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Abstract. In this paper, we provide an overview of the SAT+CAS
method that combines satisfiability checkers (SAT solvers) and computer
algebra systems (CAS) to resolve combinatorial conjectures, and present
new results vis-à-vis best matrices. The SAT+CAS method is a variant of
the DPLL(T ) architecture, where the T solver is replaced by a CAS. We
describe how the SAT+CAS method has been used to resolve many open
problems from graph theory, combinatorial design theory, and number
theory, showing that the method has broad applications across a variety
of fields. Additionally, we apply the method to construct the largest best
matrices yet known and find new skew Hadamard matrices constructed
from best matrices. As a consequence of this we show that a conjecture
on the existence of best matrices that was previously known to hold for
r ≤ 6 also holds for r = 7.

Keywords: Satisfiability checking · Combinatorial search · Symbolic
computation · SAT+CAS

1 Introduction

In recent years a number of search paradigms have emerged that allow the solving
of extraordinarily large problems in combinatorial mathematics. One of the most
successful techniques in recent years is the “SAT paradigm” of reducing a problem
into Boolean logic and then searching for a solution using a SAT solver [7]. In fact,
the SAT paradigm has been so successful that it is routinely used to solve problems
in areas of mathematics which don’t seem to be directly connected to Boolean
logic at first glance. In 2017 Heule, Kullmann, and Marek [42] summarized the
state-of-the-art in combinatorial searches as follows:

Surprisingly, SAT solving is getting so strong that indeed [using SAT
solvers] seems today the best solution in most cases.

Some enormous combinatorial problems have been resolved in this way. In
particular, the cube-and-conquer SAT solving paradigm [40] by Heule and Kull-
mann has achieved a number of striking successes including solving the Boolean
Pythagorean triples problem [41] and determining the value of the fifth Schur
number—a problem that resisted solution for over 100 years [39].
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Briefly, in the cube-and-conquer paradigm a “look-ahead” SAT solver [44]
partitions the search space into a number of independent subspaces of roughly
equal difficulty called “cubes”. Each cube is then solved by a SAT solver using
conflict-driven clause learning [59] (possibly employing parallelization across a
large number of processors) to determine if a solution to the problem exists. See
Section 2 for more background on the cube-and-conquer paradigm.

Despite these impressive successes, the cube-and-conquer paradigm is not
appropriate for all kinds of combinatorial problems, and in particular it would be
difficult to use in problems that have properties that cannot easily be expressed
in Boolean logic. When dealing with such problems one common approach is
to employ an SMT (SAT modulo theories) solver [4,21,27,31] based on the
Davis–Putnam–Logemann–Loveland algorithm (modulo theories) denoted by
DPLL(T ) [61] where T is a theory of first-order logic. SMT solvers can solve many
problems of interest in the context of automatic program verification [9] and
automatic test case generation [17]. However, modern SMT solvers only support
specific theories and in this paper we are interested in solving combinatorial
problems that have properties that cannot be easily expressed in those theories.

By contrast, a huge number of mathematical properties of interest can easily be
expressed in computer algebra systems (CAS) such as Maple [6], Mathematica [75],
and SageMath [70]. Indeed, a common approach for solving problems that use
advanced mathematics is to write a program in the programming language of a
CAS. While CAS are very impressive in solving pure math problems, they are
not optimized for combinatorial problems that require both math and search.

We therefore have developed a new “SAT+CAS” method, that combines the
best of both the SAT world (for search) and CAS (for math) and used this
method to solve several large combinatorial problems that rely on advanced
mathematics. We do this by using a combination of SAT solvers and computer
algebra systems and use each system in ways that exploit its strengths. Namely,
we use the SAT solver as the combinatorial search engine and use the CAS to
check properties that are too difficult or cumbersome to encode into Boolean
logic. The SAT+CAS paradigm is a variant of DPLL(T ) and can be captured as
DPLL(CAS), however, it also uses the CAS more generally. For example, we use
the CAS during preprocessing in addition to using it in the DPLL(CAS) context.

As concrete examples of this paradigm we mention three problems and the
properties that we checked using a CAS. See Section 3 for background on these
problems and Section 4 for details of how we used the SAT+CAS method to
push the state-of-the-art in these problems. We briefly mention these below:

1. The Ruskey–Savage conjecture (see [78,79]). This conjecture states that any
matching of a hypercube graph can be extended to a Hamiltonian cycle. We
encode the property that a set of edges is a matching in a SAT instance and
check that the edges extend to a Hamiltonian cycle using a CAS.

2. Enumerating Williamson matrices (see [13,14]). Williamson matrices are
square {±1}-matrices that satisfy a simple arithmetical property. They also
satisfy a more complicated property based on the discrete Fourier transform
that we check using a CAS.
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3. Enumerating complex Golay pairs (see [15,16]). Complex Golay pairs are two
polynomials with coefficients in {±1,±i} that satisfy a simple arithmetical
property. The norm of the polynomials satisfy certain bounds that we check
using the nonlinear programming optimizer of a CAS.

In this paper, we further extend the success of the SAT+CAS paradigm to
another class of matrices studied in combinatorial design theory known as best
matrices [34]. This case study is similar to the Williamson example from above
because best matrices are also known to satisfy a strict condition based on the
discrete Fourier transform. However, best matrices tend to be much rarer than
Williamson matrices. In particular, it is known that if circulant best matrices of
order n exist then n must be of the form r2 + r + 1 for some r ≥ 0 [25].

Before this work it was known that best matrices exist in all these orders
for r up to and including r = 5 [34] and best matrices were recently found for
r = 6 [25]. This makes it tempting to conjecture that best matrices actually exist
for all orders of the form r2 + r+ 1. See Section 5 for a detailed discussion of how
we applied the SAT+CAS paradigm to this problem and Section 6 for details on
our implementation and results.

Contributions. The main new result of this paper is that we show for the first
time that best matrices exist for r = 7 by explicitly constructing best matrices
of order 57—the largest best matrices currently known. Additionally, we use
these matrices to construct new skew Hadamard matrices and perform the first
published verification of the counts of best matrices given in [25,34] (see Section 6).
A secondary contribution is a demonstration that the SAT+CAS method is
applicable to a wide variety of fields including graph theory, combinatorial design
theory, and number theory (see Section 4).

2 Previous work

Algorithmic advances such as conflict-driven clause learning (CDCL) and variable
branching heuristics have spurred the “SAT revolution” [71] and resulted in a
huge number of applications of SAT solvers ranging from formal verification
of hardware [72] to solving Sudoku puzzles [57]. In this paper we focus on
applications of SAT solvers to combinatorial search problems.

The first application of SAT solvers to combinatorial problems appears to be
by McCune [60], and Stickel and Zhang [67] who in the 1990s used SAT solvers to
solve a number of open Latin square and quasigroup problems. Zhang developed
a solver called SATO [76] and applied it to numerous Latin square problems and
observed that such an approach was just as effective as using a special-purpose
solver [77]:

In the earlier stage of our study of Latin square problems, the author
wrote two special-purpose programs. After observing that these two
programs could not do better than SATO, the author has not written
any special-purpose search programs since then.
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In the 2000s SAT solvers were also successfully applied to the branch of
combinatorics known as Ramsey theory and in particular to the problem of
computing van der Waerden numbers. The mathematician van der Waerden
proved [73] that any r-colouring of the natural numbers must contain k numbers
in arithmetic progression that are all the same colour (monochromatic). A van
der Waerden number is the smallest value of n such that all r-colourings of
{1, . . . , n} have a monochromatic arithmetic progression of length k.

An initial result in 2003 was by Dransfield, Marek, and Truszczyński [26] who
used a SAT solver to significantly improve the lower bounds on several van der
Waerden numbers. Two years later Kouril and Franco [53] used a SAT solver
to find a 2-colouring of {1, . . . , 1131} without any monochromatic arithmetic
progressions of length 6 and conjectured that it was not possible to increase the
size of this set. Three years later Kouril and Paul [54] used a SAT solver to prove
this, in other words they showed that all 2-colourings of {1, . . . , 1132} contain
monochromatic arithmetic progressions of length 6.

In 2011, Heule, Kullmann, Wieringa, and Biere [43] developed the cube-
and-conquer paradigm in the process of solving SAT instances that arose from
computing van der Waerden numbers [3]. They found that the cube-and-conquer
method performed better than any other method on these instances:

Results on hard van der Waerden benchmarks using our basic method
show reduced computational costs up to a factor 20 compared to the
fastest “pure” SAT solver.

The basic idea behind the cube-and-conquer method is to combine two
different SAT solving strategies, the “lookahead” and “conflict-driven” strategies.
Lookahead solvers are good at making decisions at a global level, i.e., finding
the next decision that simplifies the problem as much as possible. In contrast,
conflict-driven solvers are good at solving large problems that admit a relatively
short solution, i.e., ones that can be solved by making specific local decisions
that may not be good globally but happen to work in that specific case.

The crucial insight by Heule et al. is to employ lookahead solvers to split
the problem into many subproblems and then switch to conflict-driven solvers
once the subproblems become simple enough. In this way a cube-and-conquer
solver performs better than either a pure lookahead or pure conflict-driven solver.
Furthermore the method naturally admits parallelization as the subproblems can
be solved using separate processors.

The cube-and-conquer paradigm has been enormously successful. In particular,
Heule, Kullmann, and Marek [41] used it to solve the Boolean Pythagorean triples
problem and Heule [39] used it to find the value of the fifth Schur number—both
of these problems were well-known and went unsolved for decades. SAT solvers
have also been used to compute Green–Tao numbers by Kullmann [55] and solve
a special case of the Erdős discrepancy conjecture by Konev and Lisitsa [48].
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3 Mathematical preliminaries

In this section we describe the mathematical preliminaries necessary to understand
the problems discussed in this paper. Our goal is to demonstrate that the
SAT+CAS method is broadly applicable so we review several different fields.

Graph theory. The hypercube graph of order n is a graph on 2n vertices where
the vertices are labelled with bitstrings of length n. Two vertices are adjacent in
this graph exactly when their labels differ in a single bit. A matching of a graph
is a subset of its edges such that no two edges share a vertex. A Hamiltonian
cycle of a graph is a path through the graph that starts and ends at the same
vertex and visits each vertex exactly once.

The Ruskey–Savage conjecture says that every matching of a hypercube graph
of order n ≥ 2 can be extended into a Hamiltonian cycle of the graph [64]. This
conjecture has been open for over twenty-five years.

Combinatorial design theory. A Hadamard matrix is a square matrix with ±1
entries such that any two distinct rows are orthogonal. Hadamard matrices have
a long history (first constructed in 1867 [68]) and applications to error-correcting
codes [58], image coding [62], and techniques for statistical estimation [63]. The
Hadamard conjecture is that Hadamard matrices exist in all orders that are
multiples of four and much work has gone into constructing Hadamard matrices
in as many orders as possible [38,46,47,66]. One way of constructing a Hadamard
matrix of order 4n is to use a set of Williamson matrices of order n [50].

To define Williamson matrices we require the definition of a circulant matrix.
A matrix is circulant if each row is equal to the previous row shifted by one
element to the right (with a wrap-around). Therefore, a circulant matrix can
equivalently be identified with the sequence formed by its first row. Four circulant
and symmetric matrices A, B, C, D of order n are Williamson matrices if they
have ±1 entries and A2 +B2 +C2 +D2 is the scalar matrix 4nI. The Williamson
conjecture is that Williamson matrices exist in all orders n ≥ 1 [37].

Best matrices are similar to Williamson matrices and will be formally defined
in Section 5. One of the major differences is that best matrices can be used
to construct skew Hadamard matrices, i.e., ones whose off-diagonal entries are
anti-symmetric. Much effort has also been spent constructing skew Hadamard
matrices in as many orders as possible. They are conjectured to exist for all orders
of the form 4n [20] but the current smallest unknown order is n = 69 and the
previous smallest unknown order n = 47 was solved in 2008 [22]. Constructions
for other combinatorial structures of interest that rely on best matrices are given
in the original paper that defined them [34].

Number theory. Two polynomials A and B with coefficients in {±1,±i} and of
degree n − 1 form a complex Golay pair if |A(z)|2 + |B(z)|2 = 2n for all z on
the unit circle. Such polynomials (with real coefficients) were first used by Golay
to solve a problem in infrared multislit spectrometry [36]. They have since been
applied to an enormous number of applications in engineering (particularly in
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communications [69]). They also provide extremal examples for various problems
in number theory [8].

4 The SAT+CAS paradigm

It is well known that one of the drawbacks of Boolean logic is that it is not
expressive enough for many domains. This was a significant impetus for the
development of SAT modulo theories (SMT) solvers and the DPLL(T ) architec-
ture [33] that can solve problems specified in more expressive theories. A few
SMT solvers have the ability to work with more mathematically complex theories
such as non-linear transcendental arithmetic [18]. However, to our knowledge no
SMT solvers can compute fast Fourier transforms or are optimized to handle the
many fragments of mathematics supported by computer algebra systems.

Conversely, computer algebra systems (CAS) from the field of symbolic com-
putation are optimized to solve hard non-linear algebraic problems, among many
other fragments of mathematics. In 2015, Ábrahám [1] pointed out that the fields
of symbolic computation and SMT solving have similar aims but the fields have
developed mostly independently of each other:

The research areas of SMT solving and symbolic computation are quite
disconnected. On the one hand, SMT solving [ . . . ] makes use of symbolic
computation results only in a rather naive way. [ . . . ] On the other hand,
symbolic computation [ . . . ] does not exploit the achievements in SMT
solving for efficiently handling logical fragments, using heuristics and
learning to speed-up the search for satisfying solutions.

Furthermore, she made the case that these communities could mutually benefit
from exploiting the achievements of the other field. To this end the SC2 project
(for symbolic computation and satisfiability checking) was started to bridge the
gap between these communities [2].

Independently of the work of Ábrahám, we started developing a system
called MathCheck in 2014 inspired by the DPLL(T ) algorithm but replacing
the theory solver with a computer algebra system. We used MathCheck to
show that certain graph theoretic conjectures held up to bounds that had not
previously been verified [79]. Later we applied MathCheck to find (and disprove
the existence of in certain orders) Williamson matrices [14], complex Golay
pairs [16], and good matrices [10].

The SAT instances that were generated in the graph theory case studies were
small enough that the instances could be solved without splitting them into
subproblems. However, in every subsequent problem we found that splitting was
essential in order to solve the largest cases. We observed very similar behaviour to
what was described by Heule [39] in the cube-and-conquer paradigm, namely, that
instances could be solved much quicker once they had been split into independent
subproblems. This held true even if only using a single processor and even when
accounting for the time it takes to split the problem.
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Our SAT+CAS method can be viewed as a special case of the cube-and-
conquer paradigm with two major differences. First, we don’t divide the problem
into subproblems specified by cubes (a conjunction of literals). Instead, we allow
our subproblems to be specified by clauses in conjunctive normal form. Second,
we use a computer algebra system during both the divide and conquer phases.
During the dividing phase the computer algebra system can often discard entire
subproblems without even sending them to a SAT solver. For example, if the
CAS finds that two subproblems are isomorphic then one can safely be discarded.
However, devising a splitting method that takes advantage of the computer
algebra system and performs well requires significant knowledge of the domain.

We now describe in detail the problems outlined in Sections 1 and 3 and how
we applied the SAT+CAS paradigm to derive new results about each problem.
We leverage some of these ideas in Section 5 and use them to construct the largest
best matrices currently known.

Graph theory. The Ruskey–Savage conjecture (that every matching of a hypercube
can be extended into a Hamiltonian cycle) was previously known in the orders
n = 2, 3, and 4 [29]. Using MathCheck we showed that the conjecture also
holds in the order n = 5 for the first time [79].

The constraint that a subset of the edges of a hypergraph forms a matching
is encoded directly into Boolean logic. However, the constraint that says that
such a matching can be extended into a Hamiltonian cycle is not straightforward
to encode in Boolean logic—but a computer algebra system can easily test this.
Therefore, whenever a satisfying assignment of the propositional constraints (i.e.,
a matching of the graph) is found by the SAT solver the matching is passed to a
CAS to verify that it can be extended into a Hamiltonian cycle.

If the CAS finds that the given matching can not extend to a Hamiltonian cycle
this provides a counterexample of the conjecture. Otherwise, the CAS provides to
the SAT solver a clause that blocks this matching from being considered in the
future. It’s also possible for the CAS to provide clauses that block other similar
matchings (e.g., matchings generated via an automorphism of the graph) and we
showed that this was beneficial to the performance of the solver [78].

Combinatorial design theory. Prior to our work, exhaustive searches for Williamson
matrices had been performed in all odd orders n ≤ 59 [45] and all even orders
n ≤ 18 [49]. These searches discovered that Williamson matrices don’t exist
in the orders n = 35, 47, 53, and 59 but exist in all other orders that were
searched. Using MathCheck we were able to provide exhaustive searches for all
orders n ≤ 70 divisible by 2 or 3 (finding over 100,000 new sets of Williamson
matrices) [12,14] and verified the counterexample n = 35 [11].

Using arithmetic circuits it is possible to generate a SAT instance that specifies
that Williamson matrices exist in order n. However, this approach was only able
to find Williamson matrices for orders up to n = 30. To scale up to n = 70 we
found that it was essential to use a divide-and-conquer approach and use CAS
functionality in both the divide and conquer phases.
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First, we give an overview of the divide phase. The first property that is
useful in this regard is the fact that Williamson matrices satisfy

sum(A)2 + sum(B)2 + sum(C)2 + sum(D)2 = 4n

where sum(X) denotes the rowsum of the first row of X. (We associate a circulant
matrix X with the sequence formed by its first row.) We use a computer algebra
system to solve the equation x2 + y2 + u2 + v2 = 4n in integers and each solution
provides one subproblem, namely, the subproblem of finding a set of Williamson
matrices of order n with rowsums (x, y, u, v). This typically splits each order
into a few subproblems; to further divide the problem we use the properties of
sequence compression [24].

For concreteness, suppose n is even and n = 2m. Then Williamson matrices
can be “compressed” into matrices of order m by adding together the entries that
are separated by exactly m entries in each row. For example, the compression
of the row [1,−1, 1, 1,−1,−1] is [2,−2, 0]. We generate further subproblems
using compressions; each subproblem corresponds to finding a set of Williamson
matrices that compresses to a given {±2, 0}-sequence. The reason this method of
dividing is so effective is because there are strong filtering theorems that a CAS
can use to determine that most subproblems of this form are unsatisfiable without
even using a SAT solver. An example of these filtering theorems is described
below (in the context of the conquer phase).

Second, we give an overview of the conquer phase. In this phase a SAT solver
receives a number of independent SAT instances that encode one subproblem
that was generated in the divide phase. Using an off-the-shelf SAT solver in this
stage allowed us to scale to order n = 35 (and in particular verify that 35 is
the smallest counterexample of the Williamson conjecture [11]). However, using
a CAS in the conquer phase was found to be orders of magnitude faster and
allowed us to scale to n = 70.

The reason that using a CAS produces such a dramatic improvement is
because it allows the usage of filtering theorems that are very strong—but the
theorems cannot easily be directly encoded into Boolean logic. As an example, it
is known that if A = [a0, . . . , an−1] is the first row of a Williamson matrix then
the bound ∣∣∣∣n−1∑

j=0

aj exp
(
2π
√
−1jk/n

)∣∣∣∣2 ≤ 4n

holds for all integers k. This is a very strict bound that the vast majority of A will
fail to satisfy for some k. Furthermore, it is very efficient to test because the values
on the left form the power spectral density of A and can be quickly computed
using a fast Fourier transform (e.g., using the DFT and PowerSpectrum
functions of the computer algebra system Maple).

In the conquer phase the SAT solver proceeds as normal until a partial
satisfying assignment of the propositional constraints are such that the values
of A can be determined. At this point A is passed to a CAS which computes its
power spectrum. If the power spectral density bound is violated then a conflict
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clause is returned to the SAT solver that blocks this A from being considered in
the future. The same condition is also checked with B, C, and D.

Number theory. All complex Golay pairs up to n = 19 were enumerated in [19]
and it was conjectured that such pairs do not exist for n = 23 based on a partial
search. This conjecture was proven in [28] where a complete enumeration was
performed up to n = 28. However, this result had never been independently
verified. Using MathCheck we performed the first independent verification of
this result [15] by explicitly finding all complex Golay pairs for n ≤ 28, and
further provided a complete enumeration of all complex Golay pairs up to n = 28.

At first it is not even obvious that a search for complex Golay pairs of order n
could be translated into SAT, since there are an infinite number of z on the unit
circle. In fact, using arithmetic circuits and other properties of complex Golay
pairs it is possible to generate a SAT instance that specifies that complex Golay
pairs exist in order n. However, in our experience these instances could only be
solved up to n = 16 before incorporating a CAS. Similar to the previous case
study we employ a divide and conquer approach and use CAS functionality in
both phases.

In the divide phase we perform a search for all possible polynomials A that
could appear as a member of a complex Golay pair. A number of properties that A
must satisfy are used as filtering criteria, the main one being that |A(z)|2 ≤ 2n
for all z on the unit circle. To test this bound we find the maximum of the
non-linear function |A(z)|2 for z on the unit circle; for example, this can be done
with the Maple command NLPSolve.

In the conquer phase we solve a SAT instance for each possible A that
was found in the dividing phase; a satisfying assignment of such an instance
will produce a B such that (A,B) form a complex Golay pair. To do this we
use the relationship NA +NB = [2n, 0, . . . , 0] where NX is the autocorrelation
of the coefficients of X. For example, NB can be computed with the Maple
command AutoCorrelation once the coefficients of B are known. An important
optimization is that most values of NB can be computed with only partial
knowledge of B; this allows one to learn shorter conflict clauses based on only a
partial assignment of the SAT instance.

5 Best matrices

We now apply our experience using MathCheck on the three case studies
described in Section 4 to a new problem, namely, the problem of finding best
matrices from combinatorial design theory. Best matrices are similar to Williamson
matrices but exist in fewer orders; in fact, if best matrices exist in order n then n
must be of the form r2 + r + 1. The best known result [25] is that best matrices
exist for all r ≤ 6 and we use MathCheck to extend this result to r ≤ 7. It is
unknown if best matrices exist for any r ≥ 8.
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5.1 Background

Let X be a square matrix of order n. Recall that X is symmetric if xi,j = xj,i
for all indices (i, j), skew if xi,j = −xj,i for all indices i 6= j, and circulant if
xi,j = xi+1,j+1 for all indices (i, j) (reduced mod n if necessary).

Four matrices A, B, C, D of order n with ±1 entries and positive diagonal
entries are best matrices if they satisfy the following three axioms:

(1) A, B, and C are skew and D is symmetric.
(2) A, B, C, and D are pairwise commutative.
(3) AAT +BBT + CCT +DDT is the scalar matrix 4nI.

An example of best matrices of order three (where “+” denotes 1 and “−”
denotes −1) are

A =

+ − +
+ + −
− + +

 B =

+ − +
+ + −
− + +

 C =

+ − +
+ + −
− + +

 D =

+ + +
+ + +
+ + +

 .
In this paper we will only consider circulant best matrices in which case condi-
tion (2) is always satisfied. Furthermore, condition (1) is easy to enforce since,
for example, once the first half of the entries in the first row are known they
uniquely determine the values of the entries in the second half. This still leaves
an enormous search space, however. Since there are (n − 1)/2 undetermined
entries in each matrix a naive brute-force search would check 24(n−1)/2 = 4n−1

quadruples—making the search space for best matrices of order 57 about a quarter
of a billion times larger than the search space for best matrices of order 43 (the
previous largest best matrices known). Nevertheless, we were successful in our
search for best matrices of order 57 by employing a number of powerful filtering
theorems and using SAT solvers to search the remaining space.

5.2 Equivalence operations

There are three operations on best matrices A, B, C, D that can be used to
produce a new equivalent set of best matrices:

1. Reorder A, B, and C in any way.
2. Apply the operation i 7→ −i mod n to the indices of the first row of A, B,

or C. (Since D is symmetric such an operation has no effect on it.)
3. Apply an automorphism of the cyclic group Zn to the indices of the first

rows of A, B, C, and D simultaneously.

Such equivalence operations are well-known [25]. The “cyclic shift” operation
is sometimes also considered an equivalence operation but we did not use it as it
generally disturbs the symmetry and anti-symmetry of the matrices.
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5.3 Divide phase

Our aim in this phase is to split the problem of finding best matrices of given
order n into subproblems such that each subproblem is easy enough to be solved
with a SAT solver (coupled with a CAS).

For concreteness we will focus on the case n = 57 and use the fact that
57 = 3 · 19 which allows us to “3-compress” the rows of best matrices to form
compressed best matrices of order 19. If X is a sequence of length 57 then its
compression X̄ is a sequence of length 19 such that its kth entry is

x̄k := xk + xk+19 + xk+2·19 for 0 ≤ k < 19.

The reason why compression is so important is because of the following property
that the compressions of best matrices must satisfy [24]:

PSDĀ(k) + PSDB̄(k) + PSDC̄(k) + PSDD̄(k) = 4 · 57 for all k. (∗)

Here PSDX̄ denotes the power spectral density of X̄ defined by

PSDX̄(k) :=

∣∣∣∣ 18∑
j=0

x̄j exp
(
2π
√
−1jk/19

)∣∣∣∣2.
Our implementation (see Section 6 for details) finds 15,178 inequivalent possible
quadruples (Ā, B̄, C̄, D̄) that satisfy the necessary relationship (∗). For each
quadruple we generate a SAT instance with the 2n− 2 variables { ai, bi, ci, di :
1 ≤ i < (n+ 1)/2 }. The remaining entries are determined via the relationships

ak = −an−k, bk = −bn−k, ck = −cn−k, dk = dn−k for k 6= 0.

For clarity we will use variables with indices greater than (n + 1)/2 with the
understanding they refer to variables in our SAT instance using these relationships.
Variables will be assigned true when they represent the entry 1 and false when
they represent the entry −1 (by abuse of notation we use the same variable
name for both but it will be clear from context if the variable is an integer or a
Boolean).

Each of the 15,178 possible compressions will specify a single independent
SAT subproblem. This is achieved by encoding the compression constraints in
conjunctive normal form. Because the sum of three ±1 entries must be ±3 or ±1
these constraints come in four forms.

The first form is when ak + ak+19 + ak+2·19 = 3. In this case, we add the
cube ak ∧ ak+19 ∧ ak+2·19 to the SAT subproblem. The second form is when
ak + ak+19 + ak+2·19 = 1. In this case, we add

(ak ∨ ak+19) ∧ (ak ∨ ak+2·19) ∧ (ak+19 ∨ ak+2·19) ∧ (¬ak ∨ ¬ak+19 ∨ ¬ak+2·19)

to the SAT subproblem. The cases with −1 and −3 are handled in the same
way with the polarity of the literals in the clauses reversed. We also add similar
clauses for the entries of B, C, and D.
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5.4 Conquer phase

Our aim in this phase is to solve the subproblems generated in the dividing phase.
To do this, we employ a SAT solver with a programmatic interface [32] that
allows it to learn conflict clauses by querying a CAS.1 The property that the
CAS checks is the uncompressed form of (∗), namely,

PSDA(k) + PSDB(k) + PSDC(k) + PSDD(k) = 4n for all k.

Note that although this condition can only be verified to hold once all entries of
A, B, C, D are known, in many cases it can be verified to not hold with only
partial information. In particular, since PSD values are non-negative we must
have the PSD criterion ∑

X∈S
PSDX(k) ≤ 4n

where S is any subset of {A,B,C,D}.
In particular, if a partial assignment specifies enough entries such that the

PSD criterion is violated then a conflict clause is learned that tells the SAT solver
to avoid that partial assignment in the future. An important optimization is to
choose S in the PSD criterion to be as small as possible. For example, if both
S = {A,B} and S = {C} violate the PSD criterion we prefer the latter because
in that case we learn a shorter conflict clause. In the latter case the learned
clause would say that at least one variable { ci : 0 ≤ i < n } has to be assigned
differently to its current assignment.

Additionally, the entries of best matrices can be shown to satisfy certain
constraints similar to constraints that Williamson matrices [74], good matri-
ces [10], and the coefficients of complex Golay pairs [15] satisfy. In the supplemen-
tary material we show that the entries of best matrices satisfy the relationship
akbkckdka2kb2kc2k = −1 for k 6= 0 (with indices reduced mod n if necessary). Be-
cause of the anti-symmetry of A, B, and C when k = n/3 the product constraint
reduces to dk = 1 and in this case can be encoded as a unit clause. In general we
encode the product constraint in SAT by breaking it up into the six constraints

x0 = akbk, x1 = x0ck, x2 = x1dk, x3 = x2a2k, x4 = x3b2k, x5 = x4c2k

with x5 = −1, where the xi are new variables. For example the first of these
constraints is represented in conjunctive normal form as

(x0 ∨ ak ∨ bk) ∧ (¬x0 ∨ ¬ak ∨ bk) ∧ (x0 ∨ ¬ak ∨ ¬bk) ∧ (¬x0 ∨ ak ∨ ¬bk)

and the others are represented similarly.

1 A programmatic SAT solver is simply a variant of DPLL(T ) and similar to a “SAT
modulo SAT” solver [5]. The key difference between programmatic SAT and DPLL(T )
is that the T solver in programmatic SAT can be specialized to individual formulas
(like an advice string in a non-uniform computation model), whereas DPLL(T ) was
envisioned with the T solver being a decision procedure for an entire theory.
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6 Implementation and results

We implemented the divide and conquer phases described in Section 5 in
our SAT+CAS system MathCheck. Our code is available from our website
uwaterloo.ca/mathcheck along with more details of our other case studies.

In the divide phase we wrote some custom C++ code to generate all possible
compressions of best matrices. This code takes advantage of the well-known fact
that the rowsums of the first rows of A, B, C must be 1 and the squared rowsum
of the first row of D must be 4n− 3 [34]. It follows that the rowsum of the first
row of D is ±(2r+ 1) where n = r2 + r+ 1. In fact, the sign of sum(D) is positive
when r ≡ 0, 1 (mod 4) and negative otherwise (see supplementary material for
details). Thus, for r = 7 we have that sum(D) = −15.

We now employ a brute-force method to find all possibilities for the first
rows of best matrices of order n. Taking into account the matrices are skew
or symmetric there are 2(n−1)/2 possibilities for each of A, B, C, and D. The
majority of possibilities have a PSD value larger than 4n and can therefore be
ignored. To further cut down on possibilities we also discard possibilities that will
lead to equivalent best matrices using the equivalence operations of Section 5.2. In
particular, we apply operation 2 to the possibilities for B and C and operation 3
to the possibilities for A.

We then 3-compress the possibilities for n = 57, finding 2748 possibilities for Ā,
24,674 possibilities for B̄ and C̄, and 7999 possibilities for D̄. These possibilities
now need to be joined into quadruples. First, using brute-force we make a list
of the possible pairs (Ā, B̄) and (C̄, D̄); we find about 12 million possibilities
for the former and 40 million possibilities for the latter. Then using the string
sorting and matching algorithm described in [51] we find all quadruples whose
PSD values sum to 4n. After this step has completed we find 91,190 possible
quadruples (Ā, B̄, C̄, D̄) of which 15,178 are inequivalent using the equivalence
operations of Section 5.2. Each of these quadruples will form one independent
subproblem (using the SAT encoding described in Section 5.3) to be solved in
the conquer phase.

For efficiency the PSD values were computed using the C library FFTW [30]
that can very efficiently compute discrete Fourier transforms. Since FFTW uses
floating-point arithmetic we would only discard possibilities whose PSD values
could be shown to be larger than 4n+ ε where ε is larger than the precision of
the fast Fourier transform that was used.

In the conquer phase we solved our SAT instances using a programmatic
version of the SAT solver MapleSAT [56]. The “callback” function was imple-
mented as described in Section 5.4 with a conflict clause being learnt whenever
enough of a partial assignment is known so that the PSD criterion can be shown
to be violated. Again for efficiency we used the C library FFTW for computing
the PSD values.

As previously mentioned the orders of best matrices must be of the form
r2 + r + 1 for r ≥ 0. The case r = 7 is currently the smallest open case and
MathCheck is successfully able to solve this case. For completeness, we apply
our method to smaller orders. Orders of the form r2 + r + 1 are prime for

https://uwaterloo.ca/mathcheck


14 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

r ∈ {1, 2, 3, 5, 6, 8} and therefore do not have a nontrivial compression factor.
Despite this, the cases r = 1, 2, 3, 4 can be be solved in under a second using
the method described in Section 5 with no compression (i.e., compression by 1).
Furthermore, the case r = 5 can be solved in about 5 seconds and the case r = 6
can be solved in about 50 minutes.

We ran the case r = 7 on a cluster of 64-bit Opteron 2.2GHz and Xeon
2.6GHz processors running CentOS 6 using compression by a factor of 3. In this
case MathCheck requires about 20 minutes to perform the dividing phase and
about 162 hours to perform the conquer phase. These times measure the total
amount of CPU time, though the conquer phase took under an hour of real time
when parallelized across 200 cores.

Three inequivalent sets of best matrices of order 57 were found in the r = 7
case. We used the Goethals–Seidel construction [35] to construct new skew
Hadamard matrices of order 4 ·57 using these best matrices and give one example
in Figure 1. (Skew Hadamard matrices of order 4·57 have long been known [65] but
these are the first ones constructed using best matrices.) Explicit representations
of the new best matrices that we constructed can be found on our website
uwaterloo.ca/mathcheck, are archived at doi.org/10.5281/zenodo.2582592,
and are available in the supplementary material.

Let Br denote the number of inequivalent sets of best matrices of order
r2 + r + 1. Our results determine the value of Br for r ≤ 7:

B0 = 1, B1 = 1, B2 = 2, B3 = 2, B4 = 7, B5 = 2, B6 = 5, B7 = 3.

The value of B7 is new, the value of B6 was found in [25], and the other values
were given in [34]. Our counts differ from those of [34] only because that work
did not use equivalence operation 2. For example, for r = 4 they find twenty-one
sets of best matrices but each of the seven sets that we found is equivalent to one
of the twenty-one previously found. The counts up to r = 5 also appear in [23,52]
but these works did not verify the counts. To our knowledge we have performed
the first published verification.

7 Conclusions and future work

We have described a “SAT+CAS” paradigm, building on DPLL(T ), that is able
to solve hard combinatorial problems that require both clever search routines (à
la SAT) and efficient procedures for complex mathematics outside the scope of
traditional SMT theory solvers (e.g., Fourier transforms in CAS). As a demon-
stration of the power and flexibility of the method we have outlined how it was
used to improve the state-of-the-art on three separate class of problems from
graph theory, number theory, and combinatorics, as well as its application to
construct new skew Hadamard matrices of order 4 · 57. The naive search space
for such an object is 257·56/2 ≈ 10480 which is totally impractical to search using
brute-force. Instead, we use a number of mathematical properties of best matrices
to greatly constrain the search space. However, it would be difficult to execute
the search using either SAT solvers or computer algebra systems in isolation:

https://uwaterloo.ca/mathcheck
https://doi.org/10.5281/zenodo.2582592
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Fig. 1. A new skew Hadamard matrix of order 4 · 57 = 228 constructed using the
Goethals–Seidel construction and best matrices of order 57. The coloured entries
represent 1, the grey entries represent −1, and each best matrix is coloured differently
to more clearly show the structure of the matrix. (The matrices B, C, and D appear
reflected in the Goethals–Seidel construction.)

SAT solvers would not be able to exploit the complex mathematical properties
and computer algebra systems would not be able to exploit the efficient search
routines of SAT solvers, by themselves.

We additionally find inspiration from the cube-and-conquer paradigm of Heule
et al. [43]. Since open problems (like finding best matrices of order 57) typically
have extremely large search spaces they are usually not easy to solve using a
sequential SAT solver. To deal with this we developed a method of dividing
instances into multiple independent subproblems. In particular, we divide the
search for best matrices of order 57 into 15,178 subproblems such that each
subproblem can be solved in about a minute using a SAT solver augmented with
a domain-specific method of generating conflicts.

Heule, Kullmann, and Marek [42] point out that there are essentially three
kinds of solvers that are currently used for solving large combinatorial problems:
special-purpose solvers, constraint satisfaction solvers, and SAT solvers. We
believe that SAT+CAS solvers have now proven themselves as an effective way
of introducing the reasoning of special-purpose solvers and computer algebra
systems into SAT solving for hard problems from many areas of mathematics.
Going forward, we expect that SAT+CAS solvers will become essential for solving
the largest combinatorial problems that incorporate sophisticated mathematical
properties. For example, [42] points out that searching for finite projective planes
(a special kind of combinatorial design) has currently only been done using
special-purpose solvers. These kinds of problems are ripe for attack using the
SAT+CAS paradigm.
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The SAT+CAS Method for Combinatorial Search
with Applications to Best Matrices

Supplementary Material

Let A, B, C, D be a set of circulant best matrices of order n = r2 + r + 1
(note that n must be odd). As described in Section 6 the rowsums of the first
rows of A, B, C are 1 and the rowsum of the first row of D is ±(2r + 1) where
the sign of sum(D) is positive when r ≡ 0, 1 (mod 4) and negative otherwise.

Proof. Since the matrix A is skew we have ai + an−i = 0 for i 6= 0. Thus

sum(A) = a0 +

(n−1)/2∑
i=1

(ai + an−i) = 1

and similarly for B and C. Taking the relationship AAT +BBT +CCT +DDT =
4nI and multiplying by the row vector of ones (on the left) and the column vector
of ones (on the right) we obtain

sum(A)2 + sum(B)2 + sum(C)2 + sum(D)2 = 4n

and therefore sum(D)2 = 4n − 3 = (2r + 1)2 and sum(D) = s(2r + 1) where
s = ±1.

Since D is symmetric and 2di ≡ 2 (mod 4)

sum(D) = 1 + 2

(n−1)/2∑
i=1

di ≡ n (mod 4).

Therefore r2 + r + 1 ≡ s(2r + 1) (mod 4). Since

r2 + r + 1 ≡ (−1)b(r+1)/2c (mod 4) and 2r + 1 ≡ (−1)r (mod 4)

we have s = 1 when r ≡ 0, 1 (mod 4) and s = −1 otherwise. ut

As described in Section 5.4 we have that the entries of these matrices satisfy
the relationship

akbkckdka2kb2kc2k = −1

for k 6= 0 (with indices reduced mod n if necessary).

Proof. We can equivalently consider circulant best matrices to be polynomials
given by the generating function of the entries of their first rows. In this formula-
tion A, B, C, D are polynomials with ±1 coefficients and of degree n− 1 that
satisfy

A(x)A(x−1) +B(x)B(x−1) + C(x)C(x−1) +D(x)D(x−1) = 4n (1)



in the ideal generated by xn − 1 (all computations will take place in this ideal).
Let A+ denote the polynomial containing the terms of A with positive

coefficients and let |A+| denote the number of terms in A+. Then A = 2A+ − T

where T (x) :=
∑n−1

i=0 xi. Since xiT = T we have A+T = |A+|T and T 2 = nT .
Since A is anti-symmetric (i.e., A(x) + A(x−1) = 2) we have A(1) = 1 and

|A+| = (T (1) +A(1))/2 = (n+ 1)/2. Furthermore,

A(x)A(x−1) = 2A−A2

= 2(2A+ − T )− (2A+ − T )2

= 4A+ − 4A2
+ − (2T − 4|A+|T + nT )

= 4A+ − 4A2
+ + nT (2)

and similarly for B and C.
Since D is symmetric (i.e., D(x) = D(x−1)) we have

D(x)D(x−1) = (2D+ − T )2 = 4D2
+ + (n− 4|D+|)T. (3)

By the symmetry of D we have D = 1 + 2
∑(n−1)/2

i=1 dix
i and thus |D+| is odd.

Equating (1)–(3) and dividing by four we have

A+ −A2
+ +B+ −B2

+ + C+ − C2
+ +D2

+ + (n− |D+|)T = n. (4)

Since A+ =
∑

ai=1 x
i we have A2

+ ≡
∑

ai=1 x
2i (mod 2) and (4) reduces to∑

ai=1

(x2i + xi) +
∑
bi=1

(x2i + xi) +
∑
ci=1

(x2i + xi) +
∑
di=1

x2i ≡ 1 (mod 2)

since both n and |D+| are odd.
Since n is odd the congruence i ≡ 2y (mod n) has exactly one solution

0 ≤ y < n for each 0 ≤ i < n. Denoting this solution by i/2 we have∑
ai/2=1

xi+
∑
ai=1

xi+
∑

bi/2=1

xi+
∑
bi=1

xi+
∑

ci/2=1

xi+
∑
ci=1

xi+
∑
di=1

x2i ≡ 1 (mod 2).

In other words, we have that the number of entries in {ai/2, ai, bi/2, bi, ci/2, ci, di/2}
that are positive is 1 (mod 2) for i = 0 and 0 (mod 2) for i 6= 0. Letting k = i/2
for i 6= 0 this means aka2kbkb2kckc2kdk = −1 as required. ut



Fig. 1. A new skew Hadamard matrix of order 4 · 57 constructed using best matrices of
order 57 with the following first rows:

+--++------+-++++-+-+--+--++-+--++-++-+-+----+-++++++--++
+-+-++++-++--++-+--+---+-+-+-+-+-+-+++-++-+--++--+----+-+
++-++-+--+---++--+++----+---+-+++-++++---++--+++-++-+--+-
+---+------++-----+++----++++++++----+++-----++------+---



Fig. 2. A new skew Hadamard matrix of order 4 · 57 constructed using best matrices of
order 57 with the following first rows:

++-+-+---+-++-++-----+-------+++++++-+++++--+--+-+++-+-+-
+-++-+-+-----++-+++--+++--+--++-++---++---+--+++++-+-+--+
+---++---+-++++-+-++--+-+++-+-+---+-++--+-+----+-+++--+++
+---++------+----+++--+--+-++++-+--+--+++----+------++---



Fig. 3. A new skew Hadamard matrix of order 4 · 57 constructed using best matrices of
order 57 with the following first rows:

++----+------++--++-+--+---+-+-+++-++-+--++--++++++-++++-
+--+-+-+--+-++----++--++++++-+------++--++++--+-++-+-+-++
++-+--++++++---++-++----+-+-+-+-+-++++--+--+++------++-+-
+---++++--+-+---+--++------+--+------++--+---+-+--++++---
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