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Abstract—In a complex task environment in which team 

behavior emerges and evolves, team agility is one of the primary 

determinants of a team’s success. Agility is considered an 

emergent phenomenon in which lower-level system elements 

interact to adapt to the dynamic environment. One of the 

dimensions of team agility is interactive decision-making. In this 

study, we conceptually model individual team members’ 

interactive decision-making process for their taskwork; we 

observe how much the choices of one team member depend on 

antecedent decisions and the behavior of other team members. 

This also helps us understand how team members synchronize 

during the decision-making process in agile teams, especially when 

team members team up with a machine. To improve the 

understanding of interactive decision-making, we propose two 

modeling techniques: (1) quantum cognition for the taskwork 

decision-making processes and (2) nonlinear dynamical systems 

modeling for teamwork processes. 

Keywords— AI, Human-Machine Teaming, Decision Making, 

Nonlinear Dynamical Systems, Quantum Cognition, Team agility 

I. INTRODUCTION 

Ever since the Industrial Revolution, advancements in 

machines have been a driving force in the achievement of 

scientific milestones, from conventional automation to 

autonomy. As Isaac Asimov indicated, technological evolution 

is faster than biological evolution, but it has been slow until this 

century [1]. With recent advancements in machine learning and 

artificial intelligence (AI; [2]), highly autonomous machines 

(“autonomy” hereafter) now function more as a teammate 

instead of an optimization tool in various dynamic task 

environments, such as in human-synthetic teams in remotely 

piloted aircraft systems [3], in human-robot teams in urban 

search and rescue [4], or in marine operations [5]. Human-

Machine Teams (HMTs) are concomitantly characterized by 

human and autonomous members with distinct roles working 

together for a common goal or task. To be considered part of a 

team, the machine must participate either by serving as 

interactive external repositories of information or as executors 

and mediators between members [6]. But even if autonomy can 

now be considered a teammate, HMTs may still not be agile 

enough to adapt to dynamic tasks.  

Agility is an emergent phenomenon in which lower-level 

system elements (e.g., team members) interact to adapt to a 

dynamic environment [7]. Therefore, understanding complex 

adaptive team behavior is critical to the design of agile HMTs. 

For instance, interactions among team members (i.e., 

communication and coordination) are a dimension of team 

agility that is crucial for good team performance in a dynamic 

task environment [8]. The relationship of complex team 

interactive behaviors with team performance has been studied 

in different dynamic task environments, including 

communication [9], coordination [10], and trust [11]. Another 

dimension of team agility is interactive decision-making, which 

is defined as “a process where team members consult one 

another and make their final decision [regarding their task] 

alone” [12, p. 306]. In other words, this process forces team 

members to explain their choices and think about those they 

have not considered before; in turn, they make decisions to 

maintain teamwork.   

This paper conceptually outlines the role of interactive 

decision-making for HMT agility. We discuss an experiment 

that used a machine as a team member who communicated and 

coordinated with human counterparts. Our results identify 

empirical findings that we believe can advance the design of 

HMTs and team interactions therein. We follow this with a 

framework that can aid in identifying what interactive decision-

making means in the context of agility in HMTs, and how to 

empirically study interactive decision-making in agile HMTs. 

II. LITERATURE 

A. Team Agility: Exploration and Exploitation 

In complex task environments in which team behaviors 

emerge, team agility is one of the primary determinants of a 

team’s success. Based on the findings of a previous study [10], 

we define team agility as a team’s capability to remain flexible 

in facing a task’s inherent dynamism by adjusting team 

behavior continuously and developing new ones (e.g., 

coordination) to adapt to unpredictable changes in the task 

environment. This capability is not only a response to a major 

disruption; it also implies that a team is consistently able to 

projectively change its course of action to sustain its 

performance [10]. Team agility has three common themes. 

Firstly, team agility involves a set of actions taken by a team 

that operates in an environment characterized by rapid and 

unpredictable change, i.e., agile teams can successfully adapt to 

this disruptive environment. Secondly, team agility requires 

changes that are different from routine changes, i.e., the 

changes that result from team agility are specified as 

continuous, systematic variations in a team’s perception, 

comprehension, and projection. The intensity and variety of ONR Award N000141712382 and ONR-NPS N00244-18-S-NPS-F001 
partially support this research. 
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these changes are high; thus, agile teams demonstrate complex 

adaptive behavior. Finally, rapid information gathering is 

critical to gleaning the environmental changes that might 

require agile-adaptive behavior, i.e., team agility requires team-

level situation awareness to maintain adaptiveness. 

A salient characteristic of team agility is that it comprises 

exploration and exploitation in a continuum of team cognitive 

processes. Exploration involves the pursuit of new information, 

while exploitation involves using resources that are already 

known [13, p. 105]. Exploration, and in turn agility, is 

associated with the team’s knowledge base. Together, these 

processes form a loop that departs from established modes of 

coordination between team members. For example, team 

members coordinate in established ways (exploitation) and then 

shift to a new mode of coordination (exploration) to respond to 

unexpected events promptly. Agile exploration, in other words, 

involves seeking a solution to a novel situation by increasing 

the flexibility of established team coordination. Exploratory 

team interactions have previously been defined as any unique 

interaction in light of a team’s collective history [14]. 

Therefore, they are characterized by how signals and feedback 

are explored in a novel situation in an exploitation-exploration 

process, consistent with a team’s tendency to transition from 

exploitation to exploration, and vice versa, over time. 

B. Team Interaction 

Team communication occurs between team members 

regardless of their proximity to one another and can be 

asynchronous or synchronous and face-to-face [15], but 

generally rely on linguistic components over nonverbal cues 

[16]. In contrast, cross-species teams (e.g., human-canine 

teams), while having been previously identified as an analog to 

HMTs, normally do not use natural language as a means of 

communication beyond one-word commands [17]. Cross-

species communication is simply “an interchange of 

meaning”—a transfer of a significant concept, but not “an 

interchange of language,” spoken or written, making it a largely 

nonlinguistic system of communication [18]. Animals and 

humans understand each other through social cues and social 

signals (e.g., eye movements, gestures, body language, tone of 

voice, and demeanor). But because animals are very limited and 

task-dependent; if the task is too complex, the challenge is to 

simplify these cues and signals such that cross-species 

communication between team members will not impair the 

dynamic task. Simple changes in a signal or a cue can allude to 

an entirely different meaning. Hence, human-canine team 

interaction is indeed an analog to HMT interaction—but it is 

not sufficient to provide good synchrony between human and 

machine teammates in a highly dynamic environment. Natural 

Language Processing systems allow AI to be better suited to 

more linguistic forms of communication. Therefore, good HMT 

design should make use of this by incorporating interchanges 

of meaning and language, in contrast, to solely relying on the 

exchange of meaning for human-animal teams.  

C. Interactive Decision Making and Situation Awareness 

Team communication and coordination are dynamic 

interaction constructs in HMTs and are both factors and 

manifestations of another cognitive construct: interactive 

decision making, which is a process of identifying and choosing 

alternatives in interactive tasks. This activity also involves 

other cognitive aspects, such as theory of mind, social 

cognition, and goal-directed behaviors [19]. Team interactions 

allow team members to develop coherent rationales and 

opinions from other team members regarding a team task, but 

because they make their final decisions individually, they can 

either use or ignore the information they collect during team 

interaction. In other words, interacting team members make 

choices that favor their taskwork over teamwork because of 

their common goal. Related to team agility, interactive 

decision-making also depends on exploitation and exploration 

in team coordination. From the definitions of exploration and 

exploitation, interactive decision-making as a process is thus 

affected by contextual changes, i.e., cost and benefit in the 

context of routine and novel conditions. Team members need 

to choose either established or new forms of coordination with 

other team members to be agile, and in turn, maintain a 

desirable level of performance. Thus, team agility is a 

quality/measure of interactive decision making 

Determining the best combination and sequence of 

cognitive capabilities towards maintaining team performance 

can be explained through Endsley’s three-level framework for 

situation awareness [20]. Level 1 situation awareness 

comprises the perception of data elements and cues in the 

environment. At Level 1, the cognitive systems of machines can 

be superior to human cognitive systems due to limitations in the 

latter’s processing capacity of individual environmental 

elements. For this reason, agile HMT behavior should leverage 

the cognitive systems of machines as a primary information 

perception system, relegating that of humans to a support role. 

Level 2 situation awareness is the cognitive systems’ 

comprehension of the current situation based on Level 1 

elements. This is the level in which the gleaned contextuality is 

imposed upon Level 1 elements. Since human cognitive 

systems are better adapted to context-sensitive environments 

compared to cognitive machine systems, the former should be 

the primary basis for agile team behavior. Furthermore, the 

contextual quirks of the situation are gleaned upon by the 

human mind, and thus Level 2 mental models for team 

members may be augmented with quantum cognition models so 

that order and interference effects will not impede agile team 

behavior. Level 3 situation awareness is defined as the 

projection of the future status of the system. In complex 

situations, the projection of the future status of the system is 

still highly context-dependent. Therefore, the evolution of a 

team’s situational awareness of the situation and its associated 

mental models becomes of paramount importance, projecting 

the future status of shared mental models [21], both at the team 

and individual level, for agile team behavior.  

In this study, we model team members’ interactive decision-

making process for taskwork; we observe how much the 

choices of one member depend on antecedent decisions and the 

behavior of other team members. This also helps us understand 

how agile HMT members synchronize during decision-making.   



III. CURRENT STUDY 

A. Simulated RPAS Task Environment and Team Interaction 

The experiment took place in the Remotely Piloted Aircraft 

System-Synthetic Task Environment (RPAS-STE) testbed, 

which emulates the individual and team cognitive activities that 

occur in an RPAS ground station. The  RPAS-STE comprises 

three heterogeneous and interdependent task roles ([22]). The 

goal of this task was to take good photos of target waypoints 

while navigating the RPA along a safe route. Timing and content 

of communication were important for the teams to succeed. In 

this study, the pilot role was either an ACT-R based cognitive 

model or a randomly selected participant, or an “AI” teammate 

that was simulated by a trained confederate using a “Wizard of 

Oz” methodology (WoZ) [23]. The AI’s capabilities were 

limited in verbal comprehension, production, and piloting 

behaviors for this experiment. The confederate followed a script 

that indicated when and what to communicate throughout the 

task and described behaviors for controlling the flight of the 

RPA. Pilot behaviors were generally limited to the script.   

 

 
 

 

 

 

Fig. 1. (a) Team coordination sequence: (I)nformation–(N)egotiation–

(F)eedback; and (b) the intrinsic geometry coordination score, Kappa (𝜅). 

 

In the RPAS team task, team coordination comprises three 

key communication events at each target waypoint, which 

happen in the following optimal coordination sequence (Fig. 

1(a) [24]): (1) information (I) is given by the navigator to the 

pilot about the target waypoints of the mission (i.e., altitude, 

speed restrictions, and effective radius), (2) negotiation (N) 

occurs between the pilot and photographer regarding camera 

settings, airspeed, and altitude at the target, and (3) feedback (F) 

is given by the photographer to the pilot and navigator about 

whether the photograph taken at the target is acceptable. As 

team members interact, the variability in their repeated use of 

this sequence (specifically, the relationship between the timing 

of each of the three parts of the sequence) was used to compute 

a coordination score for each team at each target waypoint. 

Assuming that INF is the principal axes of the procedural 

model, a geometry-based measure of coordination was created 

(Fig. 1 (b) [24]). These axes are related by a variable (𝜅) , 

computed by normalizing the area around feedback at every 

target to develop a distribution over the intrinsic procedural 

model geometry. It is unitless because all three constituent parts 

are measured in seconds, and these units cancel the computation 

of 𝜅 . It also contains two qualitatively different states: 

uncoordinated (𝜅 < 1) and coordinated (𝜅 > 1) with a transition 

point at 𝜅 = 1 HMT differentiates the two. In uncoordinated 

teams, either N precedes I, or F precedes either I, N, both. When 

N occurs before I, this indicates that there is a backlog of 

information. On the other hand, in well-coordinated teams, I, N, 

and F occur in accordance with the procedural model, with 

larger values of 𝜅 indicating that the I component is established 

well in advance of the target approach [10]. 

IV. INTERACTIVE DECISION MAKING IN RPAS ROLES 

Interactive decision-making across the RPAS roles varies in 

terms of the level of complexity of the decision-making 

structure. We divided each role’s interactive decision-making 

process into the three-level situation awareness model [20]. 

Across all three roles, the teamwork-related indicators (i.e., 

altitude, airspeed, and current and next waypoint-related 

information) play an important role in facilitating transparency 

in team tasks, primarily for the pilot’s task role. Controlling the 

teamwork-related indicators is the pilot’s task based on the 

interaction with the other roles. At the individual level, we 

model each individual’s situation awareness based on their 

taskwork. Then we discuss how to quantify only the navigator’s 

taskwork ontic uncertainty via a quantum cognition model 

because of the page limit. In Fig. 2, taskwork and teamwork-

related indicators are demonstrated for each task role. 

Accordingly, each role focuses on their taskwork: the navigator 

to the waypoint map, the pilot to the route and fuel, and the 

photographer to the camera settings and photo log. However, 

all three team members monitor the teamwork-related 

indicators regarding the current and next waypoint.   

 
Fig. 2. Teamwork and taskwork indicators across the three roles. Teamwork: 

altitude, airspeed, and current and next waypoints’ information). Taskwork: 

navigator (map and waypoint list), pilot (course deviation, fuel, air flaps, and 

gears), and photographer (camera and camera settings). 

t(I) = Information sent time 

t(N) = Negotiation sent time 

t(F) = Feedback sent time 

  



Fig. 3 categorizes each task role’s situation awareness 

regarding perception, comprehension, and projection. In terms 

of INF coordination sequence, comprehension plays an 

important role in relating to the perception and projection stages 

of the navigator’s task because sending information about the 

target waypoint happens during the task comprehension. 

However, considering the only comprehension and ignoring 

perception and projection is insufficient in understanding the 

individual level of the task. Since we argue that agility is the 

capability of having and developing multiple ways of 

coordination to adapt to the dynamic task environments while 

preserving the team performance, the integrity of the team 

structure must be monitored when a perturbation occurs. These 

perturbations increase the uncertainty of the system, which 

necessitates changes in team member situation awareness. Due 

to the interdependence between team members, any change in 

situation can engender incongruent shared understanding (i.e., 

situation awareness). For instance, when the navigator looks at 

the map and finds the relevant waypoints based on the colors 

and notices a message expressing disagreement from the pilot; 

the pilot disagrees with the navigator, the ensuing disagreement 

at the perception level permeates situation awareness at the 

comprehension level and gives rise to uncertainty. 

 
Fig. 3. Situation awareness across three task roles. 

V. MODELING INTERACTIVE DECISION MAKING IN RPAS 

TASK CONTEXT 

To improve the understanding of interactive decision-

making in the experimental context, we propose two modeling 

techniques: (1) quantum cognition for taskwork decision-

making processes to discern the effects of ontic uncertainty for 

each individual and (2) nonlinear dynamical systems modeling 

teamwork to capture epistemic uncertainty.  

A. Quantum Cognition 

Quantum models of cognition can ameliorate the 

understanding of interactive team cognition [25] when a 

situation involves interference effects. Consider the mentioned 

case in which the navigator finds the relevant waypoints based 

on colors on the map and notices a disagreeing message from 

the pilot. Suppose that the navigator needs to make a binary 

decision in this situation: yes (1) or no (0). Fig. 4 shows two 

different scenarios that can take place for the comprehension 

and projection levels of situation awareness in this case; the 

premise in this discussion is that the navigator considers their 

other teammates’ possible decisions to comprehend and project 

the level-1 SA elements. The process of projection, in this case, 

can occur in two ways. First, the navigator can consider the 

pilot’s possible decisions–yes (1) or no (0)– and then the 

photographer’s; the second way is that the navigator can think 

about the photographer’s possible decision first, then the pilot’s 

next. During comprehension and projection, to project a yes (1) 

decision, the navigator can follow four different paths in both 

scenarios, shown in Fig. 4. 

For example, the navigator can comprehend and project a 

yes (1) decision by considering the condition in which the 

pilot’s possible decision is yes (1), and the photographer’s 

possible decision is no (0); solid lines in Fig. 4a represent this 

decision path. Due to interference effects, the navigator may 

have varying probabilistic outcomes in complex situations 

depending on the followed path, thus experiencing intrinsic 

(ontic) uncertainty. Interference effects can be observed if the 

followed path is unknown, i.e., the navigator does not interact 

with any of the team members. Since interactive team cognition 

theory [25] implies that decision paths are made known via 

interactions, it can explain the effects thereof on team 

efficiency. However, to ameliorate human-centered design, 

interactive team cognition needs more comprehensive models.  

 
Fig. 4. Level of situation awareness for the navigator. Both figures show the 

comprehension and projection levels after perception elements occur. 

Comprehension and projection parts depict possible thought processes while 

the navigator thinks about A (pilot) and B (photographer) decisions. The 

difference between (a) and (b) is in the order of thought processes in 

comprehension and projection. Each scenario consists of four possible paths to 

decide yes (1). 

A Hilbert space representation of the comprehension and 

projection levels of SA, during which the navigator does not 

interact, is shown in Fig. 5. Fig. 5 describes one of the decision 

paths shown in Fig. 4a, in which the navigator first considers 

the others’ perspectives in the following order: pilot (yes) → 

photographer (no) → navigator (yes).  The three perspectives 

shown in Fig. 5 can become incompatible in complex 

situations, from which interference effects can arise. Complex 

situations are the time constraint situations in which the 

decision-maker can not form a complete understanding of the 



situation, e.g., can not think about the events simultaneously. 

One way to increase team agility by reducing interference 

effects may be through direct communication about 

perspectives between team members instead of leaving 

teammates’ perspectives to unspoken guesses. Alternatively, 

this can also be done through another approach: the quantum 

cognition concept of entanglement. This form of entanglement 

emerges when team members are trained together, such that a 

composite team perspective could emerge. Such a perspective 

cannot be decomposed into individual perspectives (i.e., 

“simple”). Having entangled states has distinct effects on the 

uncertainty, entropy, and probabilistic understanding of 

decision processes. Fig. 5 (b) shows that an entangled team 

perspective is a distinct “other” perspective.  

  
Fig. 5. (a) Hilbert space representation of comprehension and projection levels 

of situation awareness. There are three perspectives in this representation. The 

blue solid line perspective is the navigator’s perspective; the green dotted (pilot) 

and red dashed (photographer) perspectives represent the others’ perspectives 

in the navigator’s cognitive system; (b) Hilbert space representation of 

navigator perspective and entangled team perspective. 

An implication of having a non-composite entangled team 

perspective is that during the comprehension and projection 

levels of SA, in which there is no explicit communication or 

interaction, interference effects can be accounted for to 

preserve the integrity of team performance. For example, the 

complicated possible multiple decision paths in Fig. 4 can be 

minimized and simplified, as shown in Fig. 6. Another 

implication of accounting for entangled states is that team 

situation awareness can more easily be modeled as a function 

of time [9]; taskwork decision processes can then be modeled 

probabilistically. This allows for an analysis of team structure 

concomitant with both quantum cognition and nonlinear 

dynamical systems modeling techniques. 

 
Fig. 6. Comprehension and projection levels of entangled team SA. 

B. Nonlinear Dynamical Systems Modeling 

We visualize the characterization of three teams’ 

coordination dynamics by applying attractor reconstruction on 

к score time series at the team level [24], [26]. This is followed 

by stability analysis (Lyapunov exponents) for each 

coordination order parameter к at the team level. In attractor 

reconstruction visualization, based on Taken’s theorem [27], 

one can recover a system’s dynamical structure (i.e., 

reconstruct the attractor) from a one-dimensional signal (in this 

study, this signal is the κ time series) and a set of independent, 

time-delayed versions of itself. The reconstructed attractor 

exposes the dynamical structure that produced the patterns 

observed in the original one-dimensional signal. The attractor 

was reconstructed for each team’s κ series by first estimating 

two embedding parameters: the optimal time delay (𝜏) and the 

embedding dimension (m) [26], [28]. τ identifies the lag for 

which the original signal is maximally different from itself. 

These lagged versions are then used as the dimensions (m) in 

the phase space to unfold the signal. Following standard 

practice, 𝜏 was estimated as the first minimum of the Average 

Mutual Information function [26], [28]. The selection of m 

followed the False Nearest Neighbors (FNN) method outlined 

in [28]. This process surveys data points and their neighbors in 

dimensions ranging within spaces of increasing dimension.  

The goal is to find “false neighbors,” that is, points that separate 

when examined in a higher dimension. Per convention, m was 

determined as the lowest dimension where the percentage of 

false neighbors ≤ 10 [10].  

 

Fig. 7. Example reconstructed attractors from three RPA teams which provide 

means to show chaotic behavior geometrically in three-dimensional phase 

space: к(𝑡), к(t+τ), к(t+2τ) [10]. 

We also examined team coordination stability from the 

reconstructed attractors by estimating the largest Lyapunov 

exponent (λ). The λ measures the exponential rate of divergence 

of two nearby trajectories on the attractor [28], [29]: stable (λ1 

< 0), unstable (λ1 > 0), and metastable or parallel trajectories (λ1 

≈ 0) of team coordination [30]. The magnitude of λ relates to 

the speed with which a dynamic system reaches an equilibrium 

point, stable or unstable. A system with large negative λ reaches 

an equilibrium state quickly and will have difficulty moving 

away from it (i.e., the system becomes rigid), while a system 

with large positive λ will quickly become unstable, leading to a 

breakdown in communication coordination and, perhaps, a 

jeopardized mission. Systems with λ close to zero will begin to 

meander, stabilize (if λ is negative), or meander and destabilize 

(if λ is positive). Systems that exhibit either of these metastable 

situations can be said to be agile and, thus, are likely to perform 

well [31]. Reconstructed attractors for the three teams are 

presented in Fig. 7, showing that differently composed teams 



based on their interaction may differ in their temporal 

dynamics; λ estimates provide converging evidence of that 

observation. The stable HMT’s coordination was focused on a 

small part of phase space with less variability and a rigid 

appearance (λStable HMT = -0.04). On the other hand, the HMT 

with a timely interaction and human-human team with random 

interaction demonstrated more variability (λMetastableHMT= 0.05) 

and instability (λUnstable= 0.07). The metastable HMT performed 

better within these three teams than the unstable human-human 

team, which performed better than the stable HMT [10]. 

VI. CONCLUSION 

Team agility for an HMT subsumes the ability to be stable; 

it also includes flexibility in order to adapt to a dynamic task 

environment. In this study, first, we defined team agility in terms 

of the team interaction process: exploration and exploitation of 

the team coordination. Then, based on these two important 

coordination concepts, we conceptually examined and modeled 

interactive decision-making in an RPAS task environment by 

applying: (1) quantum cognition for the taskwork decision-

making processes (to discern the effects of ontic uncertainty for 

each individual) and (2) nonlinear dynamical systems modeling 

for the teamwork (to capture epistemic uncertainty). 

Considering both the ontic (taskwork level) and epistemic 

uncertainty (teamwork level) of a team is necessary to 

understand the whole more than its sum of parts [32]. Thus, team 

agility is an emergent behavior from all these interactive 

processes and is developed in response to the task environment 

(i.e., task-dependent). In the future, we will empirically examine 

the HMT in the RPAS task context to address the questions: (1) 

how does team agility evolve in a dynamic task environment? 

(2) how is it maintained over time, and what are the design 

requirements for an HMT to be agile?  
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