
EasyChair Preprint
№ 5200

Bus-Contention Aware Schedulability Analysis for
the 3-Phase Task Model with Partitioned
Scheduling

Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen
and Eduardo Tovar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 24, 2021

P
r
e
p
r
in
t
V
e
r
s
io
n
.

Bus-Contention Aware Schedulability Analysis for the 3-Phase
Task Model with Partitioned Scheduling

Jatin Arora

CISTER Research Centre, ISEP, IPP

Porto, Portugal

jatin@isep.ipp.pt

Cláudio Maia

CISTER Research Centre, ISEP, IPP

Porto, Portugal

crrm@isep.ipp.pt

Syed Aftab Rashid

CISTER Research Centre, ISEP, IPP

Porto, Portugal

syara@isep.ipp.pt

Geoffrey Nelissen

Eindhoven University of Technology

Eindhoven, the Netherlands

g.r.r.j.p.nelissen@tue.nl

Eduardo Tovar

CISTER Research Centre, ISEP, IPP

Porto, Portugal

emt@isep.ipp.pt

ABSTRACT
Multicore platforms are being increasingly adopted in Cyber -

Physical Systems (CPS) due to their advantages over single-core

processors, such as raw computing power and energy efficiency.

Typically, multicore platforms use a shared system bus that con-

nects the cores to the memory hierarchy (including caches and

main memory). However, such hierarchy causes tasks running on

different cores to compete for access to the shared system bus

whenever data reads or writes need to be made. Such competition

is problematic as it may cause variations in the execution time of

tasks in a non-deterministic way. This paper presents a partitioned

scheduling based approach that allows one to derive bus contention-

aware worst-case response-time of tasks that follow the 3-phase

task model. Experiments on synthetic task sets were performed to

evaluate the effectiveness of the proposed analysis in comparison

to a state-of-the-art approach. The experimental results reveal an

increase of up to 34 percentage points of schedulable task sets in

comparison to the compared approach.

ACM Reference Format:
Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and Ed-

uardo Tovar. 2021. Bus-Contention Aware Schedulability Analysis for the

3-Phase Task Model with Partitioned Scheduling. In 29th International Con-
ference on Real-Time Networks and Systems (RTNS’2021), April 7–9, 2021,
NANTES, France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3453417.3453433

1 INTRODUCTION
Multicore processors offer several advantages over the traditional

single-core computing platforms such as higher computational

power and lower energy consumption, among others. However, the

use of multicore processors in hard real-time systems, i.e., systems

with stringent timing requirements, is still under scrutiny of the

real-time systems community due to their unpredictable behavior.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RTNS’2021, April 7–9, 2021, NANTES, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9001-9/21/04. . . $15.00

https://doi.org/10.1145/3453417.3453433

This behavior is a direct result of current designs which include

shared resources such as a system bus, caches, main memory and

I/O devices. When accessing any of these shared resources, a task

running on a given core may suffer inter-core interference from co-

running tasks, i.e., tasks running on the other cores, hence causing

non-deterministic variations in the tasks’ execution times.

Solutions that use phased execution models [1, 2, 10, 14, 15, 17]

are promising candidates to circumvent the problem of inter-core

interference due to bus contention. In these models, tasks’ exe-

cutions are divided into separate memory and execution phases.

The memory phases are responsible for loading tasks’ data and

instructions into a core’s local memory (e.g., cache or scratchpad)

and to push back the processed data into the main memory. During

the execution phase, a core executes the task’s code by process-

ing data/instructions already available in the core’s local memory

without any need to access the system bus or the main memory.

In this work, we focus on the 3-phase (or AER) taskmodel [10, 15]

which is a generalization of the PREM model. The PRedictable

Execution Model (PREM) [17] uses one memory and execution

phase. In the 3-phase model, each task’s execution is divided into

three phases, namely, Acquisition (A), Execution (E), and Restitu-
tion (R). During the acquisition phase (also called A-phase), task’s

data/instructions are loaded from the main memory into the core’s

local memory. During the execution phase (also called E-phase),

pre-loaded data/instructions are executed by the core, and in the

restitution phase (i.e., R-phase), the processed data are written back

to the main memory. Similarly to the PREM model, in the 3-phase

model, accesses to the main memory via a system bus are only

performed during the memory phases, i.e., A and R phases.

Phased execution models such as PREM and the 3-phase task

model take advantage of the fact that a task running on one core can

execute a memory phase while other cores are executing E-phases

to reduce inter-core interference. Unfortunately, even using these

models, tasks may compete to access the shared bus to execute their

memory phases. This situation happens when a task tries to access

the bus to load its data/instructions from/to the main memory and

the bus is already busy serving the memory phase of another task

executing on a different core. Such situation forces the requesting

task to hold its execution until the bus is free. In this work, this

phenomenon is referred to as bus blocking. Since bus blocking

can significantly impact task schedulability, even under phased

execution models, works like [14] have been proposed to bound

2021-03-16 17:35. Page 1 of 1–11.

https://doi.org/10.1145/3453417.3453433
https://doi.org/10.1145/3453417.3453433
https://doi.org/10.1145/3453417.3453433

P
r
e
p
r
in
t
V
e
r
s
io
n
.

RTNS’2021, April 7–9, 2021, NANTES, France Arora et al.

the maximum bus blocking under a global scheduling approach.

Contrary to [14], in this work we focus on analyzing bus contention

and deriving the worst-case response time (WCRT) for the 3-phase

task model assuming fixed-priority partitioned scheduling. Instead

of bounding the bus blocking suffered by each task, we focus on

bounding the total bus blocking that may be experienced by a

sequence of jobs executing on the same core. To do so, we derive

the maximum number of jobs released on the other cores that can

cause bus blocking to the task under analysis in any time interval

of a given length. This allows us to identify the scenarios that may

lead to the maximum bus blocking and compute the WCRT of the

task under analysis.

Contributions: This paper has the following contributions:
(1) We propose a fine-grained analysis to compute the maximum

bus blocking for fixed-priority 3-phase tasks executing under a

partitioned scheduling policy. Instead of analyzing the bus block-

ing that can be suffered/caused by individual tasks, we focus on

bounding the bus blocking suffered/caused at core level. This allows

us to have a tighter bound on the bus blocking because different

execution scenarios are considered in the analysis. (2) We derive a

schedulability test for fixed-priority 3-phase tasks scheduled under

a non-preemptive partitioned scheduling approach by integrating

the impact of maximum bus blocking into the WCRT analysis of

each task; (3) We perform extensive empirical evaluation under dif-

ferent settings to show the effectiveness of the proposed approach.

Paper Organization: The rest of the paper is organized as fol-

lows: Section 2 describes the system and executionmodels. Section 3

presents the background concepts. Section 4 discusses the analysis

for the maximum bus blocking and the computation of the level-𝑖

busy window by integrating the additional delay due to the bus

blocking. The schedulability analysis is presented in Section 5. The

experimental results are presented in Section 6. Section 7 presents

the related work. Finally, Section 8 concludes the paper.

2 SYSTEM MODEL
We consider a multicore platform with𝑚 identical cores (𝜋1, 𝜋2, . . . ,

𝜋𝑚) where each core has a local memory (i.e., scratchpad or local

cache) that can store the tasks’ data/instructions during runtime.

In addition, each core uses a shared system bus to access the main

memory and cores can access the bus in a concurrent manner which,

as explained previously, may lead to contention. We assume that the

bus can only handle one memory phase
1
at a time and while doing

so, it can not be preempted. Once the on-going memory phase is

completed, the bus is then assigned to the next requesting task.

Consequently, only one task can access the main memory at a time.

Furthermore, we assume that the system bus arbitration policy is

First-Come First-Served (FCFS). As for task scheduling, we assume

partitioned scheduling is used where the task to core mapping is

given at design time and a fixed task-priority algorithm such as

Rate Monotonic [13] is used to assign task priorities.

2.1 Task Model
We consider a task set Γ comprising 𝑛 sporadic tasks from a which

a subset of 𝑛′ tasks is assigned to each core according to the given

task to core mapping strategy. Each task 𝜏𝑖 is characterized by

1
A memory phase, e.g., A or R, may comprise multiple memory requests.

minimum inter-arrival time 𝑇𝑖 and constrained deadline 𝐷𝑖 , where

𝐷𝑖 ≤ 𝑇𝑖 . Each task 𝜏𝑖 is executed according to the 3-phase task

model. In this model, the execution of a task 𝜏𝑖 is divided into three

phases, namely: Acquisition (A), Execution (E) and Restitution (R).

The worst-case execution time (WCET) of A, E and R-phases of

𝜏𝑖 is denoted by 𝐶𝐴
𝑖
, 𝐶𝐸
𝑖
, and 𝐶𝑅

𝑖
, respectively. Thus, the WCET of

task 𝜏𝑖 in isolation is given by the sum of the WCET of each of the

phases, i.e., 𝐶𝑖 = 𝐶
𝐴
𝑖
+ 𝐶𝐸

𝑖
+ 𝐶𝑅

𝑖
. The task utilization of task 𝜏𝑖 is

given by𝑈𝑖 =
𝐶𝑖

𝑇𝑖
and the core utilization is given by

∑𝑛′
𝑖=1𝑈𝑖 . The

bus utilization of task 𝜏𝑖 is given by 𝐵𝑈𝑖 =
𝐶𝐴
𝑖
+𝐶𝑅

𝑖

𝑇𝑖
and the total

bus utilization is given by

∑𝑛
𝑖=1

𝐶𝐴
𝑖
+𝐶𝑅

𝑖

𝑇𝑖
. The response time of the

𝑘𝑡ℎ job of task 𝜏𝑖 executing on a given core 𝜋𝑙 is denoted by 𝑅𝑖,𝑘,𝑙
and the worst-case response time (WCRT) of task 𝜏𝑖 , denoted by

𝑅𝑚𝑎𝑥
𝑖,𝑙

, is given by maximizing 𝑅𝑖,𝑘,𝑙 over all jobs of 𝜏𝑖 . The system is

not schedulable if the core utilization of any core is greater than 1.

Moreover, the system is not schedulable if the total bus utilization

is greater than 1 as it is assumed that system bus will be saturated

if the total bus utilization is greater than 1.

For notational convenience, we define the following set of tasks:

ℎ𝑒𝑝𝑖,𝑙 denotes the set of tasks with higher or equal priority than 𝜏𝑖
(including 𝜏𝑖) on core 𝜋𝑙 ; ℎ𝑝𝑖,𝑙 (resp. 𝑙𝑝𝑖,𝑙) denotes the set of tasks

with priority higher (resp. lower) than 𝜏𝑖 on core 𝜋𝑙 .

2.2 Execution Model
In the 3-phase task model, the A-phase executes first to fetch data

from the main memory and store it in the core’s local memory.

Then, the E-phase executes the task’s code using the data previously

fetched by the A-phase. Finally, the R-phase writes the modified

data, resulting from the E-phase execution, to the main memory.

Thus, the A-phase and R-phase are memory phases in which the

system bus is accessed to read/write data from/to main memory.

Each task executes non-preemptively, i.e., once a task starts execut-

ing its A-phase, it cannot be preempted by any other task until the

completion of its R-phase. It is also assumed that a core remains

idle during the execution of a memory phase. Similarly, the bus

handles memory phases in a non-preemptive fashion, i.e., if a bus

is handling the memory requests of a memory phase, the memory

phase cannot be preempted
2
until completion.

Each core maintains its own ready queue with tasks that are

ready to execute, sorted by task priority. Whenever a task in the

queue become ready to execute, the core requests access to the

system bus and if the system bus is free, the core executes the

A-phase of that task. However, if the system bus is busy serving

a memory phase from another core, then the core will busy-wait

until the bus becomes available, at which point it will execute the

A-phase of the task with highest priority in the ready queue. Once

the A-phase of a task completes, the E-phase of the same task starts

executing immediately on the core. After the E-phase completes,

the task requests access to the bus to execute its R-phase. At this

point, the core may have to busy-wait for the bus if the bus is

busy serving requests of co-running tasks. Once the bus becomes

available, the task can execute its R-phase and finalize its execution.

2
This is different from for example the work in [22] that allows global memory pre-

emptions during a memory phase.

2021-03-16 17:35. Page 2 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with Partitioned Scheduling RTNS’2021, April 7–9, 2021, NANTES, France

Note that under the considered execution model, a lower priority

task 𝜏 𝑗 running on the same core can only cause blocking to a

higher priority task 𝜏𝑖 , if 𝜏 𝑗 starts executing before 𝜏𝑖 .

We assume that if there are other tasks waiting in the core’s

ready-queue, the A-phase of another ready task of the same core

executes immediately once the R-phase of the currently executing

task completes and without requiring explicit access to the bus. This

is done to avoid blocking during this transition of phases/tasks.

When more than one core requests access to the system bus

simultaneously, it is assumed that in the worst-case, the core under

analysis accesses the bus after the completion of the bus requests

of all the 𝑚 − 1 cores (the request of the core under analysis is

the last to arrive according to the FCFS policy). We understand

that this assumption can be pessimistic and may negatively impact

schedulability. Consequently, we plan to address other bus arbitra-

tion policies e.g., Round Robin, TDMA, processor priority, etc. in a

future work.

3 BACKGROUND
In this section, we briefly discuss the Worst-Case Response Time

(WCRT) analysis of Fixed-Priority Non-Preemptive (FPNP) sched-

uling for single-core systems. This is essential as we later use this

analysis to build our proposed bus contention-aware WCRT analy-

sis for multicore systems.

For single-core platforms that use FPNP scheduling, the
WCRT of a task 𝜏𝑖 is observed in the longest level-𝑖 busy window [3].

The level-𝑖 busy window is defined as follows.

Definition 3.1. Level-𝑖 busy window: A level-𝑖 busy window is a

time interval (𝑎, 𝑏) in which the pending workload of tasks with

priorities higher or equal to that of task 𝜏𝑖 is positive for all 𝑡 ∈ (𝑎, 𝑏)
and 0 at the boundaries 𝑎 and 𝑏.

For any task 𝜏𝑖 executing under FPNP scheduling on a single

core processor, the longest level-𝑖 busy window is computed by

bounding the maximum blocking and the maximum interference 𝜏𝑖
may suffer due to tasks executing on the same core.

In FPNP scheduling, only one job of a lower priority task in 𝑙𝑝𝑖
can block the execution of task 𝜏𝑖 [3, 25]. Consequently, 𝜏𝑖 suffers

maximum blocking if that job has themaximum execution time over

all tasks in 𝑙𝑝𝑖 . We denote this term by 𝐶𝑚𝑎𝑥
𝑙𝑝𝑖

and its computation

is given by:

𝐶𝑚𝑎𝑥
𝑙𝑝𝑖

= max

𝜏 𝑗 ∈𝑙𝑝𝑖
{𝐶 𝑗 } (1)

All jobs of task 𝜏𝑖 can suffer interference from all higher or equal

priority tasks in ℎ𝑒𝑝𝑖 (including own jobs of 𝜏𝑖) that are executing

on the same core in the level-𝑖 busy window. Consequently, the

maximum interference 𝜏𝑖 may suffer due to tasks in ℎ𝑒𝑝𝑖 depends

on the maximum number of jobs released by all tasks in ℎ𝑒𝑝𝑖 in the

level-𝑖 busy window. Several different methods have been proposed

in the literature to bound the maximum number of jobs of any task

𝜏ℎ that may interfere with the execution of task 𝜏𝑖 . The use of event

arrival curves is one such technique proposed in [21].

When using event arrival curves, the upper event arrival function

[+ (Δ) is used to denote the maximum number of events that can

occur in an event stream in any time interval of length Δ. Using
the same concept, each job released by a task 𝜏ℎ ∈ ℎ𝑒𝑝𝑖 can be

considered as an event. Consequently, the maximum number of

jobs released by task 𝜏ℎ in any time interval of length Δ is given

by [+
ℎ
(Δ) and the maximum interference task 𝜏𝑖 can suffer due to

those jobs is upper bounded by [+
ℎ
(Δ) ×𝐶ℎ .

Using the upper bounds on themaximumblocking andmaximum

interference task 𝜏𝑖 can suffer, the length of the longest level-𝑖 busy

window𝑊𝑖 is given by the first fixed-point solution of the following

equation:

𝑊𝑖 = 𝐶
𝑚𝑎𝑥
𝑙𝑝𝑖

+
∑

𝜏ℎ ∈ℎ𝑒𝑝𝑖
([+
ℎ
(𝑊𝑖) ×𝐶ℎ) (2)

where [+
ℎ
(𝑊𝑖) gives the maximum number of jobs released by any

task 𝜏ℎ ∈ ℎ𝑒𝑝𝑖 in any time window of length𝑊𝑖 , and 𝐶ℎ is WCET

of task 𝜏ℎ in isolation
3
.

Having computed the length of the longest level-𝑖 busy window

𝑊𝑖 using Equation 2, the maximum number of jobs of task 𝜏𝑖 that

can execute within𝑊𝑖 is given by:

𝐾𝑖 = [
+
𝑖 (𝑊𝑖) (3)

Under FPNP scheduling, the WCRT of task 𝜏𝑖 is computed by com-

puting the response time of each job of 𝜏𝑖 that executes within𝑊𝑖 .

To compute the response time of any job of task 𝜏𝑖 that executes

within𝑊𝑖 , we must first compute the latest start time of that job

because once that job starts executing, it cannot be preempted by

any other job executing on the same core.

Let 𝜏𝑖,𝑘 be the 𝑘𝑡ℎ job of task 𝜏𝑖 executing during𝑊𝑖 , then the

latest start time 𝑠𝑖,𝑘 of 𝜏𝑖,𝑘 is given by:

𝑠𝑖,𝑘 = 𝐶𝑚𝑎𝑥
𝑙𝑝𝑖

+ (𝑘 − 1) ×𝐶𝑖 +
∑

ℎ∈ℎ𝑒𝑝𝑖\𝜏𝑖
[+
ℎ
(𝑠𝑖,𝑘) ×𝐶ℎ (4)

where 𝐶𝑚𝑎𝑥
𝑙𝑝𝑖

is given in Equation 1,

∑
ℎ∈ℎ𝑒𝑝𝑖\𝜏𝑖 [

+
ℎ
(𝑠𝑖,𝑘) ×𝐶ℎ cap-

tures the maximum interference suffered by 𝜏𝑖,𝑘 from ℎ𝑒𝑝𝑖 task

set (excluding 𝜏𝑖) in a time window of length 𝑠𝑖,𝑘 and (𝑘 − 1) ×𝐶𝑖
accounts for the execution time of previous jobs of task 𝜏𝑖 .

As 𝑠𝑖,𝑘 appears on the both sides in Equation 4, it can be solved

iteratively by initializing 𝑠𝑖,𝑘 = 𝐶𝑚𝑎𝑥
𝑙𝑝𝑖

+∑
ℎ∈ℎ𝑒𝑝𝑖\𝜏𝑖 𝐶ℎ .

The latest start time of 𝑘𝑡ℎ job of 𝜏𝑖 will then be given by the

smallest value of 𝑠𝑖,𝑘 for which Equation 4 converges.

Once the latest start time of 𝜏𝑖,𝑘 is computed, the response time

𝑅𝑖,𝑘 can then be simply computed by adding to it the WCET 𝐶𝑖 of

task 𝜏𝑖 , i.e.,

𝑅𝑖,𝑘 = 𝑠𝑖,𝑘 +𝐶𝑖 (5)

Finally, the WCRT of task 𝜏𝑖 is computed by maximizing Equation 5

over all the jobs of 𝜏𝑖 that can execute in the level-𝑖 busy window,

i.e., from 1 to 𝐾𝑖 ,

𝑅𝑚𝑎𝑥𝑖 = max

𝑘∈[1,𝐾𝑖]
{𝑅𝑖,𝑘 } (6)

4 BUSY WINDOW COMPUTATION
In this section, we explain how to compute the longest level-𝑖 busy

window executing on a given core 𝜋𝑙 for the taskmodel presented in

Section 2. To do so, wemust first compute the maximum interference
and maximum blocking suffered by 𝜏𝑖 from tasks running on the

same core.

3[+
ℎ
(𝑊𝑖) ×𝐶ℎ in Equation 2 is similar to in Equation 3 in [21], simply replacing the

set ℎ𝑝 (𝑖) by the set ℎ𝑒𝑝𝑖 .

2021-03-16 17:35. Page 3 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

RTNS’2021, April 7–9, 2021, NANTES, France Arora et al.

However, as explained earlier in the introduction, in a multicore

system multiple tasks may execute in parallel with 𝜏𝑖 . Hence, the

longest level-𝑖 busy window of a task 𝜏𝑖 does not only depend on

the tasks running on the same core but also on the tasks running on

the other cores due to the bus blocking. In this work, the core whose

tasks are under analysis is referred to as the local core (denoted as

𝜋𝑙) whereas a core whose tasks can cause bus blocking is referred

to as a remote core (usually denoted as 𝜋𝑟).

The jobs running on the local core 𝜋𝑙 in the longest level-𝑖 busy

window can suffer bus blocking from tasks executing on remote

cores when accessing the shared system bus to read/write the data

from/to the main memory. Bus blocking can increase the length

of the level-𝑖 busy window which may lead to an increase in the

WCRT of task 𝜏𝑖 . Therefore, when computing the length of level-𝑖

busy window of a task 𝜏𝑖 executing on a multi-core processor, it

is essential to consider the effect of bus blocking. To address this

effect, we extend Equation 2 by integrating the additional delay

due to bus blocking in order to compute the longest level-𝑖 busy

window.

Let𝑊𝑖,𝑙 be the length of the level-𝑖 busy window w.r.t a task 𝜏𝑖
executing on core 𝜋𝑙 , where𝑊𝑖,𝑙 is given by the first fixed-point

solution of the following equation:

𝑊𝑖,𝑙 = 𝐶
𝑚𝑎𝑥
𝑙𝑝𝑖,𝑙

+ 𝐵𝑢𝑠𝑚𝑎𝑥
𝑖,𝑙

(𝑊𝑖,𝑙) +
∑

𝜏ℎ ∈ℎ𝑒𝑝𝑖,𝑙
([+
ℎ
(𝑊𝑖,𝑙) ×𝐶ℎ) (7)

where 𝐶𝑚𝑎𝑥
𝑙𝑝𝑖,𝑙

is the maximum blocking caused by a job from an

lower priority task in 𝑙𝑝𝑖,𝑙 on 𝜏𝑖 , and
∑
𝜏ℎ ∈ℎ𝑒𝑝𝑖,𝑙 ([

+
ℎ
(𝑊𝑖,𝑙) ×𝐶ℎ) is

the maximum interference caused to 𝜏𝑖 by the tasks in ℎ𝑒𝑝𝑖,𝑙 w.r.t

core 𝜋𝑙 . These are computed in a similar manner as in Equation 2.

In Equation 7, 𝐵𝑢𝑠𝑚𝑎𝑥
𝑖,𝑙

(𝑊𝑖,𝑙) denotes the maximum bus blocking

suffered by tasks running on core 𝜋𝑙 from all co-running tasks

executing on remote cores in any time window of length𝑊𝑖,𝑙 .

Before explaining how the maximum bus blocking can be com-

puted (in Section 4.2), we will first derive important properties on

the 3-phase task execution model that we later build upon to upper

bound the bus blocking.

4.1 Useful Properties
The properties derived in this section are based on the 3-phase task

execution model as explained earlier in Section 2.2.

Property 1 (P1): On each core, a job can suffer bus blocking

only once, i.e., at its R-phase, when it executes immediately after

any other job on the same core.

Proof. Recall from section 2.2, when a job running on a core

completes its R-phase execution, the scheduler checks the status of

the ready-queue of the same core. The status of the ready-queue

can be either empty (if no other job is released on the same core) or

non-empty (if at least one job on the same core is ready to execute).

If the ready-queue of the same core is empty then the core will

release the bus.

On the other hand, if the ready-queue of the same core is non-

empty, there is at-least one job on the same core ready to execute.

The scheduler gives the bus access to the A-phase of the job with

highest priority among the jobs of the ready-queue of the same

core. Thus, a core can execute R- and A-phases back to back which

means that the A-phase does not suffer any bus blocking when it

Figure 1: Bus blocking caused by a remote core for each bus
blocking suffered at the local core

executes immediately after the R-phase of any other job of the same

core.

Therefore, on each core, a job that executes immediately after

another job of the same core can only suffer bus blocking once i.e.,

at its R-phase. □

Property 2 (P2): For each bus blocking suffered by a job on a

local core, a remote core can cause at most one bus blocking by

either from a memory phase of one job (A or R-phase) or one R and

one A phases of two different jobs running on that remote core.

Proof. When a job running on a local core requests access to

the bus, the following scenarios are possible.

Scenario 1: A job running on the remote core is already executing

its A-phase. Consequently, the job on the local core can only access

the bus after the completion of the A-phase of the job currently

executing on the remote core. Therefore, in this case, the bus block-

ing that can be caused by the remote core to a job running on the

local core is equivalent to the execution time of the A-phase of the

remote core’s job. This scenario is depicted in Figure 1 (a).

Scenario 2: A job on the remote core is executing its R-phase and

the remote core’s ready queue is empty. In this case, bus blocking

caused by the remote core to a job executing on the local core is

equivalent to the execution time of the R-phase of remote core’s

job, e.g., see Figure 1(b).

Scenario 3: A job on the remote core is executing its R-phase and

the remote core’s ready queue is non-empty. Once the R-phase of

the currently executing job is completed, the A-phase of the next job

from the remote core’s ready-queue will execute immediately. Thus,

the bus will only be released after the execution of R+A phases of

two different jobs of the remote core. In this case, the bus blocking

caused by the remote core to one job of the local core is equivalent

to the sum of the execution times of the R-phase and A-phase of

two different jobs running on that remote core. See Figure 1 (c) for

an example scenario.

Therefore, for each bus blocking suffered by a job on the local

core, a remote core can cause at most one bus blocking by either

memory phase of a job (A or R-phase) or by one R and one A-phase

of two different jobs running on that remote core. □

Property 3 (P3): When a single job of remote core participates

in one bus blocking, it can only participate by its A-phase or its

R-phase.

Proof. Directly follows from Property 2. □

2021-03-16 17:35. Page 4 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with Partitioned Scheduling RTNS’2021, April 7–9, 2021, NANTES, France

4.2 Bounding the Number of Bus Blockings
In case of a multicore system, all the jobs of the local core 𝜋𝑙 that

execute in the level-𝑖 busy window𝑊𝑖,𝑙 can suffer bus blocking

from co-running tasks executing on remote cores. This can directly

impact the length of the level-𝑖 busy window and the WCRT of the

task under analysis 𝜏𝑖 .

As identified in [22], tasks may exhibit release jitter i.e., the

time difference between the release of two consecutive jobs (i.e.,

A-phases) can be less than its minimum inter-arrival time. The

release jitter of a task not only impacts the timing behaviour of the

tasks running on the same core but it can also impact the timing

behaviour of the tasks running on other cores. This is due to the

fact that when tasks exhibit jitter, they can impose more memory

demand that can eventually cause more bus blocking to the tasks

running on other cores. While deriving the upper-bound on the bus

blocking, it is necessary to integrate the impact of the release jitter

of the tasks. In this work, we assume that the impact of release

jitter is addressed by the upper event arrival function [21] used to

bound the number of jobs that can be released by tasks in any time

interval of a given length (e.g., see Equation 2).

To bound the maximum bus blocking suffered by tasks running

on the local core 𝜋𝑙 due to co-running tasks executing on a remote

core 𝜋𝑟 , we start by computing the following values:

• 𝑁𝜋𝑙 (𝑊𝑖,𝑙), i.e., the maximum number of times tasks running
on the local core 𝜋𝑙 can suffer bus blocking in a time window
of length𝑊𝑖,𝑙 , and

• 𝑁𝜋𝑟 (𝑊𝑖,𝑙), i.e., the maximum number of times tasks running
on the remote core 𝜋𝑟 can cause bus blocking in𝑊𝑖,𝑙 .

Note that both values are needed in order to accurately upper-

bound the bus blocking as its value can be derived by comparing

𝑁𝜋𝑙 (𝑊𝑖,𝑙) against 𝑁𝜋𝑟 (𝑊𝑖,𝑙). For instance, assume that core 𝜋𝑙 can

suffer bus blocking ten times in𝑊𝑖,𝑙 but core 𝜋𝑟 can only cause

bus blocking two times in the same time interval. In this case, the

maximum number of bus blockings that tasks running on core

𝜋𝑙 can suffer due to 𝜋𝑟 in𝑊𝑖,𝑙 is upper bounded by the value of

𝑁𝜋𝑟 (𝑊𝑖,𝑙), that is two.
Themaximum number of times tasks running on the local core 𝜋𝑙

(resp. remote core 𝜋𝑟) can suffer (resp. cause) bus blocking in a time

window of length𝑊𝑖,𝑙 is dependent on the maximum number of

memory phases released on the local (resp. remote) core in that time

interval. Since a memory phase is a part of a job, values of 𝑁𝜋𝑙 (𝑊𝑖,𝑙)
and 𝑁𝜋𝑟 (𝑊𝑖,𝑙) can be derived by considering the maximum number

of jobs released on the local as well as remote cores in any time

window of length𝑊𝑖,𝑙 . This leads to the following lemmas.

Lemma 4.1. The maximum number of times tasks running on a
local core 𝜋𝑙 can suffer bus blocking in a window of length𝑊𝑖,𝑙 is
upper bounded by:

𝑁𝜋𝑙 (𝑊𝑖,𝑙) =
∑

𝜏ℎ ∈ℎ𝑒𝑝𝑖,𝑙
[+
ℎ
(𝑊𝑖,𝑙) + 1 (8)

Proof. In the longest level-𝑖 busy window, all jobs that execute

on the local core (except the first job) can only execute after the

completion of the R-phase of a previous job on the same core. Since

we assume that the A-phase of a task can start immediately after

the completion of R-phase of a previous job, each job (except the

first) will not suffer any bus blocking at its A-phase and thus can

Figure 2: First job that executes in𝑊𝑖,𝑙 on core 𝜋𝑙 is from 𝑙𝑝𝑖,𝑙

Figure 3: First job that executes in𝑊𝑖,𝑙 on core 𝜋𝑙 is from ℎ𝑝𝑖,𝑙

only suffer bus blocking once, i.e., before starting its R-phase (see

Property P1). Consequently, the maximum number of bus blockings

suffered by tasks running on a local core 𝜋𝑙 in a time window of

length 𝑊𝑖,𝑙 is upper bounded by the maximum number of jobs

released by tasks in ℎ𝑒𝑝𝑖,𝑙 in𝑊𝑖,𝑙 , i.e.,
∑
𝜏ℎ ∈ℎ𝑒𝑝𝑖,𝑙 [

+
ℎ
(𝑊𝑖,𝑙).

To account for the additional 1 in Equation 8, two possible cases

are considered.

Case 1: If the first job in the busy window is a job from a lower

priority task, then it can only suffer bus blocking at its R-phase as a

lower priority task can only cause blocking to task 𝜏𝑖 after it starts

executing its A-phase on the bus (see Section 2.2). Therefore, the

additional 1 in the Equation 8 accounts for the bus blocking suffered

by this lower priority task at its R-phase. An example scenario is

depicted in Figure 2.

Case 2: If 𝜏𝑖 does not suffer any blocking from a lower priority task

(e.g. if 𝜏𝑖 is the lowest priority task) then the first job executed in

the longest level-𝑖 busy window can also suffer bus blocking at its

A-phase. In this case, the additional 1 accounts for the bus blocking

suffered by the first job of task 𝜏ℎ ∈ ℎ𝑒𝑝𝑖,𝑙 or 𝜏𝑖 before starting its
A-phase on core 𝜋𝑙 . An example scenario is depicted in Figure 3.

Hence, the maximum number of bus blockings tasks running on

core 𝜋𝑙 can suffer in𝑊𝑖,𝑙 is bounded by
∑
𝜏ℎ ∈ℎ𝑒𝑝𝑖,𝑙 [

+
ℎ
(𝑊𝑖,𝑙) + 1. □

Lemma 4.2. The maximum number of times tasks running on a
remote core 𝜋𝑟 can cause bus blocking in a time window of length
𝑊𝑖,𝑙 is upper bounded by 𝑁𝜋𝑟 (𝑊𝑖,𝑙), where 𝑁𝜋𝑟 (𝑊𝑖,𝑙) is given by:

𝑁𝜋𝑟 (𝑊𝑖,𝑙) =
∑
𝜏𝑢 ∈Γ𝑟

[+𝑢 (𝑊𝑖,𝑙) (9)

where Γ𝑟 is the set of all tasks that are running on core 𝜋𝑟 .

Proof. The maximum number of bus blockings that can be

caused by the tasks running on core 𝜋𝑟 is dependent on the number

of jobs released on core 𝜋𝑟 in a timewindow of length𝑊𝑖,𝑙 . Since any

task running on core 𝜋𝑟 in𝑊𝑖,𝑙 can participate in the bus blocking,

the value of 𝑁𝜋𝑟 (𝑊𝑖,𝑙) is upper bounded by

∑
𝜏𝑢 ∈Γ𝑟 [

+
𝑢 (𝑊𝑖,𝑙). □

2021-03-16 17:35. Page 5 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

RTNS’2021, April 7–9, 2021, NANTES, France Arora et al.

4.3 Bounding Maximum Bus Blocking
Having bounded the values of𝑁𝜋𝑙 (𝑊𝑖,𝑙) and𝑁𝜋𝑟 (𝑊𝑖,𝑙), we can now
compute the maximum bus blocking that can be suffered by tasks

on core 𝜋𝑙 during𝑊𝑖,𝑙 from co-running tasks executing on a remote

core 𝜋𝑟 . For this, three cases must be considered:

(i) Case 1: 𝑁𝜋𝑙 (𝑊𝑖,𝑙) > 𝑁𝜋𝑟 (𝑊𝑖,𝑙), the maximum number of bus

blockings that can be suffered by tasks executing on core 𝜋𝑙 is

greater than the maximum number of bus blockings that can be

caused by tasks executing on core 𝜋𝑟 in the time window𝑊𝑖,𝑙 .

(ii) Case 2: 𝑁𝜋𝑙 (𝑊𝑖,𝑙) = 𝑁𝜋𝑟 (𝑊𝑖,𝑙), the maximum number of bus

blockings that can be suffered by tasks executing on core 𝜋𝑙 is equal

to the maximum number of bus blockings that can be caused by

tasks executing on core 𝜋𝑟 in the time window𝑊𝑖,𝑙 .

(iii) Case 3: 𝑁𝜋𝑙 (𝑊𝑖,𝑙) < 𝑁𝜋𝑟 (𝑊𝑖,𝑙), the maximum number of

bus blockings that can be suffered by tasks executing on core 𝜋𝑙 is

less than the maximum number of bus blockings that can be caused

by tasks executing on core 𝜋𝑟 in the time window𝑊𝑖,𝑙 .

Before explaining how the maximum bus blocking can be com-

puted in each case, we first define useful notations.

Let𝑀𝐴
𝑟 (resp.𝑀𝑅

𝑟) be an ordered set that contains the execution

time of the A-phases (resp. R-phases) of all jobs released on core

𝜋𝑟 in a time window of length𝑊𝑖,𝑙 , sorted in a non-increasing order,
i.e.,

𝑀𝐴
𝑟 = {𝐶𝐴

𝑟,1
,𝐶𝐴
𝑟,2
, . . . ,𝐶𝐴

𝑟,�̂�𝜋𝑟

| 𝐶𝐴𝑟,𝑥 ≥ 𝐶𝐴
𝑟,𝑥+1}

𝑀𝑅
𝑟 = {𝐶𝑅

𝑟,1
,𝐶𝑅
𝑟,2
, . . . ,𝐶𝑅

𝑟,�̂�𝜋𝑟

| 𝐶𝑅𝑟,𝑦 ≥ 𝐶𝑅
𝑟,𝑦+1}

where �̂�𝜋𝑟 is equal to the value of 𝑁𝜋𝑟 (𝑊𝑖,𝑙) computed using Equa-

tion 9. Note that 𝐶𝐴𝑟,𝑥 and 𝐶𝑅𝑟,𝑦 may or may not belong to different

jobs released on core 𝜋𝑟 in𝑊𝑖,𝑙 .

Case 1: For 𝑁𝜋𝑙 (𝑊𝑖,𝑙) > 𝑁𝜋𝑟 (𝑊𝑖,𝑙), all memory phases of all jobs

released on core 𝜋𝑟 in𝑊𝑖,𝑙 can contribute to bus blocking (e.g., see

Figure 4). This leads to the following lemma.

Figure 4: Maximum bus blocking for 𝑁𝜋𝑙 (𝑊𝑖,𝑙) > 𝑁𝜋𝑟 (𝑊𝑖,𝑙)

Lemma 4.3. If 𝑁𝜋𝑙 (𝑊𝑖,𝑙) > 𝑁𝜋𝑟 (𝑊𝑖,𝑙), then the maximum bus
blocking that can be caused by tasks running on core 𝜋𝑟 to tasks
running on core 𝜋𝑙 in a time window of length𝑊𝑖,𝑙 is upper bounded
by 𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙), given by:

𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙) =
�̂�𝜋𝑟∑
𝑥=1

𝐶𝐴𝑟,𝑥 +
�̂�𝜋𝑟∑
𝑦=1

𝐶𝑅𝑟,𝑦 (10)

where 𝐶𝐴𝑟,𝑥 (resp. 𝐶𝑅𝑟,𝑦) is the execution time of an A-phase (resp.
R-phase) in the set𝑀𝐴

𝑟 (resp. 𝐶𝑅𝑟,𝑦 ∈ 𝑀𝑅
𝑟).

Proof. Each bus blocking caused by 𝜋𝑟 can be composed of

either an A-, or an R-phase of a job, or one R- and one A-phase

of two different jobs released on core 𝜋𝑟 in𝑊𝑖,𝑙 , as stated in P2.

Since, the precise bus access times of tasks running on core 𝜋𝑟 are

unknown, and if 𝑁𝜋𝑙 (𝑊𝑖,𝑙) > 𝑁𝜋𝑟 (𝑊𝑖,𝑙), all the memory phases of

all the jobs of 𝜋𝑟 released in𝑊𝑖,𝑙 can cause bus blocking to the tasks

running on 𝜋𝑙 in𝑊𝑖,𝑙 in the worst-case (e.g., see Figure 4).

Therefore, for 𝑁𝜋𝑙 (𝑊𝑖,𝑙) > 𝑁𝜋𝑟 (𝑊𝑖,𝑙), the maximum contribu-

tion of �̂�𝜋𝑟 jobs, i.e.,

∑�̂�𝜋𝑟

𝑥=1
𝐶𝐴𝑟,𝑥 + ∑�̂�𝜋𝑟

𝑦=1
𝐶𝑅𝑟,𝑦 , upper bounds the

maximum bus blocking. □

Case 2: If 𝑁𝜋𝑙 (𝑊𝑖,𝑙) = 𝑁𝜋𝑟 (𝑊𝑖,𝑙) then all the memory phases except
one from all the jobs released on core 𝜋𝑟 in the time window𝑊𝑖,𝑙
can contribute to the bus blocking. To understand this, assume that

the number of bus blockings that can be suffered (resp. caused) by

tasks executing on core 𝜋𝑙 (resp. core 𝜋𝑟) in𝑊𝑖,𝑙 is three. In this

case, there can be two possible scenarios, either the R-phase of the

last job that executes on core 𝜋𝑟 in𝑊𝑖,𝑙 (e.g., see Figure 5) or the

A-phase of the first job that executes on core 𝜋𝑟 in𝑊𝑖,𝑙 (e.g., see

Figure 6) cannot participate in the bus blocking. This leads to the

following Lemma.

Figure 5: Possible scenario 1 when 𝑁𝜋𝑙 (𝑊𝑖,𝑙) = 𝑁𝜋𝑟 (𝑊𝑖,𝑙)

Figure 6: Possible scenario 2 when 𝑁𝜋𝑙 (𝑊𝑖,𝑙) = 𝑁𝜋𝑟 (𝑊𝑖,𝑙)

Lemma 4.4. If 𝑁𝜋𝑙 (𝑊𝑖,𝑙) = 𝑁𝜋𝑟 (𝑊𝑖,𝑙), then the maximum bus
blocking 𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙) that can be caused by tasks running on core 𝜋𝑟
to tasks running on core 𝜋𝑙 in a time window of length𝑊𝑖,𝑙 is upper
bounded by:

𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙) =
�̂�𝜋𝑟∑
𝑥=1

𝐶𝐴𝑟,𝑥 +
�̂�𝜋𝑟∑
𝑦=1

𝐶𝑅𝑟,𝑦 −min(min

∀𝑥 ∈𝑀𝐴
𝑟

{𝐶𝐴𝑟,𝑥 }, min

∀𝑦∈𝑀𝑅
𝑟

{𝐶𝑅𝑟,𝑦})

(11)

2021-03-16 17:35. Page 6 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with Partitioned Scheduling RTNS’2021, April 7–9, 2021, NANTES, France

Proof. We prove the lemma using the following two observa-

tions:

1. If the A-phase of the first job on 𝜋𝑟 participates to the bus

blocking of any job of 𝜋𝑙 released in𝑊𝑖,𝑙 , then the first bus blocking

is composed of only an A-phase (see P3) while the rest of the bus

blockings can be composed of one R- and one A-phase of two

different jobs running on 𝜋𝑟 within𝑊𝑖,𝑙 (see P2). Consequently,

the R-phase of the last job executing on 𝜋𝑟 within 𝑊𝑖,𝑙 cannot

participate to 𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙). Since we do not know which job on core

𝜋𝑟 will be the last to execute in𝑊𝑖,𝑙 , we assume that the job with

the smallest R-phase is the last job that executes on core 𝜋𝑟 in𝑊𝑖,𝑙
(e.g., see Figure 5).

2. If the A-phase of the first job on 𝜋𝑟 does not block the memory-

phase of any job of 𝜋𝑙 released in𝑊𝑖,𝑙 , i.e., the first bus blocking is

composed of an R-phase of the first job and an A-phase of any other

job executed on 𝜋𝑟 within𝑊𝑖,𝑙 (refer to P2), then all the memory

phases except the A-phase of the first job executing on 𝜋𝑟 within

𝑊𝑖,𝑙 can contribute to 𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙). Since we do not know which

job on core 𝜋𝑟 will execute first within𝑊𝑖,𝑙 , we assume that the job

with the smallest A-phase is the first job that executes on core 𝜋𝑟 .

See Figure 6 for an example scenario.

Building on the above observations, either one A-phase or one

R-phase cannot participate to 𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙). Therefore, 𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙)
is maximised when the non-participating memory phase is the

smallest among those in𝑀𝐴
𝑟 and𝑀𝑅

𝑟 , hence proving the lemma. □

Case 3: If 𝑁𝜋𝑙 (𝑊𝑖,𝑙) < 𝑁𝜋𝑟 (𝑊𝑖,𝑙), then at most 𝑁𝜋𝑙 (𝑊𝑖,𝑙) bus block-
ings can be caused by tasks running on core 𝜋𝑟 to tasks running

on core 𝜋𝑙 in𝑊𝑖,𝑙 .

To extract the 𝑁𝜋𝑙 (𝑊𝑖,𝑙) A and R-phases with the highest mem-

ory demands among all jobs that execute on 𝜋𝑟 in𝑊𝑖,𝑙 , we first

divide the set 𝑀𝐴
𝑟 (resp. 𝑀𝑅

𝑟) into two sub-sets named 𝑀𝐴𝐻
𝑟 and

𝑀𝐴𝐿
𝑟 (resp.𝑀𝑅𝐻

𝑟 and𝑀𝑅𝐿
𝑟). The subset𝑀𝐴𝐻

𝑟 (resp.𝑀𝑅𝐻
𝑟) contains

𝑁𝜋𝑙 (𝑊𝑖,𝑙) A-phases (resp. R-phases) with the highest memory de-

mands and the rest of the A-phases (resp. R-phases) are in the subset

𝑀𝐴𝐿
𝑟 (resp.𝑀𝑅𝐿

𝑟). Formally, these subsets are defined as follows:

𝑀𝐴𝐻
𝑟 ={𝐶𝐴𝑟,1,𝐶

𝐴
𝑟,2, . . . ,𝐶

𝐴

𝑟,�̂�𝜋𝑙

| 𝐶𝐴𝑟,𝑥 ≥ 𝐶𝐴𝑟,𝑥+1}

𝑀𝐴𝐿
𝑟 ={𝐶𝐴

𝑟,�̂�𝜋𝑙
+1,𝐶

𝐴

𝑟,�̂�𝜋𝑙
+2, . . . ,𝐶

𝐴

𝑟,�̂�𝜋𝑟

| 𝐶𝐴𝑟,𝑦 ≥ 𝐶𝐴𝑟,𝑦+1}

𝑀𝑅𝐻
𝑟 ={𝐶𝑅𝑟,1,𝐶

𝑅
𝑟,2, . . . ,𝐶

𝑅

𝑟,�̂�𝜋𝑙

| 𝐶𝑅𝑟,𝑥 ≥ 𝐶𝑅𝑟,𝑥+1}

𝑀𝑅𝐿
𝑟 ={𝐶𝑅

𝑟,�̂�𝜋𝑙
+1,𝐶

𝑅

𝑟,�̂�𝜋𝑙
+2, . . . ,𝐶

𝑅

𝑟,�̂�𝜋𝑟

| 𝐶𝑅𝑟,𝑦 ≥ 𝐶𝑅𝑟,𝑦+1}

where �̂�𝜋𝑙 = 𝑁𝜋𝑙 (𝑊𝑖,𝑙) and can be computed using Equation 8.

We then identify two possible sub-cases:

Sub-case 1: The core 𝜋𝑟 can cause �̂�𝜋𝑙 number of bus blockings

using all the elements of the 𝑀𝐴𝐻
𝑟 and 𝑀𝑅𝐻

𝑟 sub-sets in which

each bus blocking is composed of one A- and one R-phase of two

different jobs. The maximum bus blocking in this sub-case can be

simply derived by considering the sum of all the A- and R-phases in

𝑀𝐴𝐻
𝑟 and𝑀𝑅𝐻

𝑟 sub-sets. We discussed this sub-case in Lemma 4.5.

Sub-case 2: The core 𝜋𝑟 cannot cause �̂�𝜋𝑙 number of bus block-

ings using all the elements of𝑀𝐴𝐻
𝑟 and𝑀𝑅𝐻

𝑟 . This can only happen

if all the elements of𝑀𝐴𝐻
𝑟 and𝑀𝑅𝐻

𝑟 are associated to the same set

of jobs. In other words, the A- and R-phases pertain to the exact

same job. In this sub-case, one memory phase in𝑀𝐴𝐻
𝑟 or𝑀𝑅𝐻

𝑟 does

not participate to the bus blockings. This sub-case is discussed in

Lemma 4.6.

Lemma 4.5. If core 𝜋𝑟 can cause �̂�𝜋𝑙 number of bus blockings using
all the elements of𝑀𝐴𝐻

𝑟 and𝑀𝑅𝐻
𝑟 sub-sets, then the maximum bus

blocking 𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙) that can be caused by tasks running on core 𝜋𝑟
to tasks running on core 𝜋𝑙 in a time window of length𝑊𝑖,𝑙 is upper
bounded by:

𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙) =
�̂�𝜋𝑙∑
𝑥=1

𝐶𝐴𝑟,𝑥 +
�̂�𝜋𝑙∑
𝑦=1

𝐶𝑅𝑟,𝑦 (12)

where 𝐶𝐴𝑟,𝑥 (resp. 𝐶𝑅𝑟,𝑦) is the execution time of the A-phase (resp.
R-phase), 𝐶𝐴𝑟,𝑥 ∈ 𝑀𝐴𝐻

𝑟 (resp. 𝐶𝑅𝑟,𝑦 ∈ 𝑀𝑅𝐻
𝑟).

Proof. If core 𝜋𝑟 can cause �̂�𝜋𝑙 bus blockings, in which each bus

blocking is composed of one R- and one A-phase of two different

jobs by using all the elements of 𝑀𝐴𝐻
𝑟 and 𝑀𝑅𝐻

𝑟 sub-sets, then

all the memory phases of 𝑀𝐴𝐻
𝑟 and 𝑀𝑅𝐻

𝑟 can participate to the

bus blocking. Since, 𝑀𝐴𝐻
𝑟 and 𝑀𝑅𝐻

𝑟 are the sub-sets that contain

memory phases with higher memory demand, the maximum bus

blocking that can be caused by tasks running on core 𝜋𝑟 to tasks

running on core 𝜋𝑙 in a time window of length𝑊𝑖,𝑙 can be upper-

bounded by taking the sum of all the memory phases in 𝑀𝐴𝐻
𝑟

and𝑀𝑅𝐻
𝑟 sub-sets. Hence, Equation 12 bounds the maximum bus

blocking in this sub-case. □

Lemma 4.6. If core 𝜋𝑟 cannot cause �̂�𝜋𝑙 number of bus blockings
using all the elements of𝑀𝐴𝐻

𝑟 and𝑀𝑅𝐻
𝑟 sub-sets, then the maximum

bus blocking 𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙) that can be caused by tasks running on core
𝜋𝑟 to tasks running on core 𝜋𝑙 in a time window of length𝑊𝑖,𝑙 is upper
bounded by:

𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙) =
�̂�𝜋𝑙∑
𝑥=1

𝐶𝐴𝑟,𝑥 +
�̂�𝜋𝑙∑
𝑦=1

𝐶𝑅𝑟,𝑦

−min

(
(min

∀𝑥 ∈𝑀𝐴𝐻
𝑟

{𝐶𝐴𝑟,𝑥 } − max

∀𝑦∈𝑀𝐴𝐿
𝑟

{𝐶𝐴𝑟,𝑦}),

(min

∀𝑥 ∈𝑀𝑅𝐻
𝑟

{𝐶𝑅𝑟,𝑥 } − max

∀𝑦∈𝑀𝑅𝐿
𝑟

{𝐶𝑅𝑟,𝑦})
) (13)

where min

∀𝑥 ∈𝑀𝐴𝐻
𝑟

{𝐶𝐴𝑟,𝑥 } (resp. min

∀𝑥 ∈𝑀𝑅𝐻
𝑟

{𝐶𝑅𝑟,𝑥 }) returns the smallest ele-

ment of𝑀𝐴𝐻
𝑟 (resp.𝑀𝑅𝐻

𝑟); and max

∀𝑦∈𝑀𝐴𝐿
𝑟

{𝐶𝐴𝑟,𝑦} (resp. max

∀𝑦∈𝑀𝑅𝐿
𝑟

{𝐶𝑅𝑟,𝑦})

returns the largest element of𝑀𝐴𝐿
𝑟 (resp.𝑀𝑅𝐿

𝑟).

Proof. We know that core 𝜋𝑟 can cause at most �̂�𝜋𝑙 bus block-

ings in which each bus blocking is from one R- and one A-phase

of two different jobs. To derive the maximum bus blocking, it is

necessary to consider all the elements of𝑀𝐴𝐻
𝑟 and𝑀𝑅𝐻

𝑟 sub-sets as

they contain the memory phases with the largest execution times.

However, if all the elements of𝑀𝐴𝐻
𝑟 and𝑀𝑅𝐻

𝑟 are associated to the

exact same set of jobs of core 𝜋𝑟 , then at-least one memory phase

from either 𝑀𝐴𝐻
𝑟 or 𝑀𝑅𝐻

𝑟 cannot participate to the bus blocking.

This happens because either the A-phase of the first job (i.e., an

element from𝑀𝐴𝐻
𝑟) or the R-phase of the last job that execute on

𝜋𝑟 (i.e., an element from𝑀𝑅𝐻
𝑟) cannot participate to the bus block-

ings. Since, we have 𝑁𝜋𝑙 (𝑊𝑖,𝑙) < 𝑁𝜋𝑟 (𝑊𝑖,𝑙), one memory phase

2021-03-16 17:35. Page 7 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

RTNS’2021, April 7–9, 2021, NANTES, France Arora et al.

from𝑀𝐴𝐿
𝑟 or𝑀𝑅𝐿

𝑟 sub-set can participate. Consequently, �̂�𝜋𝑙 bus

blockings can be obtained in which each bus blocking is composed

of one R- and one A-phase of two different jobs of core 𝜋𝑟 .

Considering the above, the bus blocking is maximized when the

non-participating memory phase in𝑀𝐴𝐻
𝑟 or𝑀𝑅𝐻

𝑟 is smallest and

the participating memory phase in𝑀𝐴𝐿
𝑟 or𝑀𝑅𝐿

𝑟 is largest. Hence,

Equation 13 bounds the maximum bus blocking in this sub-case. □

Assuming that the bus arbitration policy is FCFS, the maximum

bus blocking 𝐵𝑢𝑠𝑚𝑎𝑥
𝑖,𝑙

(𝑊𝑖,𝑙) suffered by the local core due to all
remote cores is thus given by:

𝐵𝑢𝑠𝑚𝑎𝑥
𝑖,𝑙

(𝑊𝑖,𝑙) =
𝑚∑

𝑟=1,𝑟≠𝑙

𝐵𝑢𝑠𝑖,𝑟 (𝑊𝑖,𝑙) (14)

5 SCHEDULABILITY ANALYSIS
Having derived the maximum bus blocking that can be suffered by

tasks executing on the local core using Equation 14, we can now

compute the length of the longest level-𝑖 busy window𝑊𝑖,𝑙 using

Equation 7. Similarly, the maximum number of jobs of task 𝜏𝑖 that

can execute within𝑊𝑖,𝑙 can be computed using Equation 3.

As proven in [3], to compute the WCRT of task 𝜏𝑖 , we need to

first determine the response time of each job of 𝜏𝑖 that executes

during the level-𝑖 busy window𝑊𝑖,𝑙 . Moreover, we also know that

on a multicore platform, all jobs of all tasks executing on the local

core 𝜋𝑙 within𝑊𝑖,𝑙 can suffer bus blocking due to co-running tasks

that are executing on the remote cores. This must be factored in

WCRT analysis.

To compute the response time of the 𝑘𝑡ℎ job of 𝜏𝑖 on core 𝜋𝑙 ,

i.e., denoted by 𝜏𝑖,𝑘,𝑙 , we first need to compute the latest starting

time of the R-phase of 𝜏𝑖,𝑘,𝑙 . This is due to the fact that each job that

executes on core 𝜋𝑙 during the response-time of 𝜏𝑖,𝑘,𝑙 , including

𝜏𝑖,𝑘,𝑙 , can suffer bus blocking until starting the R-phase of 𝜏𝑖,𝑘,𝑙 . The

computation of the latest starting time of the R-phase of 𝜏𝑖,𝑘,𝑙 on

core 𝜋𝑙 is given by the following Lemma.

Lemma 5.1. The latest start time of the R-phase of 𝜏𝑖,𝑘,𝑙 is denoted
by 𝑠𝑅

𝑖,𝑘,𝑙
and is given by the first positive value of the fixed-point

iteration of the following equation:

𝑠𝑅
𝑖,𝑘,𝑙

= 𝐶𝑚𝑎𝑥
𝑙𝑝,𝑖,𝑙

+
∑

ℎ∈ℎ𝑒𝑝𝑖,𝑙 \𝜏𝑖
[+
ℎ
(𝑠𝑅
𝑖,𝑘,𝑙

− (𝐶𝐴𝑖 +𝐶𝐸𝑖)) ×𝐶ℎ+

𝐵𝑢𝑠𝑚𝑎𝑥
𝑖,𝑙

(𝑠𝑅
𝑖,𝑘,𝑙

) + (𝑘 − 1) ×𝐶𝑖 + (𝐶𝐴𝑖 +𝐶𝐸𝑖)
(15)

Proof. The proof is divided in two steps. In the first step, we

upper bound the contributions of tasks executing on the same core

to the start time of R-phase of 𝜏𝑖,𝑘,𝑙 . In step two, we will upper

bound the impact of tasks running on the remote cores 𝜋𝑙 on the

start time of R-phase of 𝜏𝑖,𝑘,𝑙 .

Step 1. Task 𝜏𝑖 can suffer blocking from at most one job from

lower priority tasks in 𝑙𝑝𝑖,𝑙 . This blocking is upper bounded by

𝐶𝑚𝑎𝑥
𝑙𝑝,𝑖,𝑙

i.e., computed using Equation 1.

All jobs released by the higher priority tasks in ℎ𝑒𝑝𝑖,𝑙 can cause

interference on 𝜏𝑖,𝑘,𝑙 until the start of its A-phase due to non-

preemptive scheduling. Hence, the total interference that can be

caused by a task 𝜏ℎ ∈ ℎ𝑒𝑝𝑖,𝑙 until the start of A-phase of 𝜏𝑖,𝑘,𝑙 is
upper bounded by [+

ℎ
(𝑠𝑅
𝑖,𝑘,𝑙

−(𝐶𝐴
𝑖
+𝐶𝐸

𝑖
))×𝐶ℎ , where𝐶ℎ is theWCET

of task 𝜏ℎ in isolation. Effectively, the total contribution from all

tasks in ℎ𝑒𝑝𝑖,𝑙 to the start time of R-phase of 𝜏𝑖,𝑘,𝑙 is upper bounded

by

∑
ℎ∈ℎ𝑒𝑝𝑖,𝑙 \𝜏𝑖 [

+
ℎ
(𝑠𝑅
𝑖,𝑘,𝑙

− (𝐶𝐴
𝑖
+𝐶𝐸

𝑖
)) ×𝐶ℎ .

Knowing that 𝑘 − 1 jobs of task 𝜏𝑖 may have executed before

𝜏𝑖,𝑘,𝑙 , their contribution to the latest start time of the R-phase of

𝜏𝑖,𝑘,𝑙 is given by (𝑘 − 1) ×𝐶𝑖 .
Finally, to compute the start time of the R-phase of 𝜏𝑖,𝑘,𝑙 , we add

the WCET of A- and E-phase of 𝜏𝑖 , given by (𝐶𝐴
𝑖
+𝐶𝐸

𝑖
).

Step 2. It is possible that each job on core 𝜋𝑙 executing before

𝜏𝑖,𝑘,𝑙 (and 𝜏𝑖,𝑘,𝑙 itself) can suffer bus blocking due to tasks running

on the remote cores. Thus, the maximum bus blocking caused by

co-running tasks executing on all the remote cores until the start of

R-phase of 𝜏𝑖,𝑘,𝑙 is upper bounded by 𝐵𝑢𝑠𝑚𝑎𝑥
𝑖,𝑙

(𝑠𝑅
𝑖,𝑘,𝑙

) which is given

by Equation 14. □

As 𝑠𝑅
𝑖,𝑘,𝑙

appears on both sides of Equation 15, it can be solved

iteratively by initializing 𝑠𝑅
𝑖,𝑘,𝑙

= 𝐶𝐴
𝑖
+𝐶𝐸

𝑖
+𝐶𝑚𝑎𝑥

𝑙𝑝,𝑖,𝑙
+∑

ℎ∈ℎ𝑒𝑝𝑖,𝑙 \𝜏𝑖 𝐶ℎ .

The starting time 𝑠𝑅
𝑖,𝑘,𝑙

will then be given by the smallest positive

value of 𝑠𝑅
𝑖,𝑘,𝑙

for which Equation 15 converges.

Using 𝑠𝑅
𝑖,𝑘,𝑙

, the response time 𝑅𝑖,𝑘,𝑙 of 𝜏𝑖,𝑘,𝑙 can be computed by

simply adding to it the execution time of R-phase 𝐶𝑅
𝑖
of task 𝜏𝑖 .

𝑅𝑖,𝑘,𝑙 = 𝑠
𝑅
𝑖,𝑘,𝑙

+𝐶𝑅𝑖 (16)

Finally, the WCRT of task 𝜏𝑖 can be computed by maximizing equa-

tion 16 over all jobs of 𝜏𝑖 that execute during the level-𝑖 busywindow.

Hence,

𝑅𝑚𝑎𝑥
𝑖,𝑙

= max

𝑘∈[1,𝐾𝑖]
{𝑅𝑖,𝑘,𝑙 } (17)

where the computation of 𝐾𝑖 is given in Equation 3.

5.1 Schedulability Test
If the WCRT of each task in the system is less than or equal to its

relative deadline, then the system is deemed schedulable, otherwise

it is not. Furthermore, the task set can only be schedulable if the

total bus utilization of the system is less than or equal to 1 since

the system bus is saturated otherwise.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of the proposed ap-

proach and compare its performance with a similar analysis from

the state-of-the-art.

6.1 Proposed Work vs. State-of-the-Art [22]
The work proposed in [22] focuses on bounding the memory inter-

ference for PREM-based tasks scheduled on a multicore platform

using partitioned fixed-priority non-preemptive scheduling while

we focus on the 3-phase task model. In addition, the work in [22]

assumes a processor-priority based bus arbitration policy which

allows Higher Priority (HP) processors to preempt memory phases

that might be executing on Lower Priority (LP) processors while

we assume a FCFS approach. In [22], the maximum memory in-

terference suffered by the LP processor from the tasks running

on the HP processors in any time window of length Δ is derived

using all the memory phases released on HP processors in any time

window of length Δ (see Equation 3 of [22]) or by upper bounding

2021-03-16 17:35. Page 8 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with Partitioned Scheduling RTNS’2021, April 7–9, 2021, NANTES, France

the maximum interference each memory phase on the LP processor

can suffer from tasks running on HP processors (see Equation 6

of [22]).

To have a meaningful comparison between our work and the

work in [22], we assume that all the cores have the same priority.

Moreover, we also do not allow global memory preemptions. Note

that by doing so the analysis presented in [22] also behaves like

a FCFS-based analysis. Equation 6 of [22] integrates the impact of

global memory preemptions. Therefore, we adapted the formulation

of Equation 6 of [22] to account for non-preemptive execution of

memory phases
4
.

6.2 Experiments
To compare the performance of our proposed analysis against the

analysis in [22], we performed different sets of experiments using

synthetic task sets. The default configuration was a multicore plat-

form with 4 cores and a task set size of 32 tasks with 8 tasks per

core. Task utilizations were generated using Uunifast-discard [11].

Task periods were generated using log-uniform distribution in the

range of [100,1000].

The WCET𝐶𝑖 of each task 𝜏𝑖 was obtained by the product𝑈𝑖 ×𝑇𝑖 .
The memory demand (𝑀𝐷) for each task was assigned randomly be-

tween [10%, 30%]. The values of𝐶𝐴
𝑖
,𝐶𝐸
𝑖
and𝐶𝑅

𝑖
are then chosen such

that𝐶𝐴
𝑖
+𝐶𝑅

𝑖
= 𝑀𝐷 ×𝐶𝑖 5 and𝐶𝐸𝑖 = 𝐶𝑖 − (𝐶𝐴

𝑖
+𝐶𝑅

𝑖
). Task deadlines

are implicit with priorities assigned using Rate-Monotonic [13].

We evaluated the impact of both analyses on task set schedula-

bility by varying different parameters, i.e., core utilization, number

of cores, task memory demands, and task periods.

1. Core Utilization: In this experiment, we varied each core

utilization between 0.05 and 1 in steps of 0.05 and plotted the num-

ber of task sets that were deemed schedulable by all the analyzed

approaches. In this experiment, 1000 task sets were generated per

point. The percentage of task sets that were deemed schedulable

using our approach, i.e., marked as OUR, and the approach in [22],

i.e., marked as SCHW, for each core utilization value are shown in

Figure 7. We can see in Figure 7 that our proposed analysis outper-

forms the analysis in [22] because of a tighter bound on the bus

contention that can be caused by the remote cores. The analysis

in [22] provides a safe upper-bound on the memory interference

but it does not consider the variations in the number of jobs re-

leased on the local/remote core(s) which results in overestimating

the memory/bus contention. On the contrary, our approach ac-

curately estimates the bus contention with the help of different

cases identified in Section 4. For instance, case 3 of our approach

extract a specific set of memory phases (A- and R-phases) running

on the remote core that leads to the maximum bus blocking that

can be caused by the tasks running on the remote core to the local

core in practice. We can see in Figure 7 that at a core utilization of

0.45 our approach was able to schedule up to 29% more task sets

compared to SCHW [22]. However, we also note that the overall

task set schedulability for both approaches is quite low which is

4
We observed experimentally that by using the exact same formulation of Equation 6

from [22] that allows global preemptions of memory phases, the performance of [22]

tends to decline under FCFS bus arbitration policy.

5
Note that for the analysis in [22] we consider a single memory phase of length

𝑀𝐷 ×𝐶𝑖 .

Figure 7: Varying Core Utilization

Figure 8: Varying Number of Cores

Figure 9: Varying Memory Demand

intuitive to understand, due to the assumption of FCFS-based bus

arbitration.

2. Number of Cores: In this experiment, we re-do the previous

experiment by varying the number of cores along with the core

utilization. The number of cores (𝑚) was increased from 2 to 8 along

with core utilizations that were varied from 0.05 to 1 in steps of

2021-03-16 17:35. Page 9 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

RTNS’2021, April 7–9, 2021, NANTES, France Arora et al.

Figure 10: Varying Task Periods

0.05. The percentage of task sets that were deemed schedulable for

different values of𝑚 by the two approaches are shown in Figure 8.

We can see in Figure 8 that by increasing the number of cores,

the number of task sets that were deemed schedulable by both

analyses decreases. This is mainly due to the fact that by increasing

the number of cores, the number of tasks also increases, which

results in increasing the bus blocking that can be suffered by the

task under analysis from the remote cores. For example, for two

cores all task sets were deemed schedulable by both approaches at

a core utilization of 0.4 but no task set was schedulable at same core

utilization when the value of𝑚 is increased to 8. However, we can

still see that even for higher values of𝑚, the proposed approach

outperforms the analysis of [22].

3. Task Memory Demands: In this experiment, we varied the

memory demand (MD) of tasks w.r.t their WCET and analyzed its

impact on the task set schedulability. Effectively, we used the value

of MD to determine 𝐶𝐴
𝑖
, 𝐶𝐸
𝑖
, and 𝐶𝑅

𝑖
such that 𝐶𝐴

𝑖
+𝐶𝑅

𝑖
= 𝑀𝐷 ×𝐶𝑖

and 𝐶𝐸
𝑖
= 𝐶𝑖 − (𝐶𝐴

𝑖
+𝐶𝑅

𝑖
). The value of MD was varied from 0.05

to 0.95 (i.e., 5% to 95%) in steps of 0.05 and the number of task sets

that were deemed schedulable by both the analyzed approaches are

plotted in Figure 9. We choose different set of core utilizations (Uti),

i.e., 0.20, 0.30, 0.40 and 0.50, to show the impact of MD on task set

schedulability.

We can see in Figure 9, that for lower values of core utilization the

number task sets that were deemed schedulable by both approaches

was much higher even for larger values of MD. For example, at

a core utilization of 20%, tasks with very high memory demands,

i.e., up to 80% of their WCET, were still schedulable. However,

the schedulability ratio decreases rapidly for higher values of core

utilization. We can also see that the schedulability was reduced

with an increase in the memory demand for both the approaches.

This is intuitive, as for higher values of MD, the values of 𝐶𝐴
𝑖
, and

𝐶𝑅
𝑖
also increases which results in increasing bus blocking. Finally,

we can also observe that the gains of the proposed analysis over

the state-of-the-art analysis [22] remains relatively constant with

improvements from 23.2% up to 34.8% percentage points in terms

of schedulability.

4. Task Periods: In this experiment, we varied the range of task

periods and analyzed its impact on schedulability. As we generate

the WCET 𝐶𝑖 of tasks using the task periods 𝑇𝑖 , i.e., 𝐶𝑖 = 𝑈𝑖 ×𝑇𝑖 ,
which is then used to generate 𝐶𝐴

𝑖
, 𝐶𝐸
𝑖
and 𝐶𝑅

𝑖
, therefore, the value

of task periods can significantly impact schedulability.

We used three different period ranges, i.e., [50,500], [50,1500],

[50, 5000] in our experiment and observed that an increase in the

period range has a negative impact on task set schedulability. When

task periods are increased, their WCET also increases which results

in generating higher values for 𝐶𝐴
𝑖
, 𝐶𝐸

𝑖
and 𝐶𝑅

𝑖
. Hence, the bus

blockings that can be suffered/caused by the tasks also increases

resulting in decreasing schedulability. However, we can still see

that even for higher values of task periods the proposed analysis

dominate the state-of-the-art analysis.

In all the experiments, the time taken by the proposed anal-

ysis was roughly 5x more than the state-of-the-art analysis of

SCHW [22]. Intuitively, this is due to our more fine-grained analysis

of bus blocking with of help of cases and sub-cases.

7 RELATEDWORK
The problem of timing unpredictability due to the shared bus

contention in multicore systems is not new [6] and many exist-

ing works already attempted to solve this problem [16]. Some ap-

proaches [5, 12, 20] are based on Time Division Multiple Access

(TDMA) in which time slots are divided among cores and a core

can only access the system bus in its defined time slot. Dasari et

al. [7] proposed a response time analysis considering the maxi-

mum bus interference for an unspecified work-conserving arbiter

under partitioned scheduling. A general framework for memory

bus contention analysis that covers a wide range of bus arbitration

policies is proposed in [8]. Rashid et al. [18] proposed the cache

persistence-aware memory bus contention analysis for multicore

systems. Even though these approaches are proposed to bound

the bus contention in partitioned scheduling, they are proposed

for generic task models and are not tailored for phased execution

models.

On the other hand, approaches like [1, 2, 4, 9, 14, 19, 22–24, 26]

focus on phased execution models. Maia et al. [14] focus on the

bus contention analysis for the fixed priority 3-phase task model

under global scheduling. Davis et al. [9] proposed an extensible

framework for multicore analysis. The authors compute the WCRT

of fixed-priority preemptive tasks in partitioned scheduling by

incorporating the inter-core interference caused by co-running

tasks due to shared bus, shared main memory, and shared caches

access. Works like [26] are based on memory centric scheduling

in which the access to the main memory is divided among all the

cores in the system using TDMA. The memory phases can then

access the main memory during their allocated time slot. Recent

work onmemory-centric scheduling [22] focused on a fixed-priority

memory centric scheduler for COTS multiprocessors as the authors

suggest that TDMA may result in underutilization of the resource.

None of the above-mentioned works can be directly compared

against the proposed approach in this paper due to different set of

assumptions followed. For instance, [1, 14] focus on global schedul-

ing whereas [9] presents a response time analysis by considering

the inter-core interference due to various shared resources of multi-

core systems. [23, 24] focus on a specific hardware architecture that

has a dedicated I/O bus, dual-port memories with DMA support,

and scratchpad memories.

As discussed in Section 6.1, the closest work that can be com-

pared against our approach is [22] as it proposed for fixed-priority

2021-03-16 17:35. Page 10 of 1–11.

P
r
e
p
r
in
t
V
e
r
s
io
n
.

Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with Partitioned Scheduling RTNS’2021, April 7–9, 2021, NANTES, France

non-preemptive PREM task model under partitioned scheduling

and focus on only one source of inter-core interference under parti-

tioned scheduling i.e., main memory, and it assumes that the main

memory can handle only one request at a time.

8 CONCLUSION
In this work, we presented a fine-grained analysis to compute

the maximum bus blocking suffered by 3-phase tasks under fixed-

priority partitioned scheduling when FCFS is the bus arbitration

policy. The maximum bus blocking is derived using different cases

and sub-cases that may happen in practice which allows us to

acheive tighter bounds on schedulability. We formulated a bus-

contention aware schedulability analysis that accounts for the delay

due to bus blocking when computing the WCRT of tasks. The

experimental evaluation shows that the proposed approach can

improve the number of task sets that are deemed schedulable by up

to 34 percentage points in comparison to a state-of-the-art approach.

As future work, we would like to extend our analysis to support

different bus arbitration policies and evaluate its performance using

benchmarks and industrial case studies.

ACKNOWLEDGMENTS
This work was partially supported by National Funds through

FCT/MCTES (Portuguese Foundation for Science and Technol-

ogy), within the CISTER Research Unit (UIDB/04234/2020); also by

the Operational Competitiveness Programme and Internationaliza-

tion (COMPETE 2020) under the PT2020 Partnership Agreement,

through the European Regional Development Fund (ERDF), and

by national funds through the FCT, within project POCI-01-0145-

FEDER-029119 (PREFECT).

REFERENCES
[1] Ahmed Alhammad and Rodolfo Pellizzoni. 2014. Schedulability analysis of

global memory-predictable scheduling. In Proceedings of the 14th International
Conference on Embedded Software - EMSOFT ’14. ACM Press, New Delhi, India,

1–10. https://doi.org/10.1145/2656045.2656070

[2] A. Alhammad and R. Pellizzoni. 2014. Time-predictable execution of multi-

threaded applications on multicore systems. In 2014 Design, Automation Test in
Europe Conference Exhibition (DATE). 1–6. https://doi.org/10.7873/DATE.2014.042

[3] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. 2007. Worst-Case Response Time

Analysis of Real-Time Tasks under Fixed-Priority Scheduling with Deferred Pre-

emption Revisited. In 19th Euromicro Conference on Real-Time Systems (ECRTS’07).
269–279.

[4] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. 2020. A Holistic Memory

Contention Analysis for Parallel Real-Time Tasks under Partitioned Scheduling.

In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). 239–252. https://doi.org/10.1109/RTAS48715.2020.000-3

[5] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. 2010. Modeling

Shared Cache and Bus in Multi-Cores for Timing Analysis. In Proceedings of the
13th International Workshop on Software & Compilers for Embedded Systems (St.
Goar, Germany) (SCOPES ’10). Association for Computing Machinery, New York,

NY, USA, Article 6, 10 pages. https://doi.org/10.1145/1811212.1811220

[6] Dakshina Dasari, Benny Akesson, Vincent Nelis, Muhammad Ali Awan, and

Stefan M. Petters. 2013. Identifying the sources of unpredictability in COTS-

based multicore systems. In 2013 8th IEEE International Symposium on Industrial
Embedded Systems (SIES). IEEE, Porto, 39–48. https://doi.org/10.1109/SIES.2013.

6601469

[7] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee. 2011.

Response Time Analysis of COTS-Based Multicores Considering the Contention

on the Shared Memory Bus. In 2011IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications. 1068–1075.

[8] Dakshina Dasari, Vincent Nelis, and Benny Akesson. 2015. A framework for

memory contention analysis in multi-core platforms. Real-Time Systems 52 (06
2015). https://doi.org/10.1007/s11241-015-9229-9

[9] Robert I. Davis, Sebastian Altmeyer, Leandro S. Indrusiak, Claire Maiza

and·Vincent Nelis, and Jan Reineke. 2017. An extensible framework for multicore

response time analysis. Real-Time Systems (July 2017).

[10] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire

Pagetti, and W. Puffitsch. 2014. Predictable Flight Management System Imple-

mentation on a Multicore Processor. In Embedded Real Time Software (ERTS’14).
TOULOUSE, France. https://hal.archives-ouvertes.fr/hal-01121700

[11] P. Emberson, R. Stafford, and R.I. Davis. 2010. Techniques For The Synthesis Of

Multiprocessor Tasksets. WATERS’10 (01 2010).
[12] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. 2011.

Bus-Aware Multicore WCET Analysis through TDMA Offset Bounds. In 2011
23rd Euromicro Conference on Real-Time Systems. 3–12.

[13] C L Liu. [n.d.]. Scheduling Algorithms for Multiprogramming in a Hard-Real-

Time Environment. ([n. d.]), 16.

[14] Claudio Maia, Geoffrey Nelissen, Luis Nogueira, Luis Miguel Pinho, and

Daniel Gracia Perez. 2017. Schedulability analysis for global fixed-priority sched-

uling of the 3-phase task model. In 2017 IEEE 23rd International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE,
Hsinchu, Taiwan, 1–10. https://doi.org/10.1109/RTCSA.2017.8046313

[15] Claudio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia Perez. 2016.

A closer look into the AER Model. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE, Berlin, Germany,

1–8. https://doi.org/10.1109/ETFA.2016.7733567

[16] Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer,

and Robert I. Davis. 2019. A Survey of Timing Verification Techniques for

Multi-Core Real-Time Systems. Comput. Surveys 52, 3 (June 2019), 1–38. https:

//doi.org/10.1145/3323212

[17] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco

Caccamo, and Russell Kegley. 2011. A Predictable Execution Model for COTS-

Based Embedded Systems. In 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, Chicago, IL, USA, 269–279. https://doi.org/

10.1109/RTAS.2011.33

[18] Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar. 2020. Cache

Persistence-Aware Memory Bus Contention Analysis for Multicore Systems.

https://doi.org/10.23919/DATE48585.2020.9116265

[19] J. M. Rivas, J. Goossens, Xavier Poczekajlo, and Antonio Paolillo. 2019. Implemen-

tation of Memory Centric Scheduling for COTS Multi-Core Real-Time Systems.

In ECRTS.
[20] J. Rosen, A. Andrei, P. Eles, and Z. Peng. 2007. Bus Access Optimization for Pre-

dictable Implementation of Real-Time Applications on Multiprocessor Systems-

on-Chip. In 28th IEEE International Real-Time Systems Symposium (RTSS 2007).
49–60.

[21] Simon Schliecker and Rolf Ernst. 2010. Real-time performance analysis of multi-

processor systems with shared memory. ACM Transactions on Embedded Com-
puting Systems 10, 2 (Dec. 2010), 1–27. https://doi.org/10.1145/1880050.1880058

[22] Gero Schwäricke, Tomasz Kloda, Giovani Gracioli, Marko Bertogna, and Marco

Caccamo. 2020. Fixed-priority memory-centric scheduler for COTS-based

multiprocessors. In 32nd Euromicro Conference on Real-Time Systems, ECRTS
2020 (Leibniz International Proceedings in Informatics, LIPIcs), Marcus Volp (Ed.).

Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.

https://doi.org/10.4230/LIPIcs.ECRTS.2020.1 32nd Euromicro Conference on Real-

Time Systems, ECRTS 2020 ; Conference date: 07-07-2020 Through 10-07-2020.

[23] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M.

Caccamo. 2016. A Real-Time Scratchpad-Centric OS for Multi-Core Embedded

Systems. In 2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 1–11. https://doi.org/10.1109/RTAS.2016.7461321

[24] Rohan Tabish, Renato Mancuso, Saud Wasly, Rodolfo Pellizzoni, and Marco

Caccamo. 2019. A real-time scratchpad-centric OS with predictable inter/intra-

core communication for multi-core embedded systems. Real-Time Systems 55 (10
2019). https://doi.org/10.1007/s11241-019-09340-0

[25] K. W. Tindell, A. Burns, and A. J. Wellings. 1994. An Extendible Approach for

Analyzing Fixed Priority Hard Real-Time Tasks. Real-Time Syst. 6, 2 (March 1994),

133–151. https://doi.org/10.1007/BF01088593

[26] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo.

2012. Memory-centric scheduling for multicore hard real-time systems. Real-Time
Systems 48, 6 (Nov. 2012), 681–715. https://doi.org/10.1007/s11241-012-9158-9

2021-03-16 17:35. Page 11 of 1–11.

https://doi.org/10.1145/2656045.2656070
https://doi.org/10.7873/DATE.2014.042
https://doi.org/10.1109/RTAS48715.2020.000-3
https://doi.org/10.1145/1811212.1811220
https://doi.org/10.1109/SIES.2013.6601469
https://doi.org/10.1109/SIES.2013.6601469
https://doi.org/10.1007/s11241-015-9229-9
https://hal.archives-ouvertes.fr/hal-01121700
https://doi.org/10.1109/RTCSA.2017.8046313
https://doi.org/10.1109/ETFA.2016.7733567
https://doi.org/10.1145/3323212
https://doi.org/10.1145/3323212
https://doi.org/10.1109/RTAS.2011.33
https://doi.org/10.1109/RTAS.2011.33
https://doi.org/10.23919/DATE48585.2020.9116265
https://doi.org/10.1145/1880050.1880058
https://doi.org/10.4230/LIPIcs.ECRTS.2020.1
https://doi.org/10.1109/RTAS.2016.7461321
https://doi.org/10.1007/s11241-019-09340-0
https://doi.org/10.1007/BF01088593
https://doi.org/10.1007/s11241-012-9158-9

