
EasyChair Preprint
№ 1662

Graph-Based Analysis and Visualization of
Kieker Traces

Richard Müller and Matteo Fischer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 14, 2019

Graph-Based Analysis and Visualization of Software Traces

Richard Müller
rmueller@wifa.uni-leipzig.de

Leipzig University, Leipzig, Germany

Matteo Fischer
Leipzig University, Leipzig, Germany

Abstract

Graphs are a suitable representation of software ar-
tifacts’ data created during development and main-
tenance activities. Software traces monitored with
Kieker are one example of such data. We present
a jQAssistant plugin that scans event-based Kieker
traces and stores them in a Neo4j graph database.
This opens up new possibilities for analyzing and vi-
sualizing these traces with respect to application per-
formance monitoring and architecture discovery. We
illustrate the feasibility and usefulness of the plugin
with the Bookstore application example.

1 Introduction

Software development and maintenance activities cre-
ate different software artifacts, such as source code,
test results, error reports, and traces. These data are
usually stored in separate files. However, to analyze
and visualize these heterogeneous data it is advanta-
geous to have a unified data source. Therefore, we
have developed an extensible open source stack [6].
As software data maps to a multivariate, compound,
attributed, and time-dependent graph [2] this stack
uses jQAssistant plugins that scan software artifacts
and store them in a Neo4j graph database. On this
basis, the structured and connected software data can
be easily analyzed and visualized.

Kieker is a framework to monitor, analyze, and vi-
sualize software behavior [1]. It provides capabilities
for event-based as well as state-based monitoring [3,
p. 67]. It primarily supports the programming lan-
guage Java but additionally offers adapters for .NET,
Cobol, and Visual Basic 6. The framework comes up
with several tools to inspect and analyze traces as well
as to visualize them with static images of UML se-
quence diagrams, markov chains, dependency graphs,
and trace timing diagrams. Furthermore, there are
output writers that persistently save the traces at the
file system or in a relational database. Currently, no
writer stores the traces in a graph database.

The contribution of this paper is a jQAssistant plu-
gin that scans event-based Kieker traces and stores
them as a graph in a Neo4j database for further anal-
ysis and visualization to support application perfor-
mance monitoring and architecture discovery. The
plugin complements the existing Kieker tools and in-
tegrates with the open source stack for software anal-

ysis and visualization [6]. Hence, the graph query lan-
guage Cypher can be used to inspect and analyze the
traces as well as interactive visualizations instead of
static images can be generated.

2 Technical Background

Next, the tools used with the Kieker plugin are intro-
duced including Neo4j, Cypher, and jQAssistant.

2.1 Neo4j and Cypher

Neo4j1 is a native graph database that is used to store,
manage, and query large amounts of connected data.
It models graph data with a labeled property graph [7,
p. 15]. Labels are used to classify nodes. Relationships
connect nodes and have a type and a direction. Prop-
erties are attributes of nodes and relationships. They
are stored as key-value pairs.

Cypher2 is the graph query language of Neo4j [5].
It matches given patterns in the graph using a visual,
ASCII art-based syntax.

2.2 jQAssistant

The jQAssistant3 framework is based on Neo4j and
provides interfaces for scanner, rule, and report plug-
ins [6]. Scanner plugins extract data from software
artifacts and store them as a graphs in the Neo4j
database. There are several scanner plugins4, for ex-
ample for Java source code, Jira, and GitHub-Issues.
The scanned graph data can be analyzed by applying
rules defined in Cypher. There are two types of rules.
Concepts are used for data enrichment and constraints
for detecting violations. Report plugins automatically
generate a documentation based on the scanned and
analyzed data. All jQAssistant plugins can be used
with the build tool Apache Maven or executed inde-
pendently from the command line.

3 Kieker Plugin

The flowchart in Figure 1 shows how the Kieker plugin
works. Its complete implementation is available on
GitHub5.

1 https://neo4j.com/
2 https://www.opencypher.org
3 https://jqassistant.org
4 https://softvis-research.github.io/

jqassistant-plugins/
5 https://github.com/softvis-research/

jqa-kieker-plugin

https://neo4j.com/
https://www.opencypher.org
https://jqassistant.org
https://softvis-research.github.io/jqassistant-plugins/
https://softvis-research.github.io/jqassistant-plugins/
https://github.com/softvis-research/jqa-kieker-plugin
https://github.com/softvis-research/jqa-kieker-plugin

Start Apply
rules

Kieker traces
(*.dat, *.map)

Scan
Kieker traces

Call & depen-
dency graphs EndCreate Kieker graphKieker records Kieker graph

Figure 1: Flowchart of the Kieker plugin for jQAssistant

First, the FSDirectoryReader provided by the
Kieker framework reads the traces. The inter-
face IMonitoringRecordReceiver is used to get
the records from the trace files. Currently,
the record types KiekerMetadataRecord, Trace-
Metadata, BeforeOperationEvent, AfterOperation-
Event, and CallOperationEvent are supported.

Second, the Kieker graph is created based on the
schema depicted in Figure 2. Here, the records are
mapped to the nodes Record, Trace, Execution:

Event, and Call:Event. The records’ attributes are
mapped to the corresponding node properties. Then,
the CONTAINS relationships are set for these records.
Note that the two records BeforeOperationEvent and
AfterOperationEvent are merged in one node la-
beled Execution:Event. Furthermore, the informa-
tion about methods and types is extracted from the
records resulting in the nodes Method and Type with
their properties. Both node types are connected by
a DECLARES relationship. The relationship from the
event nodes to a method node is defined by CALLED_BY

or CALLS if it is a call event and by EXECUTES if it is
an execution event.

Third, rules in the form of concepts are applied to
create the call graph with the relationship CALLS be-
tween methods and the dependency graph with the
relationship DEPENDS_ON between types. Finally, an-
other rule calculates the property duration of each
method based on its related execution events.

TypeMethod name: String
fqn: String

name: String
signature: String
duration: long
incomingCalls: int
outgoingCalls: int

C
AL

LE
D

_B
Y

|
C

AL
LS

Record

controllerName: String
experimentId: int
fileName: String
hostname: String
loggingTimestamp: long
numberOfRecords: int
timeOffset: int
timeUnit: String
version: String

Trace

traceId: long
threadId: long
hostName: String
loggingTimestamp: long
sessionId: String

CONTAINS

C
O

N
TA

IN
S

CALLS

timestamp: long
orderIndex: int

beforeTimestamp: long
afterTimestamp: long
beforeOrderIndex: int
afterOrderIndex: int

DECLARES

CONTA
INS

DEPENDS_ON

EXECUTES

Call:
Event

Execution:
Event

Figure 2: The Kieker graph schema

4 Application Example

As an application example, we refer to the Book-
store application described in the Kieker user guide [4,
p. 9]. We have used AspectJ-based instrumentation
where the monitoring probes are weaved into the byte
code of the Bookstore application. We have activated
the aspects OperationExecution and OperationCall.
Then, we have scanned the monitored traces with the
jQAssistant command line tool using the Kieker plu-
gin. Based on the structured and connected software
data we have analyzed and visualized the traces as
explained subsequently.

4.1 Analysis

Cypher queries are useful to inspect and analyze the
traces. Listing 1 contains an example query for aggre-
gated method calls and Table 1 summarizes its result
ordered by the method property duration. It is a
similar view for aggregated method calls as provided
by the Kieker trace diagnosis tool. It indicates that
most time was spent in the main method and that the
method getBook declared by the type Catalog was
called 10 times.

Listing 1: Cypher query for aggregated method calls
MATCH (t:Type)-[:DECLARES]->(m:Method)

WHERE t.fqn STARTS WITH "kieker"

RETURN t.name as Type, m.name AS Method,

m.incomingCalls AS Calls, m.duration AS Duration

ORDER BY Duration DESC

Type Method Calls Duration [ns]

BookstoreStarter main 1 55498700
BookstoreStarter$1 run 5 33558300
Bookstore searchBook 5 32389100
Catalog getBook 10 30357600
CRM getOffers 5 19180500
BookstoreStarter spawnAsyncRequest 5 12639600
BookstoreStarter extractNumRequestsFromArgs 1 1280600

Table 1: Result of the Cypher query in Listing 1

4.2 Visualization

The interactive call and dependency graphs are gen-
erated with the yFiles Neo4j explorer6.

The call graph in Figure 3 shows all methods of
the Bookstore application with their CALLS relation-
ships. The property duration of each method node is
mapped to a color gradient from green (short) to red
(long).

6 https://www.yworks.com/neo4j-explorer/

2

https://www.yworks.com/neo4j-explorer/

Figure 3: The call graph of the Bookstore application

Figure 4: The dependency graph of the Bookstore application

The dependency graph in Figure 4 shows all types
of the Bookstore application and their DEPENDS_ON

relationships. The dependency is created based on
method calls between different types.

5 Conclusion and Future Work

We have presented a Kieker plugin that scans event-
based Kieker traces and stores them as a graph in a
Neo4j database. Furthermore, we have illustrated the
feasibility and usefulness of the plugin with an ap-
plication example. We have analyzed the Bookstore
traces with an example Cypher query for aggregated
method calls and have visualized the call and depen-
dency graphs with the yFiles Neo4j explorer.

For future work, we can imagine extending the plu-
gin to scan further record types, for example, state-
based records. Moreover, a special Kieker writer for
graph databases could be developed as a contribu-
tion to the Kieker framework using this plugin as a
blueprint.

References

[1] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A framework for application perfor-
mance monitoring and dynamic software anal-
ysis”. In: 3rd ACM/SPEC Int. Conf. Perform.
Eng. (ICPE 2012). ACM, 2012, pp. 247–248.

[2] S. Diehl and A. C. Telea. “Multivariate Graphs
in Software Engineering”. In: Multivar. Netw.
Vis. Dagstuhl Semin. #13201 Dagstuhl Castle,
Ger. May 12-17, 2013 Revis. Discuss. Ed. by
A. Kerren, H. C. Purchase, and M. O. Ward.
Vol. 8380. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2014.
Chap. 2, pp. 13–36.

[3] J. Waller. Performance Benchmarking of Appli-
cation Monitoring Frameworks. Kiel Computer
Science Series 2014/5. Department of Computer
Science, Kiel University, 2014.

[4] Kieker Project. Kieker 1.13 User Guide. http:
//kieker- monitoring.net/documentation/.
2017.

[5] N. Francis et al. “Cypher: An Evolving Query
Language for Property Graphs”. In: ACM SIG-
MOD Int. Conf. Manag. Data. 2018, p. 13.

[6] R. Müller et al. “Towards an Open Source Stack
to Create a Unified Data Source for Software
Analysis and Visualization”. In: Proc. 6th IEEE
Work. Conf. Softw. Vis. Madrid, Spain: IEEE,
2018.

[7] M. Needham and A. E. Hodler. Graph Algorithms
- Practical Examples in Apache Spark & Neo4j.
1st ed. O’Reilly, 2019.

3

http://kieker-monitoring.net/documentation/
http://kieker-monitoring.net/documentation/

	Introduction
	Technical Background
	Neo4j and Cypher
	jQAssistant

	Kieker Plugin
	Application Example
	Analysis
	Visualization

	Conclusion and Future Work

