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Abstract— The evaluation of optical properties of biological 

tissues has been pointed as an important tool for detection and 

diagnosis of tissue alterations. The Spatial Frequency Domain 

Imaging (SFDI) is a fast and non-invasive technique that 

provides quantitative information about light absorption and 

scattering properties in tissues from measurements of light 

diffuse reflectance. A fundamental step in this imaging 

technique is the proper correlation between the measured 

values of diffuse reflectance of light by the tissue, Rd, at different 

spatial frequencies and the corresponding pair of absorption 

and reduced scattering coefficients 𝝁𝒂 and 𝝁𝒔
′ , respectively.  In 

this work, the machine learning technique of Random Forests 

was applied to provide a regression model that efficiently 

computes 𝝁𝒂 and 𝝁𝒔
′  from Rd values. The database employed 

consisted of values of Rd at different spatial frequencies for 

different combinations of 𝝁𝒂 and 𝝁𝒔
′ , obtained from Monte 

Carlo simulations. The database was split into training and 

testing groups, and a 3% Gaussian random noise was applied to 

the test group. Results showed that the correlation coefficient R2 

between predicted and expected values from the test group were 

0.96 and 0.97, for 𝝁𝒂 and 𝝁𝒔
′ , respectively. The relative average 

errors for each coefficient were, respectively, 1% and 0.004%, 

with standard deviations of 11% and 7%. These results point to 

the good accuracy and precision of the models in predicting 

values of absorption and scattering coefficients. The developed 

models were applied to an in vivo study, where values of Rd from 

the dorsal region of the hand of a volunteer were obtained with 

SFDI equipment using light wavelength of 650 nm. The 

obtained images of 𝝁𝒂 and 𝝁𝒔
′  showed enhanced contrast of 

blood vessels, pointing to the potential of the technique to 

identify vascular alterations that could be related to skin cancer. 
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I. INTRODUCTION 

Nowadays, cancer is one of major concerns in public 

health all over the world. Recent projections estimate a 

worldwide incidence of 18 million new cases per year [1, 2]. 

In Brazil, for each year of the triennium 2020‒2022, an 

occurrence of 625 thousand new cases of cancer is estimated. 

Of this total, non-melanoma skin cancer is the most incident, 

corresponding to an estimated total of 177,000 new cases per 

year [2]. Accurate and early diagnosis of the disease is 

essential to define the course of treatment, as well as its 

effectiveness [3]. Diagnostic techniques are of fundamental 

importance, for example, for the appropriate characterization 

of actinic keratosis-like lesions in cases of non-melanoma 

skin cancer, thus contributing to the reduction of mortality 

from the disease [4].  

The Spatial Frequency Domain Imaging (SFDI) technique 

has emerged as a promising technique for the identification 

of morphological and functional changes in skin tissues in 

early stages. This imaging technique allows the evaluation of 

the properties of absorption and scattering of light by the 

tissues in a fast and non-invasive way [5]. Image acquisition 

in SFDI is performed by illuminating the tissue with an 

incident light beam of spatially modulated intensity at 

different spatial frequencies, and capturing the reflected 

beam with a camera. Then, the different obtained images are 

processed, thus reconstituting the optical properties of the 

tissues, which are quantitatively measured by the absorption 

and reduced scattering coefficients 𝜇𝑎 and 𝜇𝑠
′ , respectively. 

The evaluation of these parameters at different light 

wavelengths can enhance visualization of different skin 

structures, making eventual alterations in the tissue evident 

[5].  

 The proper correlation of light diffusion properties of a 

tissue with its optical properties is one of the main steps in 

SFDI imaging processing. Although pre-compiled look-up 

tables can be employed to this purpose [6, 7], it has been 

pointed out that machine learning techniques could 

accomplish this task more efficiently [8,9]. In particular, the 

use of different Artificial Neural Network models has been 

reported in the literature [10-14]. Recently, Panigraphi et al. 

[9] showed that the random forest method for regression can 

also provide optical properties from diffuse reflectance with 

high accuracy. In particular, the authors considered diffuse 

reflectance at two spatial frequencies for the determination of 

values of 𝜇𝑎 and 𝜇𝑠
′  [9], and the performance of the model 



  

was evaluated for noiseless test data. Alternatively, Zhao et 

al [15] recently showed that using more than two spatial 

frequencies can improve the performance of the machine 

learning models [15] in determining tissue chromophore 

concentration from noisy diffuse reflectance data.  

 In this work, we investigate the use of random forests for 

pattern recognition in the SFDI technique, to determine 

optical properties of tissues from their light reflection 

properties. The developed model considered values of diffuse 

reflectance at three spatial frequencies as input data, and the 

performance of the model was evaluated considering noisy 

input values. 

II. MATERIALS AND  METHODS 

A. Experimental set-up for image acquisition in SFDI 

Figure 1 shows the schematic representation of the 

experimental set-up employed for image acquisition in SFDI 

[5]. It comprises a digital projector as light source (model 

Vivitek D555WH) a ThorLabs filter wheel and CCD 

camera (DCC3240C). A white light beam is emitted from the 

source, reaching the sample and being reflected by the latter. 

The spatial distribution of the emitted beam is modulated 

according to a sinusoidal pattern, at different spatial 

frequencies f (0.05; 0.2 and 0.4 mm‒1) [5].  The reflected 

beam by the sample is filtered to a given wavelength by the 

filter, and it is then detected by the camera, which stores the 

collected signal.  

 

Fig. 1. Experimental set-up employed for image acquisition in SFDI. 

The collected images by the camera must be processed 

since they carry dependence not only on the sample 

composition, but also on the emitted beam and camera 

properties [6]. To remove these dependencies on the imaging 

system, the obtained images were demodulated and 

calibrated with a phantom object, following the methodology 

proposed by Cuccia et al. [6]. The obtained signal therefore 

represents the diffuse reflectance, Rd, at the different spatial 

frequencies employed, which is the physical quantity that 

expresses the dependence of the reflected light on the 

absorption and scattering properties of the sample [5,6]. 

Determination of the sample absorption and reduced 

scattering coefficients 𝜇𝑎 and 𝜇𝑠
′  from the obtained Rd values 

was performed using machine learning methods with random 

forests, as described in sections B and C. 

B. Generating the database of diffuse reflectance values 

Values of Rd as a function of the pair of coefficients 𝜇𝑎 

and 𝜇𝑠
′  were obtained using Monte Carlo (MC) simulations 

for the transport of light photons through matter. A MC code 

was developed to simulate the processes of absorption and 

scattering of light by a uniform material, according to the 

methodology proposed by Prahl et al. [16]. A material 

medium was characterized by its coefficients 𝜇𝑎 and 𝜇𝑠
′  , and 

also by its refraction index and anisotropy factor. A pencil 

beam impinged perpendicularly on the material surface, and 

the spatial distribution of the backscattered photons was 

obtained as a point spread function. The values of Rd at 

different spatial frequencies were then obtained by applying 

a Fourier Transform on this spread function [6]. Different 

material compositions were simulated, by varying the values 

of 𝜇𝑎 between 0.001 and 1.8 mm-1, and 𝜇𝑠
′  between 0.3 and 

6.3 mm‒1 [6]. The values of the refraction index and 

anisotropy factor were fixed at 1.4 and 0.71, respectively 

[6,17]. 

Figure 2 illustrates the contour plot of Rd values obtained 

from the MC simulations, at a spatial frequency of 0.2 mm-1, 

for different combinations of 𝜇𝑎 and 𝜇𝑠
′ . 

C. Random forest regression models 

The random forest is an assembly method, based on the 

concept of decision trees, which can be employed for 

classification or regression problems [18]. It is a supervised 

machine learning technique, which combines a large number 

of decision trees for prediction purposes. For each tree, 

features and samples are randomly selected from the training 

data, with replacement, to determine the splitting of each 

node, in a process called bagging (bootstrap aggregation). 

For regression problems, the predicted output of the model is 

computed as the average of the value provided by each tree 



  

[19]. The main hyperparameters of a random forest include 

the number of trees in the forest, the maximum depth of the 

trees, the minimum number of samples at leaf and minimum 

number of samples at split. A more detailed description about 

Random Forests, including mathematical aspects, can be 

found in the work of Breiman [19]. 

In this work, the Random Forest technique was employed 

for regression (RFR), using Python language with the scikit-

learn library [20]. For each sample, input data consisted of 

the Rd values at three different spatial frequencies f (0.05; 0.2 

e 0.4 mm‒1), obtained from the MC simulations, while the 

output data were the corresponding 𝜇𝑎 and 𝜇𝑠
′  coefficients, as 

illustrated in figure 3. 

 

 

Fig 2. Contour plot of Rd values for different pair values of 𝜇𝑎 and 𝜇𝑠
′  at 

spatial frequency of 0.2 mm‒1. 

The dataset consisted of 108.360 samples. The samples 

were divided into training and testing data, at the proportions 

of 67% and 33%, respectively. Besides, for the testing data, 

a Gaussian noise of 3% was added, to simulate an 

experimental uncertainty, and also to evaluate the 

generalization capacity of the trained models [15]. 

Optimization of the model hyperparameters was performed 

employing K-fold cross-validation, with 5 subsets and 50 

iterations, corresponding to 250 training loops. For the 

𝜇𝑎 coefficient, the following optimum hyperparameters were 

obtained: the number of trees in the forest was 200, the 

maximum depth of the trees was set to 21, the minimum 

number of samples at leaf nodes was 4 and the minimum 

number of samples at split was 2. For the 𝜇𝑠
′   coefficient, 

these values were, respectively, 250, 11, 4 and 2. In both 

cases, bootstrap sampling was used to train the decision trees. 

 

 

Fig. 3. Schematic representation of the RFR models for the determination 

of 𝜇𝑎 or  𝜇𝑠
′  coefficients. 

D. In vivo measurements 

The experimental set-up for image acquisition, described 

in section A, and the RFR machine learning models, 

described in sections B and C, were applied to an in vivo 

measurement of the absorption and scattering coefficients of 

the dorsal region of the hand of a volunteer subject (figure 4). 

The rectangular region of interest (ROI) shown in figure 

indicates the area imaged. Values of Rd at the different spatial 

frequencies investigated were obtained for the ROI shown in 

figure 4, and the trained RFR model was then employed to 

compute the corresponding values of of 𝜇𝑎 and 𝜇𝑠
′  at each 

pixel. 

 The present study in human beings was approved by the 

Research Ethics Committee of the Federal University of 

Uberlândia (process no. 85363417.9.0000.5152). 

 

 

Fig. 4. Photography of the dorsal region of the volunteer’s hand. The 

rectangular ROI indicates the area analyzed. 



  

III. RESULTS 

The results of the application of the trained RFR on the 

testing data for determination of 𝜇𝑎 and 𝜇𝑠
′   are shown in 

figure 5. The scatter plots represent the predicted values of 

𝜇𝑎 and 𝜇𝑠
′  versus the corresponding expected values.  

 

 

 

Fig. 5. Values of (a) 𝜇𝑎 and (b) 𝜇𝑠
′   predicted by RFR models, as a function 

of the true values. Solid line indicates the expected values. 

Figures 6a and 6b show the histograms of the distribution 

of relative percent errors for the predicted values of 

𝜇𝑎 and 𝜇𝑠
′ , respectively.  

 

 

 

Fig. 6. Distribution of relative percent errors for the predicted values of  (a) 

𝜇𝑎 and (b) 𝜇𝑠
′  , respectively. 

Figure 7 shows the results for the in vivo evaluation of 

𝜇𝑎 and 𝜇𝑠
′  for the back of the hand, for light wavelength of 

650 nm.   



  

 

Fig. 7. Images of (a) 𝜇𝑎 e  (b) 𝜇𝑠
′  for the ROI analized. Values of both coefficients are given in units of mm‒1. 

IV. DISCUSSION 

Evaluation of the performance of the RFR prediction 

models for 𝜇𝑎 and 𝜇𝑠
′  values was performed through the 

determination of the 𝑅2correlation coefficient for the linear 

regression between expected and predicted values. A high 

degree of correlation between these quantities was observed, 

with values of 𝑅2 of 0.96 e 0.97 for 𝜇𝑎  and 𝜇𝑠
′ , respectively.  

A Levene’s test was applied on the predicted values of 𝜇𝑎 

and 𝜇𝑠
′  showed in figure 5, to test for homogeneity of 

variances. For each coefficient, predicted values were 

divided in three subgroups, each one corresponding to a 

different interval within the whole range of values. The 

variances of these subgroups were then compared among 

each other. Results showed that, for each coefficient, there 

were no statistically significant differences between 

variances among subgroups, considering the significance 

level of 0.05. This result indicates that the increase in the 

errors observed in figure 5a and 5b is actually a graph scale 

effect, due to differences between the orders of magnitude of 

the values of each coefficient, and the performance of the 

RFR model is independent on the coefficient values.  

From figure 6, it can be observed that the error 

distributions show symmetry around the null error value, 

indicating that the obtained models provided unbiased 

results. The average percent errors for these distributions 

were 1% and 0.004%,  for 𝜇𝑎 and 𝜇𝑠
′ , respectively, with 

standard deviations of 11% and 7%. These results indicate 

that, even in the presence of noisy input data, the models 

show good accuracy and precision in the determination of 

𝜇𝑎  and 𝜇𝑠
′  .  

Compared to the literature, values of average percent 

errors obtained in this work were higher than those reported 

by Panigraphi et al. [9]. Nevertheless, it should be pointed 

out that the authors did not considered noise in their input test 

data. By neglecting noise, our model provides performance 

comparable to those reported by the authors. Results were 

also comparable to those reported by Song et al. [14], who 

considered a deep neural network model for the 

determination of optical properties, for test data with 2% 

Gaussian noise.  

Figure 7 shows that the developed models, combined with 

the SFDI system, are capable of providing values of 𝜇𝑎  and 

𝜇𝑠
′  for in vivo measurements. In particular, at a light 

wavelength of 650 nm, figure 7a shows that values of the 

absorption coefficient highlight blood vessels. This effect 

occurs due to the higher contribution of oxy- and 

deoxyhemoglobin to the absorption coefficients at this 

wavelength [21], and it could be useful to identify vascular 

changes associated with melanocytic or nonmelanocytic skin 

cancers [22]. 

V. CONCLUSIONS 

In this work, the machine learning method of Random 

Forests for regression (RFR) was applied to the 

determination of light absorption and scattering properties of 

tissues from values of light diffuse reflectance in the SFDI 

technique. The developed models showed good performance 

in determining 𝜇𝑎  and 𝜇𝑠
′  coefficients from Rd values at 

different spatial frequencies. The average percent errors were  

1% and 0.004% for 𝜇𝑎 e 𝜇𝑠
′ , respectively, with standard 



  

deviations of 11% and 7%. The RFR models were applied to 

an in vivo measurement for the determination of light 

absorption and scattering coefficients of the back of a hand. 

In particular, values of 𝜇𝑎obtained for light wavelength of 

650 nm provided enhanced contrast of blood vessels. These 

results point to the potential of this imaging technique for 

detection and identification of vascular changes in skin 

tissues, which could be related to different types of skin 

tumors. Future works should be conducted, e.g. using tissue 

equivalent materials with known optical coefficients, in order 

to compare the estimated coefficients with true tissue values, 

and thus evaluating the accuracy of the technique for 

different skin tissue compositions. 
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