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Abstract. Privacy-Enhancing Technologies (PETs) have been devel-
oped to securely process and confidently share sensitive data. The two
main categories of PETs are those that focus on input privacy and those
that focus on output privacy. Input privacy concerns how parties can
manipulate data to prevent it from being used outside of a defined con-
text, while output privacy focuses on modifying calculation results so
that output data cannot be used to trace back to original inputs.
In this document, we will provide an introduction and overview of PETs
by exploring various approaches in the literature. We will conclude this
document by discussing the challenges in the adoption of these privacy-
preserving technologies. Our aim throughout this paper is to provide a
comprehensive understanding of PETs, their application, and the hurdles
that must be overcome for widespread adoption.
The implementation of Privacy-Enhancing Technologies (PETs) enables
the creation of secure data life cycles, promoting collaboration, trust,
and security among those with a stake in the data.
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1 Introduction to privacy-enhancing-technologies

Information and data are widely recognized as valuable resources for individuals,
businesses, and governments. However, data breaches and misuses present signif-
icant security risks and privacy concerns. The cybersecurity landscape is full of
dangers, and the collection, processing, and transfer of data across different enti-
ties and authorities pose unique privacy risks. The balance between the benefits
and risks of data collection and use is a global policy debate. Despite evolving
governance and legal frameworks, entities continue to use data with fragmented
guidelines and oversight, especially concerning security, privacy, and appropriate
use. For a long time, technical systems and tools such as data anonymization and
encryption have been utilized to protect data while leveraging it to create value.
However, with the increasing number of data breaches, these tools no longer pro-
vide the same level of protection. Privacy-enhancing technologies (PETs) have
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been developed to assist in the protection of data security and privacy. This re-
port aims to define and categorize these PETs, offering a comprehensive overview
to help regulators make well-informed decisions regarding data protection.

For each privacy-preserving technology, a brief overview is provided, and
whenever possible, a reference to a survey is given systematically.

1.1 Zero-knowledge proof of knowledge:

Zero-knowledge proof of knowledge is a fundamental tool in the field of cryptog-
raphy that plays a critical role in authentication and identification. This term
refers to a secure protocol between two entities: the "proof provider" and the
"verifier". The proof provider demonstrates, through mathematical proof, that
a particular proposition is true while keeping all other information confidential,
except for the truth of the proposition.

To further illustrate, imagine we want to attend a play in a theater. In this
case, we would like to purchase a ticket without disclosing our personal informa-
tion, such as our name or social security number. However, when we arrive at the
theater as a customer, it is essential to verify the validity of our ticket without
revealing any additional information to the ticket checker. This can be achieved
using a zero-knowledge proof of knowledge protocol, in which the proof provider
(ticket holder) proves to the verifier (ticket checker) the validity of the ticket
without disclosing any personal information beyond the ticket’s authenticity.

Goldwasser, Micali, and Rackoff [32] laid the foundation for zero-knowledge
proofs, a cryptographic primitive that has garnered significant interest in the
past few decades and has been widely applied across various domains. Typical
statements are membership statements to an NP-language: the prover should
demonstrate that a public word x belongs to a given language L from the class
NP. Informally, the proof must satisfy three properties:

1. correctness: if the statement is true, and the prover knows a proof of this,
he will succeed in convincing the verifier;

2. soundness: if the statement is false, no prover can convince the verifier of the
truth of the statement;

3. zero-knowledge: the interaction yields nothing beyond the fact that the state-
ment is true. This is captured by requiring the existence of a simulator that
can produce an honest-looking transcript for the protocol, without knowing
anything about the statement.

Zero-knowledge proof systems are typically interactive, with the prover and
verifier exchanging several messages. Interactions are undesirable in some situ-
ations. In these cases, the conventional approach is to utilise a subset of zero-
knowledge proofs known as non-interactive zero-knowledge proofs, which consist
of a single flow from the prover to the verifier (after some one-time trusted
setup). Although generic methods have been developed to convert classical zero-
knowledge proofs into non-interactive ones, they only provide heuristic security
guarantees [8].
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Zero-knowledge proof schemes

There are currently several ZKP constructions in use in the wild, with each
having its own set of advantages and disadvantages. As illustrated in the table
1 from [46].

Table 1. Comparison of different Zero-knowledge proof schemes, in regards to their
asymptotic efficiency, where n is the number of gates of the circuit and d its depth,
trusted setup, post-quantum secure and Security assumption, q-PKE for q-Power
Knowledge of Exponent ,AGM for the algebraic group model,q-SBDH for q-Strong
Bilinear Diffie-Hellman,DLP for Discrete Logarithm Problem,CRHF for Collision Re-
sistant Hash Functions

Scheme Trusted setup
Post
-quantum
secure

Prove Verify proof
size

Security
Assumption

BSCTV [11] per-statement no O(n log n) O(1) O(1) q-PKE
Groth[34] per-statement no O(n log n) O(1) O(1) q-PKE
Sonic [39] updatable no O(n log n) O(1) O(1) AGM

Libra [53] updatable no O(n) O(d log n) O(d log n) q-SBDH,
q-PKE

Bulletproofs [18] no no O(n) O(n) O(log n) DLP
zk-STARKs [10] no yes O(n log^{2} n) O(log^2 n) O(log^2 n) CRHF

Zero-knowledge proof libraries

Libraries like the one provided in this paper are required to develop Zero-
knowledge proof applications. One of the main libraries for this purpose is lib-
snark1, a C++ library for constructing zk-SNARKs that was used for a while by
Zcash [35], based on the specific zk-SNARK construction introduced in [11], but
also supporting [34]. Even though this library provides excellent benchmarks, one
of its main drawbacks, as stated by the authors, is that it is not well-optimized
for ARM architectures.

Bellman32, a Rust-based library for building zk-SNARKs that was developed
and is currently used by Zcash, has similar benchmarks. Furthermore, we previ-
ously stated that a version coded in Solidity is required when developing DApps
for the Ethereum blockchain. ZoKrates3 is a Python toolbox for zk-SNARKs
that is designed to generate Solidity versions for deployment on the Ethereum
blockchain. A similar approach is taken by snarkjs4, a JavaScript library for

1 https://github.com/scipr-lab/libsnark
2 https://github.com/zkcrypto/bellman/
3 https://github.com/Zokrates/ZoKrates
4 https://github.com/iden3/snarkjs
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creating zk-SNARKs. It includes a clear API for generating trusted setups, gen-
erating proofs, and verifying them using a fairly secure MPC protocol. It also
makes it simple to export the version in Solidity and deploy it to the Ethereum
blockchain.

For further details on zero knowledge proofs, please refer to [41].

1.2 Secret Sharing

Secret sharing consists in distributing a secret - for example a key or a password -
among several or a password - between several custodians. In the simplest scheme
the secret can only be discovered if a sufficient number of depositories share the
information of depositories share the information they have received and, on the
other hand, a and, on the other hand, a smaller number of depositories do not
provide any information about the secret. Example: access to a room containing
highly sensitive material can only be granted if at least two be authorized only
if at least two people present themselves with their keys, in order to prevent
an isolated person from manipulating or stealing them without control.Such a
secret sharing scheme was invented by by both Adi Shamir [50] and Blakley [15].

Secret Sharing Schemes

There are several types of Secret Sharing Schemes (SSS), including polynomial-
based SSS, Chinese Remainder Theorem (CRT)-based SSS, Matrix Projection-
based SSS, and Image Secret Sharing [68]. This classification is mainly based on
the method used in the process of sharing and reconstruction:

Polynomial secret sharing scheme

Adi Shamir [50] proposed the Polynomial Secret Sharing scheme in 1979, demon-
strating a method to share a secret integer a0 using a ’t-1’ degree polynomial.
The secret is the constant term of the polynomial. All secret sharing schemes
construct the shares using random bits. T-1 random bits are required to dis-
tribute a one-bit secret share with a threshold of t shares. Entropy of (t-1) b
bits is required to distribute a secret of b bits.

To encrypt and decrypt the secret message, MM. Sathik et al. [49] used the
Polynomial Secret Sharing scheme. Two levels of encryption are used: the first
level generates the sharing polynomial, and the second level computes the mean
value of the coefficients. This mean value is then multiplied by the ASCII value
of the plain text letters to be encrypted. The above method generates ciphertext.
The function value for a specific identity value is distributed to participants as
shares. Using Lagrange’s interpolation formula, these shares are then used to
reconstruct the secret.
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Chinese remainder theorem (CRT)-based SSS

Asmuth and Bloom developed secret sharing schemes based on the Chinese Re-
mainder Theorem (CRT) in 1983, in [4]. CRT is used to generate the shares
distributed to participants. The secret value can be reconstructed by solving a
system of congruence equations. The basic CRT can be used to solve simultane-
ous linear congruences with coprime moduli in a unique way.

The matrix projection-based SSS

Li Bai et alMatrix Projection SSS can share multiple secrets [6]. Wanmeng Ding
et al [23] used matrix theory to analyze Shamir’s Image Secret Sharing Method in
2018. Then, based on the additional capabilities such as share renewal or cheating
detection capability, we have many variants such as Dynamic Secret Sharing,
Proactive Secret Sharing, Secret Sharing with Veto Capability, Secret Sharing
with Cheating Detection Capability, Verifiable Secret Sharing, and Robust Secret
Sharing Schemes [47]. Apart from accomplishing the basic task of secret sharing,
these variants also give participants additional control over the secret-sharing
process.

Dynamic secret sharing

A threshold is not predefined in some secret sharing schemes, and any quali-
fied subset of participants can be used to disclose the secret information. Such
schemes are referred to as access structure-based secret sharing schemes. The dy-
namic secret sharing enables the dealer to change a specific access structure and
allows various qualified subsets of participants to reconstruct different secrets.
Researchers such as Harn et al. and Blakely et al. made early efforts to develop
dynamic threshold or dynamic access structure-based systems, but Blundo et al.
provided a model for the fully dynamic secret sharing scheme [14, 16]

For further details on Secret Sharing, please refer to [48].

1.3 Multiparty Computation

MPC is a mechanism that allows for distributed privacy-preserving computa-
tions in a collaborative setting. MPC enables the computation of mathematical
functions based on input data from multiple parties, while providing formal
guarantees of data confidentiality and the correctness of the computation result
[22]. Yao [54] first proposed MPC to solve the millionaires problem, in which
two millionaires want to know who is richer without disclosing the size of their
fortunes. This technique can be applied to existing data sets, which are then
divided and distributed to various service providers or analysts, or it can be
applied to data that already exists across multiple organizations. The use of
multi-party computation across already distributed data has the additional ben-
efit of never combining it in a single centralized database, reducing risk even
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further. This technology is especially promising for activities that require large
amounts of data, which, if aggregated together, could pose additional risks. At a
smaller scale, a form of multi-party computation can be performed by querying
or requesting confirmations from databases without revealing underlying infor-
mation. To further protect the confidentiality, these systems can hide the query
itself from the entity holding the database or dataset. A relevant use case could
be confirming that someone possesses a specific financial or physical asset, or a
degree from an issuing institution. A system can allow that query to be sent be-
tween entities, an analysis on a database is performed, and the binary answer is
returned. Secure multiparty computation (SMC) is a powerful technique for pre-
serving the privacy and security of shared data. However, it is not without limita-
tions. One of the main drawbacks of SMC is computational overhead. To ensure
the security of the computation, random numbers must be generated, which can
slow down run time due to the computational resources required. Additionally,
SMC involves secret sharing, which requires communication and connectivity be-
tween all participants. This results in higher communication costs as compared
to plaintext compute. While SMC is an important tool for protecting sensitive
data, its limitations must be carefully considered in any implementation. NIST
has recently released NISTIR 8214C entitled "NIST First Call for Multi-Party
Threshold Schemes (Initial Public Draft)" which is aimed at soliciting feedback
from the cryptographic community. This call for comments is divided into two
categories, the first of which pertains to NIST-specified primitives (cat1), while
the second category is reserved for primitives not specified by NIST (cat2). The
public comment period will remain open until April 10, 2023. Given the critical
importance of the cryptographic community’s input in advancing this initiative,
its active participation is highly encouraged.

For further details on Multiparty Computation, please refer to [38].

1.4 Private Set Intersection

Private Set Intersection (PSI) is a potent cryptographic methodology that en-
ables two parties to determine the intersection of their datasets, all while safe-
guarding the confidentiality of their raw data from the other party. This tech-
nique has been employed by Apple in its Password Monitoring feature5, and
has been suggested as a potential solution for its recently announced Expanded
Protections for Children.

In general, PSI (Private Set Intersection) protocols can be classified into two
types, namely traditional PSI and delegated PSI. In the traditional PSI category,
data owners engage in direct interaction with each other and require a copy of
their set during computation, as illustrated in [29]. In contrast, the delegated
PSI category enables delegation of the PSI computation and/or set storage to a
third-party server, which may potentially be a passive or active adversary. The
delegated PSI category can be further divided into two subcategories, namely
one-off delegation and repeated delegation. One-off delegation protocols require
5 https://support.apple.com/fr-fr/guide/security/sec78e79fc3b/web
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the data owner to re-encode their data and send the encoded data to the server
for each computation, as exemplified in [36]. Conversely, repeated delegation
protocols permit data owners to upload their encrypted data to the server once
and reuse it for multiple computations performed by the server, as demonstrated
in [1]. Recently, new variants of the PSI protocol that support data update have
been proposed by researchers in both the traditional and delegated categories,
as described in [1] and [5]. These types of PSI protocols enable data owners to
insert or delete set elements from their data while preserving privacy.

For further details on Multiparty Computation, please refer to [30].

1.5 Fully-Homomorphic Encryption

Fully homomorphic encryption enables any entity (for example, a cloud provider)
to operate on encrypted private data without ever decrypting it. HE’s goal is to
perform operations on plain text while only manipulating ciphertexts. Typically,
we must decrypt them before performing the desired processing on encrypted
data.

Some operations are possible under certain cryptosystems with algebraic
structures. For example, two RSA ciphertexts [44] can be multiplied to obtain
the multiplication of the two corresponding plain texts. This is known as the
multiplicative homomorphic property of the "textbook RSA" cryptosystem. On
ciphertexts, another operation can be performed. For example, in the Paillier
cryptosystem [42], we can add two ciphertexts to obtain the addition of the two
corresponding plain texts. This is referred to as the "Paillier" cryptosystem’s
additive property. For example, if we are interested in e-voting applications, we
can use this to add encrypted votes without knowing the initial vote.

Rivest, Adelman, and Dertouzos first proposed the concept of homomorphic
encryption in [44]. Until Gentry’s work [31], building a cryptosystem with both
multiplicative and additive properties was a significant problem in cryptogra-
phy. Gentry proposed the first fully homomorphic encryption algorithm based
on ideal lattices. The HE is classified into three types based on the number of
mathematical operations performed on the encrypted message: Partially Homo-
morphic Encryption (PHE), Somewhat Homomorphic Encryption (SHE), and
Fully Homomorphic Encryption (FHE) (FHE).

Homomorphic Encryption schemes

The following steps are shared by all HE schemes: key generation, encryption,
decryption, and homomorphic operations on the ciphertexts.

Table 1 from [3] summarizes the most widely used and researched schemes
in the cryptographic community, and Figure reffig:my labelA depicts the Homo-
morphic Encryption timeline.
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Table 2. Comparison of HE schemes: SIMD for single-instruction-multiple-data

Operation SCHEMES
BFV [28] BGV [17] CKKS [20] FHEW[25] TFHE[21]

Native Add/Sub ✓ ✓ ✓ ✗ ✗

Native Mult ✓ ✓ ✓ ✗ ✗

Boolean Logic ✗ ✗ ✗ ✓ ✓

SIMD ✓ ✓ ✓ ✓ ✓

Homomorphic Encryption Librairies

There are several open-source libraries available for implementing the HE scheme.
For each scheme, they provide key generation, encryption, decryption, and ho-
momorphic operations; library APIs frequently include features for maintaining
and manipulating ciphertexts. Despite a lack of technical interoperability, there
is also a lack of conceptual interoperability; for example, libraries that use the
same scheme can produce surprisingly different results. Ongoing standardization
efforts aim to create a unified view of the most popular schemes. Current HE
methods are constrained. They are unable to easily support division operations
and comparisons, such as the equality/inequality test.

Table 3. Overview of existing FHE librairies: CPU-targeting (top) and GPU-targeting
(bottom)

Name Input
language

Supported schemes
________________

BFV[28] BGV [17] CKKS[20] FHEW[25] TFHE[21]
HE-CPU-TARGETING

Concrete Rust ✗ ✗ ✗ ✗ ✓

FHEW C++ ✗ ✗ ✗ ✓ ✗

FV-NFlib C++ ✓ ✗ ✗ ✗ ✗

HEAAN C++ ✗ ✗ ✓ ✗ ✗

HElib C++ ✓ ✓ ✓ ✗ ✗

lattigo Go ✓ ✗ ✓ ✗ ✗

PALISADE C++ ✓ ✓ ✓ ✓ ✓

SEAL C++, .NET ✓ ✓ ✓ ✗ ✗

TFHE C++ ✗ ✗ ✗ ✗ ✓

HE-GPU-TARGETING
cuFHE C++, Python ✗ ✗ ✗ ✗ ✓

nuFHE C++, Python ✗ ✗ ✗ ✗ ✓

Fully Homomorphic Encryption schemes may have limitations right now, but
computer researchers are working hard to overcome them. There is no doubt that
FHE will become the encryption standard of the future. You should keep an eye
on its progress, and as it becomes more and more practically applicable to your
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industry, you should consider using it as soon as possible. In recent years, there
have been several exciting developments in the field of Fully Homomorphic En-
cryption (FHE). One area of progress has been the updates to FHE libraries,
which have made it easier for developers to work with this technology. Addition-
ally, there have been advancements in FHE accelerations and compilers, which
have helped to improve the efficiency and performance of FHE systems. As a
result, FHE is becoming more accessible and practical for a wider range of ap-
plications and requirements, such as secure data sharing and privacy-preserving
machine learning. In response to this growth, there has also been work towards
establishing FHE standards and regulations, which will help ensure the safety
and security of FHE systems. Finally, there has been a surge of interest in the
FHE industry, with new companies and startups emerging to develop and pro-
mote this technology. Overall, these developments indicate a bright future for
the field of FHE, and suggest that we can expect to see even more exciting
advancements in the years to come.

For further details on Fully Homomorphic Encryption, please refer to [2].

1.6 Group signature

A group signature scheme is a method that allows a member of a group to
sign a message anonymously on behalf of the group. David Chaum [19] and
Eugene van Heyst pioneered the concept in 1991. A group signature scheme, for
example, could be used by an employee of a large company where a verifier only
needs to know that a message was signed by an employee but not which employee
signed it. Another application is keycard access to restricted areas where tracking
individual employee movements is inappropriate but it is necessary to secure
areas to only employees in the group.

For further details on group signature schemes, please refer to [56].

1.7 Differential Privacy

Many definitions of privacy have been proposed in the literature, but finding
a formal definition of privacy in the context of data analysis proved to be ex-
tremely difficult. The need to find a definition that meets the expectations of
users while also being practical gives rise to the concept of differential privacy.
"Differential privacy," as defined by cite [27], is a promise made by a data holder
or curator to a data subject: "You will not be affected, adversely or otherwise,
by allowing your data to be used in any study or analysis, regardless of what
other studies, data sets, or information sources are available." In other words, an
adversary with access to the data cannot determine whether or not an individ-
ual’s information is contained in the data. Differential privacy is a mathematical
framework for protecting individuals’ privacy in a dataset. This framework oper-
ates by introducing noise into the input data, models, or outputs. The goal is to
maximize data utility as well as privacy. It is critical to understand that DP is a
property of an algorithm, not of the data itself. More formally, we can define DP
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as follows for two datasets that differ in only one individual (two neighboring
datasets): [26].

Definition 1. A randomized algorithm M gives (ϵ, δ)-differential privacy if for
all datasets D1 and D2 differing on at most one element, and all S ⊂ Range(M),

Pr[M(D1) ∈ S] ≤ eϵ × Pr[M(D2) ∈ S] + δ (1)

The privacy budget is commonly referred to as epsilon. It determines how much
privacy protection the differential privacy algorithm provides. The privacy bud-
get is expressed as a real value, with a lower epsilon value representing a stronger
privacy guarantee. The failure probability of the differential privacy mechanism,
on the other hand, is represented by delta. When delta equals zero, the mecha-
nism is referred to as pure differential privacy (pure-DP), which means it provides
the strongest privacy guarantee possible.

This definition yields three major properties: composition, post-processing,
and group privacy. These properties will assist us in designing useful algorithms
that satisfy DP while also ensuring that the algorithms provide accurate results.

– Composition: it provides a way to limit the privacy cost of answering multiple
queries on the same data.

– Postprocessing : it ensures that the privacy guarantees of a differential pri-
vacy mechanism remain unchanged even if the output is further processed
or analyzed

– Group privacy : this definition can be extended to group privacy by consid-
ering two datasets that differ on at most k rows rather than one row.

As previously stated, DP is a property of an algorithm or mechanism. The
literature contains several basic mechanisms that meet the definition of differ-
ential privacy, including the Laplace mechanism, the Gaussian mechanism, and
the exponential mechanism. The principles of these mechanisms are explained
below:

– The Laplace mechanism :
It adds noise to the output of a Laplace distribution algorithm Lap(∆s

ϵ ),
where ϵ is the privacy budget and ∆s is the sensitivity of the applied function.
The sensitivity is a measure of how much the output can change in response
to a small change in the input data. This is referred to as ϵ-differential
privacy.

– The Gaussian mechanism :
It is a different mechanism than the Laplace mechanism. Instead of a Laplace
distribution, it adds noise sampled from a Gaussian distribution. The Gaus-
sian mechanism is not pure ϵ-differential privacy, but it is (ϵ, δ)-differential
privacy.

– The exponential mechanism : It is a randomized algorithm that chooses
an output from a set of input data with a probability proportional to the
exponential of a score function. Each data item is assigned a score by the
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score function based on its quality or relevance. The exponential mechanism
is well suited for applications where data item quality is important, such as
recommendation or voting systems.

These are only the basic mechanisms that ensure differential privacy. Many other
mechanisms and algorithms have been proposed in the literature, each with its
own set of advantages and disadvantages. The mechanism chosen is determined
by the application’s specific privacy requirements.

1.8 Attribute-based encryption

In 2005, Sahai and Waters [45] proposed Attribute Based Cryptography (ABC)
as a new technique for encrypted access control. Ciphertexts are not necessarily
encrypted to a single user in ABC, as they are in traditional public key cryp-
tography. Instead, both users’ private keys and ciphertexts are associated with
a set of attributes or an attribute policy. If there is a match between the user’s
private key and the ciphertext, the user can decrypt it. This section provides a
brief overview of ABC:
Sahai and Waters presented a threshold Attribute Based Encryption (ABE)
scheme in [45]. In other words, ciphertexts are labeled with a set of attributes
S, whereas a user private key is associated with both a threshold parameter t
and a different set of attributes S. Enciphered data can only be decrypted if at
least t attributes match between the ciphertext and the user private key. One
of the primary motivations for this work was to create an error-tolerant (Fuzzy)
identity-based encryption scheme that could be used with biometric identities.

Goyal et al. proposed a key-policy attribute based encryption (KP-ABE)
scheme [33] in 2006 that integrated the access policy into the user private key.
In other words, ciphertexts are

Private keys are associated with access structures that control which cipher-
texts a user is able to decrypt and are labeled with sets of attributes. KP-ABE
schemes provide fine-grained access control. In fact, data is outsourced in en-
crypted form, with different users still permitted to decrypt different pieces of
data in accordance with security policy. This removes the need to rely on the
storage server to prevent unauthorized data access. The disadvantage of KP-
ABE is that the access policy is based on a single user’s private key. As a result,
the data owner has no choice but to select a set of attributes that can describe
the data.

the outsourced data. Furthermore, the sender must trust that the key-issuer
will grant or deny access to the appropriate users. Bethencourt et al. [12] pre-
sented the first implementation of a ciphertext policy attribute based encryption
(CP-ABE) scheme. The user secret key is associated with a set of attributes in
their scheme, and the ciphertext is associated with an access policy over at-
tributes. The user can decrypt the ciphertext if and only if his secret key’s
attribute set matches the access policy specified in the ciphertext. [12] is con-
ceptually superior. Role Based Access Control is an alternative to traditional
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access control methods (RBAC). Because of the computation properties on at-
tributes, attribute-based cryptography (ABC) is referred to as an innovative
concept and one of the most appealing ways to manage and control file sharing
in the cloud. Traditional access control architectures, in fact, generally assume
that remote servers storing data are completely trusted by their clients. As a
result, they are frequently in charge of developing and enforcing access control
policies. However, this is not the case. Because of the abstract nature of this
business model, this statement does not usually hold true in multi-tenant cloud
data storage environments. As a result, cloud clients are still hesitant to out-
source their data file contents. ABC is regarded as a promotional solution for
ensuring fine-grained access control to data stored on untrusted storage servers.
First, ABC allows you to search through encrypted data. In other words, the
ciphertext is given a set of descriptive attributes. In such a system, viewing these
attributes as keywords results in a keyword-based search on encrypted data. Sec-
ond, despite the fact that data is outsourced in encrypted form, each authorized
user is able to decrypt different pieces of enciphered content due to the security
policy included in the ciphertext and a required match with the decrypting key
of the recipient. This removes the need to rely on the cloud storage server to
prevent unauthorized data access. There are several common drawbacks to the
works mentioned above. First, they usually assume that the system will be run
by a single trusted authority. This may not only result in a load bottleneck, but
it also has the key escrow issue. In fact, this entity has access to all encrypted
files, potentially exposing personal information. Furthermore, delegating all at-
tribute management tasks to a single entity is impractical, including certifying
all user attributes or roles and generating secret keys. Different organizations, for
example, usually define their domains. A professional association, for example,
would be in charge of certifying medical specialties, whereas a regional health
provider would certify the job ranks of its employees. Second, an efficient and
on-demand user revocation mechanism for attribute-based schemes with support
for dynamic policy updates and changes, which are critical components of secure
sharing use cases, is still lacking.

For further details on Differential Privacy, please refer to [37].

1.9 Format preserving encryption

FPE (Format-preserving Encryption) is a technique of transforming plaintext
into ciphertext that has the same format as the original text. Many applications
exist for FPE for character data, such as database encryption and sensitive data
protection in network transmission. It has some advantages over traditional block
ciphers, such as increased data size and format change. When a 16-digit credit
card number is encrypted, the ciphertext generated by AES is a block of binary
data, but the ciphertext generated by FPE is another 16-digit number. The FPE
problem was revealed in 1981 [43]. Ballare [7] developed the formal definition
and security goals until 2009. Prefix, cycle-walking, and generalized-Feistel are
the fundamental methods for integer domain provided by Black and Rogaway
[13]. FFSEM [51], RtE [7], FFX [9], and other FPE methods are available. RtE
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and FFX are appropriate for the character domain described as, a string set
where C is a finite character set and n is the number of characters in the string.
By establishing a bijective relationship between string and integer, these modes
convert string encryption into integer FPE. The FPE described above is known
as NPE (Number-preserving Encryption), and it requires that the ciphertext
character count be equal to the plaintext character count. NPE is only suitable
for fixed-width character encoding. The National Institute of Standards and
Technology (NIST) has recommended two methods for implementing format-
preserving encryption (FF1 and FF3-1). Both FF1 and FF3-1 are intended to
take a 128-bit block cipher (such as AES) and process its input and output to
ensure that data is stored in the desired format while remaining decryptable to
the original value. However, implementing an effective data protection strategy
is more complicated than simply downloading a popular encryption algorithm
and following basic implementation instructions. To avoid business disruptions,
FPE algorithms must be carefully implemented to ensure the confidentiality,
integrity, and availability of encrypted data while maintaining critical format
requirements. For further details on Format preserving encryption, please refer
to [52].

1.10 Federated learning

FL (Federated Learning) is a decentralized framework that enables collaborative
training of a shared global model by multiple clients while keeping training data
distributed on client devices, under the orchestration of a central server. The
FL process is composed of several rounds, during which the server randomly
initializes a global model as a starting point. At the beginning of each round, the
server selects a subset of clients who participate in the training and distributes
the current global model to them. Subsequently, each selected client trains the
model locally on their own data and communicates only the updates to the model
back to the server. Finally, the server aggregates the model updates received from
the clients and incorporates them into the global model, concluding the current
round. The most common approach to optimization for FL is the Federated
Averaging algorithm [40] In this case, each client performs several epochs of
minibatch stochastic gradient descent (SGD) minimizing a local loss function,
and the central server then performs a weighted averaging of the updated local
models to form the updated global model.

For further details on Federated learning, please refer to [55].

1.11 Data anonymization

Data anonymization is a form of information sanitization designed to safeguard
individuals’ privacy. Specifically, it entails the removal of personally identifiable
information from datasets, thereby ensuring that the individuals represented
within the data remain anonymous.

The anonymization of personal data is a process aimed at altering such data
in a manner that would prevent any direct or indirect identification of a data
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subject by the data controller alone or in collaboration with any other party.
This process can enable the transfer of information across boundaries, such as
between departments within a single agency or between multiple agencies, while
mitigating the risk of inadvertent disclosure. Additionally, in certain contexts,
data anonymization can facilitate post-anonymization evaluation and analytics.

De-anonymization is the process of re-identifying an anonymous data source
by cross-referencing it with other data sources[24]. The two most common anonymiza-
tion approaches for relational data are generalization and perturbation.The pro-
cess of obscuring data with the ability to re-identify it later is known as pseudonymiza-
tion, and it is one way for businesses to store data in a HIPAA-compliant manner.

2 Barriers to the widespread adoption of
privacy-enhancing technologies

Despite their growing demand and potential benefits, Privacy Enhancing Tech-
nologies (PETs) have significant drawbacks, some of which are more apparent
than others. One of the most common criticisms of PETs is that they can be
complex and difficult to use, leading to user errors that seriously compromise
individual privacy and security. Additionally, many PETs are expensive and
require significant computational resources that are not readily available to all
market participants, not to mention the environmental impact of such resources.

The complexity and resource constraints of PETs can also make them difficult
to audit or govern, potentially creating a false sense of security that undermines
core data protection principles, such as data minimization. Due to usability and
accessibility issues, as well as a lack of accountability, the use of PETs may
actually encourage more data collection and sharing, further eroding privacy.

PETs present challenges in terms of increased architectural and operational
complexity, as well as performance-related constraints that must be carefully
considered when selecting a PET. Moreover, the limitations of PETs must be
taken into account; for instance, homomorphic encryption and secure multi-party
computation cannot handle large amounts of data, and do not satisfy anonymiza-
tion requirements for secondary data processing. Notably, k-anonymity does not
provide a formal guarantee of privacy, unlike differential privacy.

Despite these challenges, PETs will become increasingly important, partic-
ularly as the need for collaboration across organizational boundaries grows. In
the future, there will be an effort to improve and expand the classification of
PETs to include additional application categories and domains. Furthermore,
there will be a focus on implementing and testing concrete PETs and use cases,
such as differential privacy and secure multiparty computation.
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