemented by using an OR gate, returning
the operation: y∗i = max(0∗,

∑n
j=1 x

∗
j · w∗ij).

Since the same procedure is followed in all of the neu-
rons, two unique pseudo-random number generators (Rx(t)
and Rw(t)) are needed to accomplish the whole calculus,
considerably saving area and power in the design.

One of the benefits of the proposed stochastic-ReLU-
function approach, is its normalized reproduction of the
standard-ReLU-function used by the machine learning com-
munity. This means that the weights obtained after the training
process of the ANN, can be straight-forward adapted to
the hardware, since the expected activation function is not
disturbing. This is in contrast with other published studies,
in which the function outcome is distorted, as is the case
of references [5], [11]; where the stochastic implementation
of the ReLU function, besides being large area-consuming, is
clipped and not exact. In our simple ReLU proposal, the OR
gate implementation computes the maximum function without
clipping or distorting the signal, and therefore, the weights
of any standard training process considering ReLU-dependent
neurons can be incorporated directly to the hardware after a
simple process of normalization.

E. Max-pooling layer

In traditional CNNs, after convolutional layers extract the
features from the input, a sub-sampling operation (pooling)
is accomplished to reduce the spatial dimensions of the con-
voluted feature. In the case of Max-Pooling (MP), the sub-
sampling is performed selecting the maximum value from a
spatial window of the convoluted feature: maxk

j=1(y∗j ), where
k is the size of the spatial window.

Ren et al.[4], Z.Li et al.[5], and Yu et al.[11] have proposed
some stochastic maximum function designs using a set of
counters, comparators and multiplexers. The drawbacks of
these architectures are the employment of large area in hard-
ware resources; and moreover, the designs they proposed only
find out the maximum value after counting the total number of
high pulses in the bit-stream for a period of time, incurring in
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Fig. 4. Stochastic neuron design exploiting correlation to reduce area cost.
Stochastic signals from BSC block and zero-bipolar (0∗) are generated with
the same LFSR (Rx(t)) to produce total correlation between them, returning
the maximum function on the output with a single OR gate.

long latency and considerable energy consumption. In contrast,
our architecture takes advantage of the full correlation among
the neuron outputs signals, and as in the ReLU transfer
function case, it extracts the instantaneous maximum value
with a unique OR gate (Fig. 5), saving precious area resources,
latency time and energy consumption. For the case of Min-
pooling or average pooling, the OR gate must be changed by
an AND gate or a multiplexer respectively.

0

0

0

0

Stochastic Neuron

0

Fig. 5. Stochastic max-pooling circuit for a spatial window size of k = 2x2.
Stochastic neuron outputs y∗k are totally correlated, allowing the implemen-
tation of the maximum function with a single OR gate.

F. Full CNN Architecture

Figure 6 shows how the whole system is connected in the
CNN. As shown, only two unique pseudo-random number
generators (Rx(t) and Rw(t)) are needed to accomplish the
whole calculus, considerably saving area and power in the
design. This could be achieved thanks to the stochastic neu-
ron design, which exploits correlation and de-correlation for
computing. LFSR1 is used for the Rx(t) number generation,
and is connected to the input image BSC conversion, the 0∗

signal reference generator, and to every stochastic neuron in
the whole design (for the APC stochastic generator, see Fig
4). LFSR2 is used for the Rw(t) number generation, which is
only used to produce the stochastic weights. In this way, each
stochastic signal generated by LFSR1 is totally uncorrelated
with those generated by LFSR2, allowing neuron inputs to be

multiplied by weights with the highest precision. Moreover,
the architecture proposed allows neuron outputs from layer li
to be connected to the neuron inputs of the next layer li+1

without any risk of signal degradation. Since the li neuron
outputs are generated from a first LFSR block Rx(t), and
the li+1 weights are generated from a second LFSR Rw(t),
the error induced from layer to layer by the appearance of
uncontrolled correlation between signals is totally avoided.

As noted by dashed lines, Rx(t) and 0∗ are shared through
the whole network, saving plenty of resources and allowing all
neurons work simultaneously in parallel. Power consumption
is saved dramatically as no access to memory for reading or
writing intermediate results is accomplished.

II. EXPERIMENTAL RESULTS

In order to evaluate the proposed stochastic design, we have
implemented the LeNet-5 CNN [16]. This CNN design is
oriented to processing the MNIST data set composed of 60k
training images and 10k testing images. The CNN architecture
consists of two convolutional layers and three fully connected
layers, as the original paper describes [16] . The baseline score
of the trained model, using floating point, was 98.6% (no
special optimizations were introduced). On the other hand,
the stochastic implementation score was 97.6%, only a 1%
accuracy degradation compared to the software version; a sat-
isfactory result, considering no parameter fine tuning process
was applied, just a simple weight normalization. It is important
to note that no prunning, weight sharing or clustering has been
carried out in our architecture. The whole array of weights has
been embedded in the design.

We tested the full SC CNN implementation in a GIDEL
PROC10A board, which has an Intel 10AX115H3F34I2SG
FPGA running the 8-bit SC implementation at 150MHz. The
communications were done through PCI express bus.

Table I shows the comparison between the proposed SC
implementation and conventional FPGA-based CNN accelera-
tors presented in literature. The comparison has been made
in terms of execution time latency, inference per second,
and energy efficiency. As can be appreciated, the proposed
method outperforms others architectures. Results show that
the proposed stochastic CNN implementation achieves 19.6x
more speed performance (measured in inferences per second
and per megahertz) compared to the VX690T implementation
[17], and a 6.3x more energy efficiency compared to Virtex7-
485t implementation [18] (measured in inferences per Joule).

To the best of our knowledge, this is the first time an entire
fully-parallel SC CNN is embedded into a single FPGA. This
fact is in contrast to the studies presented in [19], [17], [18],
[20], where the inference operations are accomplished using
a loop-tiling technique (an optimization approach to use the
same hardware resources recursively).

In our design, DSPs blocks are avoided, since an un-
conventional computing technique (Stochastic Computing) is
used instead of traditional binary logic. At the same time,
memory blocks are not required, since the computation is not
performed in a tile-loop manner, thus, reducing the main power
consumption source, which comes from the access operations
to the memory.
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Fig. 6. Fully-parallel stochastic CNN architecture. Only two unique pseudo-random number generators are employed. All neurons are working simultaneously
in parallel thanks to the correlation phenomenon exploitation.

In order to compare the area efficiency, the hardware area
used by the FPGA specific blocks (DSP and memory) need to
be known, but they are company-reserved; hence, we provide
only the area efficiency value for our design (in terms of
inferences per MHz and per logic unit ALM).

III. CONCLUSION

Thanks to the advantages of the small area and low power
consumption, stochastic computing is presented as a paradigm
solution to implement machine learning algorithms in hard-
ware for edge computing. However, many difficulties are still
being faced in the quest to achieve good results. In this paper,
we present an efficient reduced-area architecture to deal with
the high area consumed by random number generators, the
precision degradation produced by correlation between signals,
and the stochastic maximum function implementation. For
the first time, a fully-parallel convolutional neural network is
embedded in a single FPGA chip, obtaining better performance
results compared to traditional binary logic implementations,
showing the compression effectiveness of the architecture
by exploiting the correlation features presented by stochastic
signals.

Future work will be to synthesize the proposed architecture
in VLSI and compare it with state-of-the-art chips employed
as a solution for deep learning applications.
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