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Abstract
Machine-readable specifications for the Armv8 instruction set architecture have become publicly
available as part of Arm’s release processes, providing an official and unambiguous source of truth
for the semantics of Arm instructions. To date, compiler and machine code verification efforts
have made use of unofficial theorem-proving-friendly specifications of Armv8, e.g. CakeML uses an
L3-based specification. The validity of these verification efforts hinges upon their unofficial ISA
specifications being valid with respect to the official Arm specification.

Leveraging the Sail language ecosystem, we bridge this validation gap by formally verifying that
an L3-based specification simulates the official Arm specification using the HOL4 interactive theorem
prover. We exercise this simulation by proving a novel compiler correctness result for CakeML with
respect to Arm’s official specification of the Armv8.6 A-class instruction set.
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1 Introduction

Rigorously verifying the behaviour of software requires faithful modelling of the hardware
on which it runs. Instruction set architectures (ISAs) provide a convenient abstraction of
hardware behaviour: if hardware manufacturers ensure a processor adheres to the ISA it
implements, it can be viewed by software as a machine that executes exactly the specification
of that ISA.

Instruction set specifications have been used in a wide range of theorem proving projects [3,
9, 11,18,25,29,32,40,52,54,55], and much work has gone into using DSLs for the rigorous
engineering of accurate ISA specifications [1,15,45]. Specifications of the Armv8 architecture
are available in three such DSLs: L3 [15], ASL [44], and Sail [2]. ASL emerged in 2011,
building on the pseudocode language used in Arm documentation since the late 1990s. L3 and
Sail were conceived in academia concurrently, with differing objectives; L3 was implemented
in 2011 ahead of Sail.

Though superficially similar, these three languages have distinct design goals:
L3 supports interactive theorem proving, so all L3 specifications can be reliably extracted
to valid HOL4 and Isabelle/HOL, producing tractable and useable (idiomatic) definitions.
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ASL is developed within Arm, with broad design objectives (Section 2). Fully-automated
verification and testing are prioritised (model-checking, SMT verification, and simulation).
Arm-internal processes produce ASL specifications for Arm ISAs and subject them to
rigorous internal testing to ensure full architecture compliance [43, 44, 53]. They are then
released publicly, allowing users to examine and even run them.
Sail was initially designed for use in concurrency tools, but it is now one-size-fits-all: it
supports many ISAs, and diverse extraction targets such as theorem proving (interactive
and automated), symbolic evaluation, simulation, and documentation. It is therefore
more ambitious and featureful than both ASL and L3, with a significant ecosystem of
tools. Conversely, it is less directly connected to theorem proving backends than L3.

Sail’s ecosystem includes an ASL frontend to translate official ASL specifications into Sail,
and a HOL4 backend to translate Sail specifications into HOL4. Put together, these provide
a pathway from official ASL specifications to HOL4.

The HOL4 specification of Armv8 derived from this process is one of the largest (488
kLoC) and most complicated known ISA specifications in a theorem prover, matched only by
other specifications produced from official Arm ASL via Sail.

However, the extensive Arm-internal validation of ASL specifications provides the closest
approximation to ground truth for semantics of the Arm ISA. To the best of our knowledge,
there is currently no way to obtain a more faithful Armv8 specification in an interactive
theorem prover.

Therefore, we prove once and for all that the L3 Armv8 specification simulates the ASL-
derived one, allowing verification efforts to enjoy the ease-of-use of the former while retaining
the faithful modelling of the latter. Future work can avoid navigating the complexity of the
ASL-derived specification, and other users of the L3 specification benefit from its validation
against official ASL. We demonstrate our approach by using this simulation result to prove a
novel compiler correctness theorem for the CakeML compiler.

Contributions

We make the following contributions:
We demonstrate that official Armv8 ISA specifications can be used as reference semantics
in interactive proof, through translation to HOL4 via Sail (Section 3) and interactive
abstraction to a more theorem-prover-friendly specification.
We validate the L3 specification for Armv8 by proving it simulates the ASL-derived
specification (Section 4.4). Previously this specification had not been rigorously validated.
We leverage these two results to prove the first compiler correctness result with respect to
an official Arm ISA specification (Section 5).

Our work is open-source and has been integrated into the HOL4 and CakeML public reposit-
ories for future re-use.

This paper also addresses a number of questions about the HOL4 specification of Armv8
derived from ASL via Sail:

How does it differ from the L3-derived specification? (Section 4.2)
How useable are its semantics of instructions within the theorem prover? (Section 4.3)
What can be said about its trustworthiness, particularly in comparison to the L3 specific-
ation? (Section 6)
How could we better adapt it for use in the theorem prover? (Section 6)
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2 Background

This paper draws together prior research and industrial work on architecture specification
languages: DSLs used to define behaviours of ISAs.

ISAs are extremely complex, so their documentation is sizeable — running into thousands
of pages and covering topics such as: processor state (operating mode, registers, and memory);
instruction encoding, semantics, and assembly syntax; memory models, memory protection
(virtualisation), memory attributes, and caching; synchronisation and semaphores; debug,
trace, and monitoring; interrupts, timers, and exceptions.

Although machine-readable ISA specifications cannot cover all aspects of ISAs compre-
hensively, they can provide a working reference semantics for machine code. There are many
benefits to using machine-readable specifications, including:

Avoidance of ambiguities and errors detected by parsing and type-checking;
Robust validation paths through simulation-based testing;
Formal verification of processor designs through model-checking [21,53,55];
Support for other formal modelling and verification activities, such as work on memory
and concurrency models [12,13,22,42], architecture security [5,8,40,54], OS and hypervisor
verification [6,23,24,28,30], compiler and runtime verification [29,34,36,37], and machine
code verification [3, 16,19,31].

The domain of architecture specification lends itself to first-order, imperative languages
with some common features. Scattered functions define each of their clauses separately:
encoding, decoding, and execution behaviour of a particular instruction can be grouped
together, enhancing readability and modularity. Strong typing enables early error-detection,
and type inference reduces the need for type annotations.

ASL. ASL is the Arm-internal architecture specification language. Its initial objective was
to reduce errors in the informal pseudocode found in Arm documentation by providing parsing
and type-checking [45,50]. The language has since evolved and is now in extensive use within
Arm. Its type system supports lightweight dependent typing: bit vector widths can depend
on values, but bounds-safe bit vector accesses are not enforced. A built-in “undefined” value
models architecturally unknown values, and an exception-handling mechanism streamlines
specification of error cases.

Sail. The Sail language [2] and ecosystem is actively developed by the Rigorous Engineering
of Mainstream Systems (REMS) project. The language effectively supports a superset of ASL
to permit automatic translation from ASL [1]. A type-and-effect system ensures memory
and register accesses are visible at the type level, and the lightweight dependent types of
Sail are more expressive than those of ASL. In particular, bit vector accesses are statically
bounds-checked, necessitating a flow-sensitive type system: bit vector width constraints are
propagated according to program flow and discharged by the Z3 SMT solver.

Sail’s ecosystem provides toolchains to translate from ASL to Sail, and from Sail to
specifications in Coq and Lem, executable simulators in OCaml and C, and SMT formats.
Lem in turn is a lightweight language for engineering reusable semantic models, inspired by
both functional programming languages and proof assistants [33, 41]. Its ecosystem provides
translations to HOL4 and Isabelle/HOL, amongst others.

L3. L3 [15] is designed to manage the complexity of writing ISA specifications for use in
theorem provers: previous work constructed verbose specifications directly in HOL4 [14, 17].
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L3 targets HOL4 and Isabelle/HOL directly (rather than via Lem), and has a simpler type
system than ASL and Sail, supporting bit vector width restrictions on declared function
arguments only. This tight coupling with its backends produces streamlined definitions.

L3’s extensive automation minimises the effort of specification-writing and maximises
usability within its prover backends. Key features include: prioritisation of abstract syntax
for instructions; simultaneous declaration of instruction syntax, encoding, and semantics;
symmetric syntax for register reads/writes; and extensibly declarable architectural state.

Unofficial L3 specifications have been produced for many different architectures: Armv4
through to Armv8 (the latter AArch64 mode only), MIPS, x86 (core 64-bit mode instructions
only), and RISC-V. The Armv7 specification in particular has been extensively validated
against Arm hardware. To keep generated prover specifications idiomatic, L3 Arm specifica-
tions re-factor official ASL ones in certain key areas, e.g. preferring bit vectors to integers,
sharing common logic where possible, and manually defining efficient instruction decoders.

3 Generating a HOL4 specification for Armv8

Our first step in proving against a HOL4 specification of Armv8 is to generate the specification
from official ASL. We rely on the Sail ecosystem, but its design choices have important
implications for the resulting specification. In this section we review the extraction process
in more depth to aid reproducibility and better inform the rest of the paper. Our generated
HOL4 specification is available in a public repository.

The Sail ecosystem is under active development, and we believe we are the first to use a
Sail-generated ISA specification for interactive proof in HOL4. The diagram below depicts
the pipeline for translation from ASL to HOL4. At present, the process requires some manual
intervention, and we are indebted to the Sail developers for helping navigate this space. We
examine each stage in turn in the upcoming subsections.

ASL Sail Lem HOL4asl_to_sail
Section 3.1

sail -lem
Section 3.2

lem -hol
Section 3.3

3.1 ASL to Sail
The tool asl_to_sail1 translates ASL specifications into Sail. It relies on ASLi (“ASL
interpreter”) [46] for parsing and type-checking of ASL. The MRA tools collection [47] can
be used to extract the input ASL from public, XML-format specifications released by Arm.
However, we simply use an ASL specification provided by Arm.

As Sail can be considered a superset of ASL, the translation is relatively naïve. Some
optimisations are made, e.g. mutable assignments are turned into immutable let-bindings
where possible. However, Sail’s richer type system does not accept all ASL programs, so a
degree of interactive patching is required. In these cases, asl_to_sail halts to request a
patch, displaying the original ASL, generated Sail, and the failed typing derivation. The
changes required are often straightforward restrictions to permit inference of tighter typing
constraints. For example, lifting subexpressions to immutable let-bindings, or specialising
type signatures with effect annotations or bit vector width restrictions. However, Sail’s
type derivation output can be difficult to understand without in-depth knowledge of the
typechecker.

1 https://github.com/rems-project/asl_to_sail

https://github.com/HOL-Theorem-Prover/armv8.6-asl-snapshot
https://github.com/rems-project/asl_to_sail
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We are grateful to Arm Limited and the Sail developers for providing an Armv8.6 A-class
ASL specification and the necessary patches to translate it.

3.2 Sail to Lem
Translation from Sail to Lem is more involved: Lem mirrors its HOL4 and Isabelle/HOL
backends, so imperative must become functional, and lightweight dependent types must
become simple types. We highlight some key aspects of the translation here.

State/exception/non-determinism monad. Sail ships with hand-written Lem libraries
encapsulating its built-in types and operations, building on the libraries that ship with Lem
itself. These include the implementation of a monad designed to represent imperative, effectful
Sail code. During translation, Sail specifications are converted to A-normal form to make
explicit the calculation of intermediate values, and embedded into a state/exception/non-
determinism monad of the following type (where σ is the state type, α the return type, and
ϵ the exception type), with standard return, bind, and exception-handling operators:

M α ϵ σ
def= σ −→ P (Result α ϵ× σ) Result α ϵ ::= Value α | Ex ϵ .

Non-determinism is modelled by using a set of possible outputs, rather than a single one.
Imperative early-return statements are modelled by extending the exception type to a sum,
and throwing the early-return value as an exception. The sum type distinguishes between
early-return “exceptions” and actual exceptions. All early-return functions are then wrapped
with a monadic operator which embeds them back into the original monad.

Data representation. Users can choose to represent bit vectors as lists of three-value logic
“trits” or machine-words from default Lem libraries. The Lem libraries for Sail define a
typeclass for bit vectors, with trit-list and machine-word instantiations allowing easy switching
between the two. There is a key trade-off here: trit-lists are a simpler extraction target,
but require extra reasoning about bit vector widths (i.e. list lengths); machine-words have
type-backed widths but require further processing (see below) to target Lem’s simply-typed
setting. We use the machine-word representation: this has stronger library support and more
efficient call-by-value evaluation procedures within HOL4.

Sail can refer to registers by reference, so its Lem libraries define a typeclass for register
references. Each register is defined by an instance of this typeclass, containing a canonical
name and functions to read from/write to the register in the processor state.

Monomorphisation. Sail functions over bit vectors can be both dependently-typed and
polymorphic, which is incompatible with Lem’s simple types. Arm specifications make heavy
use of assertions and case splits on bit widths, producing many dependently-typed functions.

Sail attempts to partially monomorphise such functions: each call-site of the function
could in theory produce a width-specialised definition in Lem. The approach is inspired
partly by prior work translating ASL to Verilog [48]: case splits are introduced until bit vector
widths can remain constant throughout a function, and constant propagation determines
these widths. Full monomorphisation is not required as Lem permits polymorphism over
bit vector widths (functions over bit vectors can be width-agnostic). If a function can
be case-split to maintain consistent bit widths over each case, the various cases can be
recombined into a single polymorphic definition. Bit vector extension operations are inserted
as necessary to cast types without changing values, and type signatures are simplified until
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Lem-compatible. Bit vector slicing operations, which rely heavily on dependent typing, are
converted into masking operations wherever possible.

For example, consider a Sail function which accepts any bit vector of width divisible
by 8, and returns its length in bytes (of type forall ’n. bits(’n * 8) -> int). Mono-
morphisation could produce multiple versions of this function, each with a type specialised
to its call-site argument (e.g. of types bits({8,16,32}) -> int). However since each spe-
cialised version treats the input bit vector uniformly, a single polymorphic definition (of
type α word → int) suffices. Note that the resulting function accepts bit vectors of widths
not divisible by 8, where the original Sail function does not. However, Sail’s typechecking
guarantees it will never receive such inputs.

This monomorphisation pass can fail, or produce invalid Lem. While Sail remains under
active development, the class of specifications which translate error-free is a moving target.

Other code transformations. Scattered functions are collected into single, monolithic
functions, with clauses ordered by appearance. Each function clause may be guarded in Sail,
so the guards are converted to if-statements.

Both ASL and Sail support an “undefined” built-in, used extensively in Arm specifications
to model architecturally unknown values. Lem must explicitly implement this built-in: for
each declared type in a specification, Sail automatically generates a function to produce the
corresponding undefined value.

Sail unrolls recursive functions whose recursion depth can be determined, removing the
need for some termination proofs in theorem prover backends. Users can also manually tweak
parts of a specification by providing alternative function implementations to splice in. We
make use of this splicing feature to modify our specification (Section 4.1).

3.3 Lem to HOL4
Lem straightforwardly translates to HOL4, though the raw specifications are not human-
friendly until parsed/pretty-printed by HOL4: all expressions are type-annotated and fully-
bracketed. HOL4 libraries for Sail are automatically translated from the corresponding Lem
libraries, and Lem’s simple typeclasses are represented as record types.

Some manual intervention is required for well-foundedness checking: Lem automatically
generates simple well-foundedness proofs, but some Sail library functions are well-founded for
non-trivial reasons. However, naïve definitions for pure and monadic while-looping constructs
are not well-founded. We have redefined these functions correctly, deriving theorems showing
their behaviour is as originally intended.

We also corrected a minor HOL4 usability issue when working with this substantial
specification. We introduced a syntax for let-declarations within monads to enable clear
printing of definitions which mix monadic and pure assignments. This permitted interactive
inspection of the translated specification.

4 Using the specification for semantics of machine code

We now consider our verification work with respect to the detailed specification we have
generated from official ASL. Several previous efforts have used such specifications to prove
architectural properties [8, 40, 54, 55]. Instead, we use our HOL4 specification as a semantics
for Arm machine code. In particular, we are interested in proofs of semantics preservation,
equating the semantics of Arm machine code programs with those of other programs (likely
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in another language). This is exactly the class of proofs for which L3 and its unofficial
specifications were designed.

In this section we modify our specification to adapt it to this goal (Section 4.1), before
examining the result more closely (Sections 4.2 and 4.3). Finally, we use an L3 specification to
simulate our ASL-derived one, allowing re-use of L3 machinery to reason about ASL-derived
semantics of Arm machine code (Section 4.4).

4.1 Modifications to the specification
During translation from ASL to HOL4, we make a number of modifications to our specification.
Both original and modified HOL4 models are available in a public repository. We justify
our changes here, omitting one minor modification irrelevant to our presentation, that is,
disabling a testing harness.

Monad types. We remove the set-based non-determinism from the state/exception/non-
determinism monad (Section 3.2), preferring to use HOL4’s Hilbert choice operator to express
unknown values. This is more idiomatic, and streamlines interactive proof.

More precisely, set-based non-determinism is not compatible with symbolic evaluation.
For example, an undefined 64-bit bit vector in Sail is translated to a set of all 264 possible
64-bit bit vectors in HOL4, which is intractable to evaluate. To generate undefined values
for enumerated types, Sail libraries create an undefined bit-list of appropriate length and
cast it to a natural number, which indexes into a list of all possible elements of the type.
This too is more cleanly expressed as a Hilbert choice.

We must be careful with manual changes in a high-fidelity specification. However, our
modifications are conservative: we change only the monad implementation in the hand-written
Lem libraries for Sail. This gives us confidence in their validity.

Address translation. Address translation is a detail orthogonal to many proofs of semantics
preservation: if we assume it is correctly implemented, we can view it as a simple map which
abstracts physical memory to virtual memory. This is in keeping with L3 specifications and
other specifications modelling the semantics of machine code [11,56].

We therefore stub out address translation functions to express an identity mapping
between virtual and physical memory. However, in Armv8 AArch64 virtual addresses are
64-bit and physical addresses up to 52-bit. Sail’s user-splicing feature (Section 3.2) cannot
modify types, so we manually modify the specification to convert the type of physical
addresses. Again, we keep changes conservative to maintain trust in the specification: we are
guided entirely by the Sail typechecker.

4.2 Examining the specification
Table 1 shows metrics taken throughout the extraction processes of L3 and ASL specifications
to HOL4. The difference here is clear — to the best of our knowledge, the ASL-derived HOL4
specification is one of the most complex, unwieldy specifications to be used in interactive
proof. Other points of comparison include the 0.59 × 106 character Sail specification of
RISC-V [2] (3.6×106 characters in raw HOL4), and the 1.7×106 character ACL2 specification
of x86 [20]. We examine these stark differences in more depth.

Why is the ASL specification so much larger than its peers?
It covers more of its intended ISA, modelling most modes/instruction sets, where other

https://github.com/HOL-Theorem-Prover/armv8.6-asl-snapshot
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Table 1 Metrics for the extraction processes of L3 and ASL specifications via the L3 and Sail
ecosystems respectively. Character counts in HOL4 are shown both as extracted (raw) and after
pretty-printing to 80 columns. Timings taken using Intel® Xeon® E-2186G and 64 GB RAM.

Original No. non-whitespace characters / 106 Size / kLoC Total time HOL4
specification Source Sail Lem Raw HOL4 HOL4 Source Raw HOL4 to extract build time

L3 0.053 - - 0.20 0.070 2.4 8.5 1 s < 30 s
ASL 4.2 7.4 19.9 26.7 12.2 168 488 ∼ 2 hrs ∼ 3 hrs

specifications tend to formalise a particular mode of operation. For example: the L3
specification covers only AArch64 mode, and also omits vector (SIMD) and floating-point
instructions; until recently [10] the ACL2 specification of x86 only covered 64-bit mode. L3
specifications model mostly user-level code, omitting most system registers/instructions.

ASL specifications have differing goals to their peers: primarily they provide documenta-
tion, focussing on thoroughness rather than simplicity. Other efforts focus on verification:
conciseness and usability are primary goals. For example, the ASL specification defines IEEE
floating-point semantics from scratch to ensure faithful behaviour, whereas other efforts
outsource to libraries.

Why does extraction to HOL4 bloat the ASL specification?
Representing sequential, imperative code monadically adds considerable bloat due to

conversion to A-normal form and instrumentation with explicit monadic operations. Instead,
L3 keeps definitions pure wherever possible (looping constructs remain monadic).

Various translation artefacts are verbose, for example: succinct bit vector slicing in Sail
is often converted to masking; Sail’s undefined built-in primitive must be implemented for
each declared type; registers passed by reference in Sail require explicit definitions in HOL4.

L3 couples tightly with prover backends, using relatively simple types and HOL-flavoured
constructs to provide an extremely sophisticated syntactic sugar for higher-order logic. Sail
is more general-purpose, and not well-optimised for use with HOL4: bit-vector built-ins must
be realised in libraries, and these often re-implement HOL4 operations unnecessarily and
non-idiomatically (for example, see Example 1).

Why are extraction and build times so long for the ASL pipeline?
Naturally, a significantly larger specification takes longer to extract and build. However,

the increase is not proportional to size alone.
The ASL specification must be type-checked multiple times during extraction: in ASL, in

Sail, and in Lem. Monomorphisation is a complex process, and lightweight dependent types
in ASL/Sail necessitate heavy use of Z3 to discharge constraints.

Sail produces concrete HOL4 syntax via Lem, which must be parsed and type-checked in
HOL4. Instead, L3 produces ML constructors which stitch together its definitions. Larger
definitions built from Sail’s scattered functions are particularly slow, including the decoder.
By contrast, L3’s decoder is manually defined to minimise its footprint; it tests opcodes in an
order which avoids ambiguities from overlapping opcode spaces. The ASL-derived decoder is
forced to implement additional machinery to disambiguate opcodes instead.

4.3 Working with the specification
We can now evaluate the practicality of our ASL-derived specification for interactive proofs
of semantics preservation. Unfortunately, there are some significant obstacles.
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▶ Example 1.

l3_HighestSetBit x def=
if x = 0w then −1
else w2i (word_log2 x)

asl_HighestSetBit x def=
catch_early_returnS
(let

loop_i_lower = 0;
loop_i_upper = n2i (word_len x) − 1

in
do

foreachS (index_list loop_i_upper loop_i_lower (−1)) ()
(λ i unit_var .

if vec_of_bits [access_vec_dec x i] = 1w then
early_returnS i

else returnS ());
returnS (−1)

od)

Opaqueness to inspection and interaction. The ASL-derived specification does not im-
plement an AST for Arm instructions, in contrast to the L3 specification. Users must work
directly with opcodes or manually define an AST.

Non-idiomatic data manipulations and explicit monadic operations obfuscate high-level
semantics. These are awkward and tedious in interactive proofs, which must step over each
monadic operation. L3 instead prefers HOL4’s let-declarations, mostly removing monadic
sequencing.

Monolithic HOL4 functions coalesced from ASL’s scattered functions are unwieldy, e.g.
the 23 kLoC decoding/execution function DecodeA64 (for which each instruction implements
a clause). Examining the semantics of a particular instruction is therefore challenging.

ASL specifications and Sail libraries use many auxiliary functions: many steps of definition
expansion are required to examine or use intended semantics.

Opaqueness to automated evaluation. Non-idiomatic bit vector operations have poor
evaluation support in HOL4, often re-implementing functionality in libraries shipped with
HOL4. Some operations even convert machine-word operands to bit-lists, perform operations
on bit-lists, and convert back. In these cases, permeative book-keeping of list lengths com-
plicates reasoning. Integers are used throughout even when known to be positive, despite
the comparative ease-of-use of natural numbers.

Consider the L3-derived (left) and ASL-derived (right) HOL4 definitions in Example 1,
which determine the index of the highest set bit of input bit vector x. The L3-derived
definition uses HOL4 library definitions to convert the base-2 logarithm of the input word to
an integer (w2i). The ASL-derived definition is more computational: it examines each bit
from high to low, returning early if any is set. However, this intended definition is obfuscated:
the early return necessitates embedding within the Sail monad and use of early-return
monadic operations (catch_early_returnS, early_returnS); explicit monadic operations are used
for looping and sequencing (made more palatable here by do notation); integer loop variables
are used over natural numbers (n2i casts from natural to integer); custom bit vector operations
from Sail libraries are used (vec_of_bits and access_vec_dec). The definitions of these last
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▶ Definition 2.

l3_models_asl opcode def=
Decode opcode ̸= Unallocated ∧
∀ l3 asl l3 ′.

state_rel l3 asl ∧ asl_sys_regs_ok asl ∧ Run (Decode opcode) l3 = l3 ′ ∧
l3 ′.exception = NoException ⇒
∃ v asl ′.

ExecA64 opcode asl = (Value v,asl ′) ∧ state_rel l3 ′ asl ′ ∧
asl_sys_regs_ok asl ′

l3_models_asl_instr instr def=
∃ opcode. Encode instr = ARM8 opcode ∧ l3_models_asl opcode

operations involve a large number of auxiliary functions: they convert x to a list of booleans,
access the boolean at index i, and use it to create a 1-bit bit vector. This re-implements
HOL4’s well-supported bit vector access operation. This small example exemplifies the
increased complexity which pervades the ASL-derived specification.

4.4 Simulation between L3 and ASL-derived specifications

Definition 2 expresses our simulation relation, l3_models_asl, a predicate on the AST for
instructions defined by the L3 specification. The instruction should successfully encode (using
the L3-specified Encode) to produce a 32-bit opcode. Given L3 and ASL-derived machine
states related by state_rel, if the L3 specification can decode and run (Run (Decode opcode)) the
opcode without failure, the ASL-derived specification should also run (ExecA64) it successfully,
both producing resultant states that remain related by state_rel. In addition, the predicate
asl_sys_regs_ok should hold of the ASL-derived state throughout.

Note that we rely on L3 machinery: its AST for instructions and its encoder. These are
orthogonal to the semantics of instructions, but use of an AST is well-suited to interactive
proof and makes it simpler to carve out classes of opcodes. We have already noted that the
ASL-derived specification does not provide such an AST or encoder.

The state equality relation state_rel is effectively a simple inclusion: the ASL-derived
specification models strictly more registers and processor state than the L3 one, so state_rel
asserts that the specifications agree on the parts modelled by both. We omit the full
definition, which is verbose due to differences between the two specifications. In particular,
L3 machine states (l3 ) are concise records, with clean access to registers, e.g. l3 .PC is the
program counter. Instead, ASL-derived states (asl) group registers together by their types,
e.g. asl.regstate.bitvector_64_dec_reg of type string → word64 models all simple 64-bit system
registers. The sheer number of registers forces this unusual approach: HOL4 struggles to
cope with very large records in which each register is declared separately, so they must be
grouped. Register references (reg) are used to index into these groups: these records contain
a canonical name (reg.name), and read-from/write-to functions (reg.read_from, reg.write_to).
For example, PC_ref.read_from asl.regstate reads the program counter. This is equivalent to
asl.regstate.bitvector_64_dec_reg “_PC”.

We also explore a few subtleties that arise.
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The L3 specification models Armv8.0, whereas the ASL-derived specification models
Armv8.6. Though this is a “minor” version difference, there are observable effects, e.g. certain
system control registers are 32-bit in L3 but 64-bit in ASL. In Armv8.0, these registers
were 64-bit with their upper 32 bits reserved, so only their lower 32 bits required modelling.
However, ASL faithfully models all 64 bits regardless.

The L3 specification represents memory cleanly as a total function from addresses to
bytes (word64 → word8). However, the ASL-derived specification models memory as a finite
mapping from natural numbers to trit-lists (num 7→ trit list), each intended to represent
a byte. It also models per-address validity tags (num 7→ trit). We impose restrictions on
ASL-derived memory to ensure we can equate it to L3-derived memory: its domain must
be exactly the natural numbers representable by 64-bit words; its range must contain only
bit-lists (i.e. no “unknown” trits) of length 8; all addresses must have a valid tag.

To model Arm’s 31 general-purpose registers and zero register, the L3 specification uses
a total mapping from 5-bit words (word5 → word64). The ASL specification instead uses a
list of registers (word64 list). To access the register n, it takes the nth index of the list. We
must require the list to have length of exactly 32.

The predicate asl_sys_regs_ok is necessary as L3 specifications model mostly user-level
operation, omitting most system registers. We fix certain bits of these registers in the
ASL-derived specification to ensure it models a processor in a similar mode of operation. We
omit its definition here, but refer readers to our proofs and the Arm Architecture Reference
Manual for a full account. Overall, we fix 11 bits of various system registers, and clear one
memory-mapped register. This disables optional features not modelled in L3, such as secure
modes for low exception levels and hypervisors.

Due to a versioning difference, four of these bits are in the tcr_el{1,2,3} registers
which are also modelled in L3. A feature implementing pointer authentication codes (PACs)
was made compulsory in Armv8.3 onward, supporting authentication of addresses stored
in registers before targeting them for a branch or load. Fixing these bits in the Armv8.6
modelled by ASL aligns behaviour more to the Armv8.0 modelled by L3.

Proving the simulation

Establishing simulation for a particular instruction effectively requires execution of the
instruction on both specifications. We leverage pre-existing automation to execute the L3
specification effectively. However, the difficulties detailed in Section 4.3 complicate execution
of the ASL-derived specification.

We adopt a partial, symbolic evaluation strategy to bypass decoding, which examines
only known bits of opcodes (i.e. those that distinguish it from other classes of opcode). More
precisely, we use HOL4’s customisable call-by-value computation library to bypass the large,
monolithic ExecA64 (a wrapper around the overall instruction decoding/execution function,
DecodeA64). Once this has advanced the proof to the instruction-specific execution functions
to which ExecA64 calls, we proceed by interactive proof.

We use the L3 specification heavily to provide abstract representations of auxiliary
functions, avoiding unwrapping definitions and making case splits. For example, for the
definitions in Example 1, we prove the following theorem for any 7-bit bit vector w:

⊢ asl_HighestSetBit w = returnS (l3_HighestSetBit w).
A notable sub-proof relates the L3 and ASL-derived implementations of DecodeBitMasks,

used in decoding to resolve immediate fields. Its 90 LoC ASL implementation is obfuscated
by its optimised implementation, but a comment block asserts an equivalent 7 LoC definition.



12 Taming an Authoritative Armv8 ISA Specification

The L3 specification uses the shorter definition, so we must prove the asserted equivalence:
we split up the large function into more manageable chunks, proving more presentable,
manually-defined specifications for each by brute force enumeration of inputs.

In total, we prove l3_models_asl for the following instruction classes, requiring 7.5 kLoC of
proof and 0.5 kLoC of simple automation (∼40 mins to build, limited by symbolic evaluation).

Instruction class description Assembly shorthands

move wide operations movk, movn, movz
bit field moves bfm, sbfm, ubfm

logical operations∗† and[s], bic[s], eon, eor, orn, orr
addition/subtraction∗† add[s], sub[s]

addition/subtraction with carry adc[s], sbc[s]
division sdiv, udiv

multiply with addition/subtraction madd, msub
multiply high smulh, umulh

conditional compare∗ ccmn, ccmp
conditional select csel, csinc, csinv, csneg

branch immediate (call/jump) b, bl
conditional branches b.cond

branch register (jump) br
register extract extr

address calculation adr, adrp
byte/register loads/stores∗‡ ld[u]r, ld[u]r[s]b, st[u]r, st[u]rb

Our reliance on the existing L3 specification keeps the proofs tractable, and no unexpected
discrepancies were found in its semantics or encoder (we do encounter a known issue, see
Section 8). All of our definitions and proofs thus far are self-contained, and not tied to any
particular usage of our ASL-derived specification. To aid re-use in future work, they have
been integrated into the HOL4 public repository.

5 Case study: compiler correctness in CakeML

Verification efforts such as CakeML and seL4 build correctness guarantees down to hardware
by using unofficial L3 specifications of ISAs as a reference semantics. Equipped with our
ASL-derived HOL4 specification (Section 3) and simulation proofs (Section 4.4), we can
strengthen assurances in these results. We demonstrate our approach by proving a new
compiler correctness result for CakeML (Section 5.2), targeting our ASL-derived specification.

What is CakeML? CakeML [27, 35] is a formally-specified language, end-to-end verified
compiler, and proof ecosystem built using HOL4. The compiler is proved to preserve
semantics: any valid input program is compiled to machine code with the same behaviour.
The core of the project is a proof-producing translation from HOL4 to CakeML: input HOL4
functions are translated to output CakeML abstract syntax, and an accompanying proof that
the output semantics models the input HOL4 function [38]. The compiler is bootstrapped by
first translating the HOL4 compiler function to CakeML, then evaluating the HOL4 compiler
on the output CakeML within the HOL4 logic. This produces a binary which is verified to
implement the original HOL4 compiler algorithm.

∗ For immediate operands.
† For shifted register operands.
‡ Scaled 12-bit unsigned immediate offset and unscaled 9-bit signed immediate offset addressing modes.

https://github.com/HOL-Theorem-Prover/HOL/pull/981
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5.1 Target correctness proofs in CakeML
CakeML targets x86-64, Armv7, Armv8 (AArch64), RISC-V, MIPS, and Silver (a custom
ISA for a verified processor [32]), proving compiler correctness with respect to specifications
for each. These are all L3-derived, but we are concerned with Armv8 AArch64.

Both the compiler and its proofs are carefully structured to remain as target-agnostic
as possible, reducing the implementation burden and proof obligation of supporting a new
target. The following design decisions are made [18].

The compiler produces generic assembly instructions known as Asm, which are embedded
in its final intermediate language (LabLang). Defining an encoding to a new target
requires a simple translation from this generic assembly.
The compiler implementation is parametric over a target-specific configuration record,
known as a “compiler configuration”. For example, this record defines: an encoder from
Asm, the registers useable in register allocation, classes of supported operations, and
restrictions on valid immediate values. Compiling to a new target requires definition of
an appropriate compiler configuration.
Compiler correctness proofs use a generic form of target semantics (machine_semantics),
parametrised by another kind of target-specific record known as a “machine configura-
tion”. All target-specific requirements of the proof are factored out into a precondition
(target_configs_ok). Proving correctness for a new target requires definition of its machine
configuration and discharging of the precondition.
We re-use the L3 encoder from the existing Armv8 backend. Therefore, to instantiate the

generic compiler correctness theorem we must define a compiler_config and machine_config,
and establish the precondition target_configs_ok compiler_config machine_config.

Machine configurations (mc) define exactly the features of a target necessary to define
machine_semantics. This generic semantics models interference from the surrounding execution
environment by allowing the environment to change a subset of target state arbitrarily
between instructions and on FFI calls. Important fields include: a function to execute
a single step (mc.target.next); accessors of registers, the program counter, and memory
(mc.target.get_{reg,pc,byte}); information about the calling convention (mc.callee_saved_regs);
a well-formedness predicate on target state (mc.target.state_ok); and a projection out of
target state (mc.target.proj). This projection is the subset of target state which must not be
modified by the surrounding execution environment, i.e. mc.target.proj is always the same
both before and after external interference.

A proof of target_configs_ok establishes some simple initialisation conditions, and the key
property encoder_correct mc.target. We omit a full definition, but intuitively: given an Asm
state, an Asm instruction which will successfully retire, and an equivalent target state with
the encoded Asm instruction in memory (using mc.config.encode), the target should be able to
execute some number of steps successfully (according to mc.target.next) and end up in a state
equivalent to the resulting Asm state. Note that a single Asm instruction may be encoded
to a sequence of target opcodes, so multiple execution steps may be necessary. The property
accounts for the surrounding environment by permitting interference by a function satisfying
interference_ok (i.e. the interference must preserve mc.target.proj). Target states must further
satisfy mc.target.state_ok throughout. We omit details concerning program counters of the
encoded instructions in memory, which must not be overwritten during execution.

Proving encoder_correct effectively requires running Asm and target state machines side-
by-side. Therefore, proofs rely heavily on symbolic evaluation within HOL4, using L3-enabled
automation to repeatedly apply mc.target.next and re-establish mc.target.state_ok after each
step and its associated interference.
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▶ Theorem 3.

⊢ mem instr (asm_to_arm8 prog) ∧
(∀ s. Encode instr ̸= BadCode s) ⇒
l3_models_asl_instr instr

▶ Definition 4.

NextASL def=
do

write_regS BranchTaken_ref F;
pc ← PC_read ();
instr ← Mem_read0 pc 4 AccType_IFETCH;
ExecA64 instr ;
branch_taken ← read_regS BranchTaken_ref;
if branch_taken then returnS ()
else
do pc ← PC_read (); PC_set (pc + 4w) od

od

5.2 Lifting simulation to compiler correctness
We first prove Theorem 3: l3_models_asl (Definition 2) holds for any encodeable instruction
produced by the CakeML compilation to Armv8 via Asm.

We then define a machine configuration (Section 5.1) for the ASL-derived specification,
which largely mirrors the existing one for the L3 specification. It additionally enforces
asl_sys_regs_ok (extending the state projection mc.target.proj to be sure that interference
cannot break it), and ensures that memory and registers are well-formed (Section 4.4).

We must also define a next-step function (mc.target.next). Though the ASL specification
provides a function TopLevel, this covers unwanted extraneous details, such as processor
interrupts and memory-mapped devices. Instead we define NextASL (Definition 4), essentially
TopLevel with the complexity stripped away. NextASL clears the branch-taken flag, reads the
program counter, fetches the next opcode, and executes the opcode. The program counter is
then updated only if no branch has been taken.

The bulk of the proof-effort is establishing encoder_correct. Interference from the sur-
rounding execution environment prevents us from re-using the theorem proved for the L3
specification. We would require once and for all a transformation from interference with
ASL-derived target states (satisfying interference_ok) to interference with L3 target states,
such that the transformation preserves state_rel (to allow use of our simulation proofs). We
cannot express this transformation: interference on ASL-derived specifications has a larger
input space than that on L3 specifications, due to processor state not modelled in L3.

Instead, we run three state machines side-by-side: Asm, L3, and ASL-derived. We re-use
pre-existing automation for the L3 specification to symbolically evaluate each opcode, giving
a resultant L3 state, and then use Theorem 3 to produce a resultant ASL-derived state.
This undergoes interference, breaking state_rel. We then interfere with the L3 state in a way
which satisfies interference_ok and re-establishes state_rel between the resultant states. We
repeat the process for as many opcodes as necessary for each Asm instruction encoding.

Overall, we produce Theorem 5, our top-level compiler correctness proof (mostly mechan-
ical, 3.2 kLoC, ∼15 mins to build). A program with non-failing source semantics is compiled
and installed in the memory of an appropriate asl_state. The resulting machine will have
a machine_semantics which is a subset of the original source_semantics. We omit irrelevant
details concerning CakeML’s FFI model and extend_with_resource_limit. The latter extends
source behaviours with out-of-memory errors: unlike source semantics, machine semantics is
bounded by finite memory. This proof has been integrated into the CakeML public repository.

https://github.com/CakeML/cakeml/pull/858
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▶ Theorem 5.

⊢ Fail /∈ source_semantics ffi program ∧
compile arm8_compiler_config program = Some compiled ∧
asl_machine_config_ok machine_config ∧
program_in_memory arm8_compiler_config machine_config compiled asl_state ⇒
machine_semantics machine_config ffi asl_state ⊆
extend_with_resource_limit (source_semantics ffi program)

6 Discussion

We now consider our findings: what can we learn from our verification?

Trustworthiness of our specifications. The ASL specification cannot cover all aspects of
its ISA, instead providing a working reference. When considering more complex features,
such as concurrency and interrupts, it remains an abstraction of the authoritative detail of
the Arm Reference Manual. However, even if a complete, machine-readable specification
existed, proofs of semantics preservation with respect to it would be intractable without
the abstractions. The ASL specifications and our work are a best-effort, modelling as much
detail as currently feasible. Other proof goals (such as architecture security properties) may
require different levels of detail.

Our root of trust is the extensive Arm-internal evaluation of the ASL specification, but
extraction via Sail could introduce unintended semantic changes. Validating the generated
HOL4 against Arm test suites or real hardware could improve trust (Sail’s C backend has
been tested in this way), but proving that the extraction preserves semantics is better still.
This would be a significant undertaking, and require formal models of (at least) ASL and Sail.
There has been some work into such models for both ASL (from personal communication)
and Sail [4]. Note that both Sail and Lem have been validated through heavy usage. For
example, Sail-extracted ASL models have successfully been used to simulate a Linux boot,
and the Lem ecosystem is well-exercised. However, Sail’s HOL4 backend has received limited
prior usage, so our work better validates this pathway too.

Our simulation proofs (Section 4.4) allow each specification to improve trust in the other.
The L3 and ASL-derived specifications differ in their derivations considerably, yet are formally
connected by our work. Therefore, any bugs found in one must be found in the other, and the
low likelihood of this strengthens assurances in both. Previously, the L3 Armv8 specification
had not been rigorously validated due to the scarcity of Armv8 hardware when it was written.
By contrast, the L3 Armv7 specification was tested extensively against real hardware.

Even so, we strengthen trust in a single L3 specification, and a single extraction pathway
via Sail. There are many such specifications that can be generated, via different extraction
options, versioning differences, choices in manual modification, and so on.

Absence of bugs. We discovered no new bugs in the L3 specification semantics or encoder
(we encountered one known issue, see Section 8), despite the differing provenances of the L3 and
ASL-derived specifications. This validates the approach of formalising a specification by using
a DSL (L3) which can closely mirror it. However, the absence of bugs is surprising given that
the ASL-derived specification covers implementation-defined behaviour and architecturally
unknown values.
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A partial explanation is our restricted domain of proofs of semantics preservation: we
verify general-purpose instructions targeted by compilers, which avoid ambiguity to ensure
portability. As a verified compiler, CakeML targets an even smaller subset of instructions.

Removal of address translation and interrupts (Sections 4.1 and 4.4 respectively) further
reduces ambiguity significantly. We also do not tackle exception-handling, assuming that
instructions retire without failure in the L3 specification (Definition 2, Section 4.4).

Furthermore, Arm intentionally reduced underspecification in Armv8 (compared to
Armv7). For example: in Armv7 the program counter is a general-purpose register (r15)
which can be modified unexpectedly by programmers; in Armv8 there is no direct access to
the program counter. Architecturally unknown values are also mostly used as placeholders
for variables which are declared and only later initialised.

The need for L3. We build our results on existing, unmodified tools: an ASL specification
and the Sail ecosystem. Neither is designed for interactive theorem proving, so we use a
purpose-built L3 specification as a stepping stone in proof. Instead, could we obviate the
need for this indirection by adapting the tools to our domain?

One approach is to change the official ASL specification, though this would require
support from Arm. Stylistic refactoring could reduce overly imperative code (e.g. Example 1).
Logical refactoring has recently streamlined address translation, and could be applied to
other parts of the specification. Forbidding early-return statements could reduce embedding
of otherwise pure functions into the monad, but this is a significant language change.
Alternatively ASL-to-ASL transformations before translation to Sail could achieve similar
effects, without compromising our root of trust: the resultant ASL can be subjected to the
Arm-internal test suite. Semantics-preserving transformations are already used in Arm to
produce model-checking-friendly Verilog (from personal communication).

Another approach is to strengthen Sail’s extraction to HOL4, taking inspiration from
L3. Streamlining of Sail libraries for HOL4 is a first step. Extraction would also need to
produce an AST for instructions. The challenge here is reproducing L3’s ease of use: its AST
is handcrafted for theorem proving (i.e. split into instruction classes for convenience and to
avoid scaling issues with HOL4 types). However, Sail’s extraction must be automatic and
target-agnostic. Design choices made here will suit different domains, for example the AST
could mirror assembly syntax or reference manual structure. A direct translation from ASL
or Sail to HOL4 (cutting out Lem) could also streamline the extraction process and more
closely target HOL4, but this is a significant undertaking.

Direct proof without L3 would also require new proof automation. This is because
verification with respect to the L3 Armv8 specification relies heavily on its step library:
concise Hoare triples which provide tractable, rule-based instruction semantics in interactive
proof by explicitly stating conditions for well-definedness. No such library exists for the
ASL-derived specification, but several have been painstakingly handcrafted for various other
specifications. Automatic generation of certified step libraries using symbolic evaluation and
symbolic execution [7] is a promising approach. A key challenge will be navigating the large,
monolithic decoding/execution functions.

Though we have identified some promising avenues to verification without L3, none
provides a magic bullet and taken together they represent a significant body of work. As
industrial specifications of the scale of Armv8 become more prevalent, such engineering issues
will be critical. We note that despite HOL4’s veteran status amongst interactive theorem
provers, its customisable simplifier, call-by-value evaluation, and highly accessible Standard
ML metaprogramming make it an ideal candidate for work on such substantial specifications.
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7 Future work

Removing the precondition to Theorem 3 is a clear next step, perhaps complicated by further
incompatibilities between the L3 specification’s Armv8.0 and the ASL-derived specification’s
Armv8.6. Upgrading the L3 to Armv8.6 and modelling a greater subset of the ISA could
help. Notably, AArch32 and floating point instructions are not modelled and so remain
unsupported by CakeML on Armv8. Connecting ASL floating point definitions with HOL4
libraries would be a significant challenge here.

The seL4 [25,26] verified operating system microkernel uses a translation validation [57]
phase to extend its guarantees to the binary on Armv7. An L3 specification provides the
semantics for Armv7, but using an ASL-derived specification instead would strengthen the
result. However, seL4 would need to be updated to target Armv8 first.

A more faithful account of address translation would improve trust in our work. We could
take inspiration from the Sail developers, who prove in Isabelle/HOL that address translation
adheres to a hand-written specification under certain conditions [2]. Recent simplifications
to Arm’s ASL specification of address translation may help here.

8 Related work

Applications of the Sail toolchain. Isla [3] is an SMT solver-based symbolic execution
engine for Sail, producing simplified, per-opcode instruction execution traces derived from
user-supplied constraints on machine state. Islaris [56] builds on this by formalising the
traces in Coq and building a separation logic for reasoning about their semantics, using
automation to simplify proofs considerably. Our clear common aim is to derive simplified
machine code semantics from the complex ASL-derived specifications, using the desired
domain to constrain semantics appropriately. Islaris’ domain is machine code verification, so
it relies on an external SMT solver on a per-opcode basis to provide sufficient automation.
Our domain of semantics preservation instead allows us to abstract once and for all within
the prover.

Sail is integral in key security proofs with respect to Morello, the Arm implementation of
the Capability Hardware Enhanced RISC Instructions (CHERI) ISA [5, 40]. CHERI extends
conventional ISAs with new features enabling memory protection, defending against many
memory-based security exploits [58, 59]. The Isabelle/HOL proof (with some SMT solver
oracles for bit vector operations) is complex, requiring hours to build with considerable
computing power. For such security properties, monadic representation of specifications may
be useful. In our case it obfuscates the high-level semantics of the instruction.

Validation of ISA specifications. The Provably Secure Execution Platforms for Embedded
Systems (PROSPER) project has created Scam-V [39], an automatic validator for ISA
specifications. It searches for pairs of executions which behave identically according to the
specification, but are distinguishable on hardware via some observation. If such a pair exists,
the specification has failed to model an observable side-channel correctly.

Scam-V has uncovered a bug in the L3 specification of Armv8: the compare and branch
on non-zero instruction (cbnz) incorrectly behaves like the compare and branch on zero
instruction (cbz). We have replicated this finding in a failed attempt to prove l3_models_asl
for cbnz. Furthermore, we have validated a corrected specification of cbnz by successfully
establishing l3_models_asl for it. Note that the CakeML compiler does not produce cbnz
instructions, so our CakeML proofs are unaffected.
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Verified compilation to hardware. Erbsen et al. [11] have verified an application on a
realistic embedded stack which includes a C-based language, verified compiler, and verified
processor (the Kami [9] verified implementation of RISC-V). Their goals contrast with ours:
they focus on a complete result down to a specific processor, prioritising clean verification
across interfaces and realistic I/O. However, we must remain processor-agnostic and so are
forced to verify against an ISA specification only.

Verification with respect to the Arm architecture. Official Arm ISA specifications have
been used within Arm to establish architectural properties below the ISA abstraction
boundary. These efforts use automated techniques (SMT solving and bounded model-
checking) to suit their problem domain and their setting in industry.

ISA-Formal [49,55] uses bounded model-checking to verify that Arm ISA implementations
adhere to their intended specification. The project translates ASL specifications to reference
Verilog implementations [51], comparing these to the actual implementation using an off-the-
shelf bounded model-checker. Failures are output as counterexamples.

Secure-M [54] produces key security properties for the Arm M-class specification, using
an automated SMT solver to verify they hold. It provides a more rigorous alternative
to code review and testing for architecture modifications, focussing on whole-specification
properties for continuous integration testing. There is also some support for developer-stated
assertion-checking. A future goal is to prove that successive versions of specifications preserve
necessary backwards-compatibility.

9 Conclusion

To the best of our knowledge, we have produced the first compiler correctness proof which is
backed by an official specification of an Arm ISA. Our proof is made tractable by the use of an
existing L3 specification to abstract away the complexity of the official ASL. This approach
validates the L3 specification more rigorously, and we report no new bugs uncovered. Our
work remains decoupled from CakeML for re-use in future verification efforts, and has been
incorporated in the HOL4 and CakeML public repositories.

Throughout we have kept in mind the issue of trustworthiness. Our work strengthens
assurances not only in CakeML, but also in other projects relying on the L3 specification
of Armv8. We have reproduced results from the Sail ecosystem and further validated its
extraction process. Furthermore, we have demonstrated a novel application of the Sail
ecosystem to proofs of semantic preservation.
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