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Abstract. Stackelberg security game (SSG) has been widely used in
counter-terrorism, but SSG is not suitable for modeling opportunistic
crime because the criminals in opportunistic crime focus on real-time in-
formation. Hence, the opportunistic security game (OSG) model is pro-
posed and applied in crime diffusion in recent years. However, previous
OSG models do not consider that a criminal can cooperate with other
criminals and this situation is very common in real life. Criminals can
agree to attack the selected multiple targets simultaneously and share
the utility. The police may be unable to decide which target to protect
because multiple targets are attacked at the same time, so criminals can
gain more utility through cooperation and interfere with police decisions.
To overcome this limitation of previous OSG model, this paper makes the
following contributions. Firstly, we propose a new security game frame-
work COSG (Cooperative Opportunistic Security Game) which can cap-
ture bounded rationality of the adversaries in the cooperative oppor-
tunistic crime. Secondly, we use a compact form to solve the problem
of crime diffusion in the cooperative opportunistic crime. Finally, ex-
tensive experiments to demonstrate the scalability and feasibility of our
proposed approach.

Keywords: Game theory · Opportunistic crime · Cooperation mecha-
nism · Human behavior.

1 Introduction

Stackelberg security game (SSG) is a security game framework that describes
the interaction between the security agents and terrorists. There are usually
two roles of leader and follower in this model, and each participant has his own
set of strategies. In each round of the game, the leader always makes decisions
first, and the follower makes decisions after observing the leader’s strategy. The
combination of their decisions affects their ultimate interests.
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In recent years, with the growing threat of terrorist organizations, preventing
terrorist incidents has become an important and challengeable task for security
agencies. Many agencies use limited resources to protect the targets and produce
the strategies about how to allocate these resources [22]. However, the terrorist
organizations’ strategies are various and it is difficult to predict the target which
will be attacked to the security agencies. Fortunately, SSG has made a huge
contribution to helping the security agencies in allocating resources reasonably.
Many decision systems are designed based on the security game theory. The
Trusts system [24] assigns police resources in the subway network to prevent
railway crimes, such as fare evasion and theft. The PROTECTION system [17]
protects the coast by combating the criminal activities. The PAWS system [25]
helps the rangers to find poachers’ traps in Queen Elizabeth National Park
(QENP) in Uganda. Most applications use the SSG theory, where defenders
use limited resources to cover some targets firstly and the attackers observe the
defenders’ actions to make their most profitable strategies.

Many criminals do not need to take long time to observe the defenders’ ac-
tions in real life. They only care about the real-time information and find the
opportunity to commit crimes. We call this type of crime opportunistic crime.
Opportunistic crime theory is widely used in transportation networks. Attacker
seeks the target by transportation and when attacker arrives at a station, crimi-
nal can choose to commit crime if there is no police or continue to search another
target if the attacker observes the police at the same station. The attacker can
continue starting the next round of crime after completing a crime or stop. The
SSG is not suitable for the opportunistic crimes, because the attacker needs long
time observation (weeks or even months) in SSG. Therefore, a new opportunistic
security game model is presented in [27]. This work has proposed the concept of
OSG, and defined three characteristics of opportunistic criminals who (1) oppor-
tunistically and continually seek for targets and diffuse by transportation; (2)
have real-time observation rather than long-term latency; and (3) know limited
knowledge of the defender.

Traditional SSG assumes human behaviors are completely rational, and this
is only fit for modeling terrorist attacks, which require long-term plans. In most
cases, attackers are boundedly rational. Just like opportunistic crimes, attackers
do not need long-term plan. Many human behavior models have been proposed
to consider the bounded rationality of the attackers. Three well-known models
are Prospect Theory (PT) and Quantal Response (QR) and Subjective Utility
Quantal Response (SUQR). PT states that attackers make decisions based on
the potential value of losses and gains rather than the final outcome [10]. QR
indicates that the attackers are more likely to choose the targets with higher
expected utility [14]. SUQR uses a linear combination of features to replace the
expected utility in QR [15]. By experiments in [1], SUQR has the best perfor-
mance in predicting the human behavior. In this paper, COSG uses the SUQR
model to calculate the probability of a target being chosen by the player.

In the OSG criminals can cooperate with each other, for example the crimi-
nals agree to attack different targets simultaneously to increase the probability
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of successful crime and the excepted utility. Recent work on security game has
pointed out the application of cooperative attack in wildlife protection [23]. They
have built a multi-round Stackelberg game and proposed a new human behavior
model based on it.

We summarize the previous work and propose a novel model COSG (Coop-
erative Opportunistic Security Game). The contributions of this paper are as
follows: Firstly, we combine the cooperation mechanism in SSG with the OSG
and establish the COSG model, and COSG better describes the attacker’s behav-
ior who can cooperate with other attackers and continuously commit the crime.
Secondly, we modify the resource allocation algorithm in traditional opportunis-
tic crime, so that it can be quickly applied in cooperative opportunistic crime
resource allocation problem. Finally, we conduct experiments to demonstrate the
scalability and feasibility of our proposed approach by inviting 50 volunteers to
provide us with data. Experimental results show that our model can effectively
help defenders to deal with the cooperative opportunistic criminals.

2 Motivating Scenario

An example of the typical cooperative opportunistic crime is the free market in
China. Free markets are trading markets that are spontaneously generated in
certain places. Some small free markets generally focus on selling food, clothes,
and daily supplies. In the free markets, prices are not regulated by the gov-
ernment. Vendors are free to set prices, and buyers can bargain with sellers.
Vendors in the free market can transfer their booths according to the number of
customers at different times to maximize their earnings. Although the free mar-
kets provide convenience to people, free markets generate many garbage which
seriously pollutes the environment during business hours (see Fig. 1(a)). In ad-
dition, free markets affect the surrounding traffic conditions and the noise can
also interfere people’s daily life. Therefore, the security department has set up
patrols to combat the vendors in the free markets (see Fig. 1(b)).

To facilitate the understanding, we call the vendor in the free market as
attacker and the ranger as defender. The model of free market has two following
features: 1)The attackers are opportunists whose behaviors are accorded with the
features of opportunistic crime and they attack the targets where they can gain
high expected utility. 2)An attacker can choose to cooperate or not cooperate
with other attackers. If attackers agree to cooperate, they will attack different
targets at the same time and their gains will be divided equally, and if not they
will get the pay-offs for individual attacks. Whether to cooperate depends on the
utility that an attacker can gain in cooperation and non-cooperation. As far as
we know, previous models do not take into account the cooperation mechanism
in opportunistic crime, but the cooperation between attackers is indeed a very
common phenomenon in reality.
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Fig. 1. (a): A vendor generated smoke in free market. (b): The rangers combated
vendor and confiscated their tools.

3 Related Work

Crime in transportation network is a very important and challengeable to the
security agencies, because the criminals can opportunistically seek targets and
transfer by bus or metro train [22]. For example, an attacker arrives a station by
metro train and will commit a crime if the attacker does not observe police at
the same station. If the criminal finds police at the current station, the attacker
will move to another station until gives up or finds a new target. We assume that
the crime occurs at the station where there are many people and the probability
of successful crime is high. SSG theory is not suitable for this kind of situation
due to the long-term planning of the attacker. [27] presents a more flexible model
OSG based on the Markov strategy and gives the algorithm EOSG to allocate
defender’s resource. pij in Markov transition matrix is the probability of attacker
is at station i and defender is at station j at the same time. Obviously if the
number of stations grows exponentially, the Markov transition matrix can be
very complicated. They also use the COPS algorithm which simplifies the tran-
sition matrix to solve the large-scale OSG problems, but the scalability of COPS
algorithm is still limited. Previous studies have shown that the performance of
OSG with Markov models can be affected by the size of the problem, and we
can find another abstract method to simulate the transition with reducing the
size of the transition matrix.

Actually, the machine learning methods such as decision tree and cluster have
been used in crime prediction [11]. To some extent, these methods are viable,
because criminals have certain regularity in committing crimes, and different
criminals have their own delinquency proneness. We can collect these crime data
and train model to predict the crime hotspot. However, generalization of the
model in machine learning is closely related to the data set. We must consider
the difficulty of collecting criminal data. [8] points out that in wildlife protection
there is a large amount of unlabeled data, and very little labeled data. If we
train the model with a small amount of labeled data, it may lead to overfitting.
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[23] have provided the basis for our study of the attacker’s cooperation mech-
anism, and they use SUQA to model the behavior of boundedly rational adver-
saries. In SUQA, a new utility function called subjective utility is defined, which
is a linear combination of key features. Experiments show that the SUQA model
performs better than the QA model. In this paper, considering the impact of the
boundedly rational adversaries, we apply the SUQA model and the cooperative
strategy in the OSG to propose a new framework COSG.

4 COSG Model

In this section, we discuss the novel cooperative opportunistic security game
model. For convenience, we call the vendor in the free market as attacker and
the ranger as defender. We assume that: (1) The entire area is divided into grids
of the same size and each grid is called zone. Time is divided into time steps of the
same size. (2) Each zone is a target and an attacker can commit opportunistic
crime in specific zones. If the attacker finds that there is no defender in the
current target, the attacker commits a crime (Success). Otherwise, the attacker
does not commit crime(Failure) and utility is zero. (3) Multiple attackers will
share their total utility fifty-fifty if attackers agree to cooperate. (4) COSG is
zero-sum game. The defender’s utility is non-positive, and the attacker’s utility
is non-negative. For simplicity, we explain the model with two attackers and one
defender.

4.1 Utility

The SSG has two players, an attacker and a defender, and in the COSG we
have multiple attackers Ψ1, Ψ2, ..., ΨN and one defender Θ with M resources.
The defender can cover M targets and each attacker can attack a target at
the same time. The attacker chooses which target to move to at the next time
step based on the expected utility of cooperation and non-cooperation and the
probability that the defender will appear in this position. When the target is
already protected by a defender’s resource, the attacker does not attack and
the attacker’s utility is zero. Attackers and defender’s resources can move to
the adjacent zone of the current position at the next time step or stay in the
current zone. Attackers cannot observe the coverage distribution of the defender
and only when an attacker and a defender’s resource move to the same position,
the attacker will observe the defender. Similarly, defender cannot observe the
positions of attackers, only know the attackers are opportunists. Attackers have
a possible initial distribution of defender based on their historical experience and
they can use this distribution to measure the attractiveness of a target, but this
distribution is not the true distribution of the defender. Defender’s transition
strategy is the common knowledge of all the players.

To discuss this model more specifically, let T be a set of targets and T1,
T2 are two subsets of all the targets T , where T2 = T − T1. T1 is available
to the first attacker Ψ1 and T2 is available to the second attacker Ψ2. At any
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time step, the positions of the two criminals are t1 and t2 respectively. The two
attackers determine their targets through the pay-off of cooperation and non-
cooperation and Table 1 summarizes the players’ pay-off in all cases. UuΨ1

(t1)
indicate the pay-off of Ψ1 at uncovered target t1 and UuΨ2

(t2) is the pay-off of Ψ2

at uncovered target t2 respectively. Similarly, U cΨ1
(t1) indicate the pay-off of Ψ1

at covered target t1 and U cΨ2
(t2) is the pay-off of Ψ2 at covered target t2. The

defender’s pay-offs in uncovered targets t1, t2 are UuΘ(t1) and UuΘ(t2) respectively.
U cΘ(t1) and U cΘ(t2) are the pay-offs of defender in covered targets. In order to
introduce a cooperative mechanism, we use ε to represent the reward factor,
and the reward factor will motivate two attackers to cooperate. If attackers
successfully cooperate with each other they will share all of their pay-offs fifty-
fifty and they will receive the reward ε.

Table 1. Pay-offs for attacks.

Attackers: Ψ1, Ψ2 Crime success status Cooperation status

UuΨ1
(t1), UuΨ2

(t2) Ψ1 S, Ψ2 S Noncooperation

UuΨ1
(t1), UcΨ2

(t2) Ψ1 S, Ψ2 F Noncooperation

UcΨ1
(t1), UuΨ2

(t2) Ψ1 F, Ψ2 S Noncooperation

UcΨ1
(t1), UcΨ2

(t2) Ψ1 F, Ψ2 F Noncooperation

(UuΨ1
(t1) + UuΨ2

(t2) + 2ε)/2 Ψ1 S, Ψ2 S Cooperation

(UuΨ1
(t1) + UcΨ2

(t2) + ε)/2 Ψ1 S, Ψ2 F Cooperation

(UcΨ1
(t1) + UuΨ2

(t2) + ε)/2 Ψ1 F, Ψ2 S Cooperation

(UcΨ1
(t1) + UcΨ2

(t2))/2 Ψ1 F, Ψ2 F Cooperation

Ψi is opportunistic criminal, and does not attack when defender’s resource
cover the current target, so the pay-off of Ψi is zero in this case. The COSG is
zero-sum game, and the pay-off of defender Θ is −(UΨ1

(t1) + UΨ2
(t2)). In our

COSG model, the two factors that affect the probability of the attacker com-
mitting a crime are the utility UΨi

(i = 1, 2) and the probability that the police
will protect a specific target. The two attackers compare their expected utility
in case of non-cooperation or cooperation and choose the optimal strategy. If the
best choices for both attackers are cooperation, they will attack cooperatively
and share the pay-offs. Otherwise, one of attackers is not willing to cooperate,
they will commit crime individually.

4.2 Transition and Diffusion

In order to simulate the scenario of opportunistic crime in real life, we introduce
the transition and diffusion of the opportunistic crime. The whole area where
crime may occur is divided into zones of the same size. The criminals Ψ1, Ψ2 and
defender Θ can move in the specific zones. We have a more compact division of
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time steps so that the players can only move to the adjacent zones or stay in the
same zone at each time step, e.g. moving from one zone to a neighboring zone,
is assumed to take one time step. At each time step, Θ and Ψ1, Ψ2 firstly move
at the same time, and then Ψ1 and Ψ2 commit crimes at their current targets (or
not commit) at this time step, the defender Θ protects the target where they are
currently simultaneously. At the next time step, the three players develop their
own optimal strategy and repeat the previous process. We explain the transition
and diffusion mechanism of players by two 4× 4 zones T1, T2 (see Fig. 2).

Fig. 2. Distribution of two attackers at time unit t, and they can move to a neighboring
zone at next time step t+ 1.

The attackers Ψ1, Ψ2 and defender Θ move within their specific zones. We
define that Ψ1 moves in the left area T1, and Ψ2 moves in the right area T2 and
Θ can move in the T = T1 ∪ T2. At this time step t, Ψ1 is in target 7 of T1, and
Ψ2 is in target 28 of T2. If the two attackers commit crimes in their current zones
based on if they observe defender Θ at time step t. At the next time unit t+ 1,
all the players can move to an adjacent zone to commit opportunistic crime or
protect the target. For example, Ψ1 only can move to the target 3, 6, 8, 11 or stay
in the target 7 at time step t + 1. For an attacker, which target to be chosen
depends on the utility of the target when cooperation and non-cooperation and
the probability of this target is protected, so we can give the transition matrix
of Ψ1, Ψ2 and Θ. To the attacker Ψ1, transition matrix of Ψ1 is TΨ1 , and TΨ1

is a 5 × (4 × 4) matrix. The (4 × 4) represents each target number in T1, and
the 5 represents a strategy choice to move up, down, left, right or stay. So each
element xi,j in row i and column j is the probability of moving to a neighboring
zone when Ψ1 is in zone j.

In the transition matrix (see Fig. 3), the vector in column 2 is (0, 14 ,
1
3 ,

1
6 ,

1
4 )
T

,
so when attacker Ψ1 is in target 2, the probability of moving down to target 6
is 1

4 , and the probability of moving left to target 1 is 1
3 , and the probability of

moving right to target 3 is 1
6 , and the probability of staying in target 2 is 1

4 .
There is no target for attacker to move up when in target 2, the probability of
moving up is 0. The attacker can move from target 1 to target 2 and also move
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from target 2 to target 1, So these two probabilities are equal in TΨ1
and they

are 1
3 .

Fig. 3. Transition matrix of attacker Ψ1.

The probability that Ψ1 moves from zone i to zone j and Ψ2 moves from zone
m to zone n at next time step is

p(j, n) = pΨ1
(i, j) · pΨ2

(m,n)

s.t. i, j∈ T1, j ∈ Adj(i)
m,n∈ T2, n ∈ Adj(m)

(1)

where Adj is the set of all adjacent zones of a specified zone. Let pΨ1(i, j) denotes
the probability of Ψ1 in target i and choose to attack target j at next time step.
Similarly, pΨ2

(i′, j′) denotes the probability of Ψ2 in target i′ and choose to attack
target j′ at next time step. pΨ1

(i, j), pΨ2
(m,n) can be obtained from attackers’

transition matrix TΨ1
and TΨ2

respectively. We give the equation of pΨ1
(i, j),

and pΨ2(m,n) is calculated similarly to Equation (2).

pΨ1
(i, j) = max{(1−

−−−→
cb,t(j)) ·Att(j)} (2)

In Equation (2) −→cb,t represents the attacker’s belief states of defender’s place

at next time step, so
−−−→
cb,t(j) is the probability distribution that the police Θ

may appear in the target j to the attacker Ψ1. Att is the attractiveness of the
neighboring zones to the attacker. The attractiveness of targets Att is attacker’s
probability distributions of choosing target at next time step based on the sub-
jective utility and Att is calculated as Equation (3).

Att(j) = max{pncΨ1
(j), pcΨ1

(j)} (3)

We have known that Ψ1 and Ψ2 both are bounded rational, so we use the
SUQR model to describe the probability that they choose their own targets
and whether they prefer to cooperate. The SUQR extends the classic quantal re-
sponse model by replacing the excepted utility with a subjective utility function.
In the case of cooperation and non-cooperation, the probabilities that Ψ1 will
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choose the zone j at next time step are shown in Equation (4), and the equation
of Ψ2 can be generated likewise.

pncΨ1
(j) =

eSU
nc(j)∑

I∈T1

eSUnc(I)

pcΨ1
(j) =

eSU
c(j)∑

I∈T1

eSUc(I)

(4)

where the SU c and SUnc are the subjective utility functions of an attacker in an
zone when the two sides cooperate successfully (c) or cooperate unsuccessfully
(uc). If one’s best choice is to cooperate but another’s optimal choice is not to
cooperate or both attackers choose not to cooperate, we refer to these situa-
tions as cooperation failed. In this case, Ψ1 and Ψ2 commit crimes individually.
Only when the best choices for criminals both are cooperation, they will attack
cooperatively and share their pay-offs.

For the defender Θ, we do not need to consider whether to cooperate, and the
defender arranges resources based on the subjective utility, so the probability of
Θ will protect target y in next time step is

pΘ(y) =
eSU(y)∑

X∈T e
SU(X)

(5)

where y ∈ T . Let pΘ(x, y) denotes the probability that a defender’s resource in
zone x and move to zone y at next time step, and pΘ(x, y) is an element in the
transition matrix TΘ.

pΘ(x, y) = pΘ(y) (6)

The two opportunistic criminals can attack target j and target n at next
time step when the target is not covered. Thus, we only pay attention to if the
two targets which will be attacked are protected by the defender’s resources. The
probability distribution of Θ covers the two targets after t time steps is shown
as Equation (7) where −→c0 is the initial state distribution of the resources.

−→ct (j, n′) = T tΘ · −→c0(j, n) (7)

4.3 Optimal Resource Allocation Strategy

In our model, we can obtain the combination of the attackers’ locations and
the defender’s locations at each time step. Attackers make choices on account
of defender’s place and the attractiveness of the neighboring zones. Defender
dispatches m resources based the initial state distribution and the transition
matrix. We have described the behavior of the attackers and defender in COSG
model, and in this section we give the formulas to find the optimal patrol strategy.
We focus on the interaction between attackers Ψ1, Ψ2 and defender Θ.
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Our optimal resource allocation strategy is to minimize the loss of defender in
each state. We consider the locations where the attackers appeared, and whether
the defender can protect these targets timely. The attackers are opportunists,
and they do not take action if they notice the defender in the same zone, so the
defender’s loss will be reduced. We have

Up(k) = Vp ·Xk (8)

where Up(k) is the defender’s expected utility at kth time step. Vp represents the
utility for the two targets where the attackers in and we can get the utility based
on the probability of the attackers launch crimes in the two targets accordingly.
Xk is the probability of defender cover the targets at kth time step.

The defender’s goal is to minimize the total expected utility of all time steps.
The more time steps we set, the more we can simulate opportunistic crimes in
reality. Therefore, the objective of defender is

Obj = lim
K→∞

K∑
k=0

Up(k)

= lim
K→∞

K∑
k=0

Vp · ((1− α) · TΘ)k ·X1

(9)

Only unknown variable in equation (9) is TΘ, and it can be denoted as the
defender’s decision.

5 Experiments

We evaluate the performance of our approach based on extensive experiments.
We use Jupyter Notebook (version 5.7.6) and all results are performed on a 64-
bit PC with a 3.30 GHZ CPU and a 16.0 GB RAM. Each data point we report
is an average of 50 different samples.

5.1 Data Sets

In our experiments, we simulate the cooperative opportunistic crime in real life,
and simplify the model of real-world. In our model, the whole area is divided
into zones of the same size, and we set the entire area to two N ×N zones. Time
is divided into continuous and equal time steps, and player moves from one zone
to a neighboring zone at one time step. Defender has m resources and the initial
distribution of these resources which the two attackers do not know is set based
on the importance of targets. The two attackers know a possible distribution of
police based on their historical experience. The defender’s transition matrix is the
common knowledge of all players. We randomly set the attractiveness function
Att of each target i, so the attacker’s route is more random and difficult to
predict. The defender’s utility of not covering at least one target is UΘ < 0 and
UΘ = 0 is covering both two targets in our experiments. Similarly, the criminal’s
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utility of attacking a target successfully is UΨi
> 0 and UΨi

= 0 is giving up
committing crime. The attacker decides whether to cooperate according to the
utility in case of noncooperation and cooperation. We set the exit rate of the
attacker α = 0.1.

5.2 Results

The experiment involves four models and there are COSG model, Markov chain
model, random patrol model, and no patrol model. Players in our model de-
cide how to move based on the subjective utility. In the random patrol model,
defender chooses the next target to protect randomly and we set the value of
each element in the transition matrix to 1

5 . To the no patrol model, the defender
does not cover any targets, so the attackers commit the crime arbitrarily. In the
Markov chain model, the players can move to any zones at a time step.

(a) : m = 3, γ = 15

(b) : m = 3, |G| = 9× 9× 2

Fig. 4. Runtimes analysis.

We compare the scalability of our model. The result is shown as Figure 4(a)
where the x-axis represents the size of grid and the y-axis indicates runtime.
γ denotes the number of time step. Our model is greatly affected by the size
of grid and cannot scale up to the size of grid larger than 12×12×2 with the
runtime cap of 3000 seconds. Random strategy and no patrol strategy are always
faster than our model, because they do not need to consider the subjective
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utility of the defender. The Markov chain model requires the maximum runtime,
because the transition matrix of it is more complicated than the other three
models. In our experiments, we also compare the runtime of our strategy with
different time length. The result is shown in Fig.4(b) and |G| denotes the size
of grid. Runtime rises faster as the number of time steps increase, because more
boundary constraints are considered. We deal with small-scale issues in this
paper, and we can find that scalability is still a major challenge.

Fig.5 shows that the number of defender’s resources m can influence the
defender’s utility. When we set the number of time steps γ = 15 and the size
of grid |G| = 9 × 9 × 2, the defender’s utility rises as the number of resources
increases. The random patrol model and no patrol model cannot give a more
satisfactory patrol strategy, because the two models do not consider too much
bounded rationality of the players. Our COSG model and Markov chain model
perform better than the previous two models.

γ = 15, |G| = 9× 9× 2

Fig. 5. Different resources of problem.

6 Summary

In this paper, we propose an innovative model for cooperative opportunistic
and boundedly rational criminals. Furthermore, we introduce a compact form
of transition matrix representation unlike previous opportunistic security game
which used Markov chain to describe players’ diffusion. Traditional Stackelberg
game models require attacker to make decision in advance, but the attacker in
our model reacts to real-time information. As shown in our experimental results,
the runtime of our model is better than the Markov chain model. However,
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scalability is still a major challenge, and the current model is only suitable
for small-scale problems. In future work, we can use the abstract method or
constraint generation to compress the scale of the problem. In addition, it is
also feasible to construct the opportunistic security game model by using neural
networks.
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