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Abstract— In this study, the accuracy of the Landslide 

Susceptibility Maps (LSMs), prepared using the GIS-based 

statistical multiple linear regression (MLR) model, is improved 

by incorporating time-dependent factors. The LSM is prepared 

to identify landslide-prone areas based on the 108 training 

landslide points and 10 causative factors. The accuracy is 

evaluated with the area under the curve (AUC) using 56 testing 

landslide points. The results showed that landslides were more 

likely to occur at closer distances to the road, in areas having 

severely fragmented and jointed strata. The prepared LSM 

shows that, when annual mean NDVI (Normalized Difference 

Vegetation Index) is considered as a causative factor, areas with 

dense and sparse vegetation were less likely to experience 

landslides, whereas locations that were classified as barren land 

were more prone to landslides. The accuracy (AUC) of the LSM 

produced using the MLR model was 86% when NDVI is not 

considered and it increases to 92% when NDVI is considered as 

the causative factor. We, therefore, suggest using mean NDVI as 

a landslide causative factor in the landslide predictive model 

while working in dense vegetation and tropical areas. 
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I. INTRODUCTION 

In recent years, the preparation of causative factors 

(thematic layers), landslide inventory, and identifying 

landslide-prone areas using GIS-enabled landslide predictive 

models have become possible because of the availability of 

several Remote-Sensing datasets [1;2]. Most of these 

landslides susceptible areas are referred to as crucial 

geomorphic processes, which often play an essential role in 

the landscaping of hilly areas [2]. Landslides typically occur 

in steep locations and are hidden by dense vegetation, making 

it difficult to map them. GIS-based statistical models are also 

frequently used to create landslide susceptibility maps 

(LSMs) using remote sensing data and thematic layers as the 

causative factors, such as slope, aspect, soil, lithology, NDVI 

(Normalized Difference Vegetation Index), land cover, 

distance to drainage, precipitation, distance to fault and 

distance to road, etc [4;1;5]. The efficiency of GIS-based 

statistical models for landslide prediction will vary depending 

on how well we prepared the landslide inventory and which 

thematic layers we took into consideration [1;2;3;5]. GIS-

based statistical models, such as analytical hierarchy process 

(AHP), multiple linear regression (MLR) weighted linear 

combination (WLC), frequency ratio (FR), information value 

(IoV), etc., have been used to determine the relationships 

between the locations of the detected landslides and these 

causative factors [2;3;4;5]. The MLR is a multivariate 

statistical method commonly used for estimating the best-

fitted line among the multiple causative thematic layers to 

map the Landslide susceptibility [6;15]. It assesses how 

landslide susceptibility changes with a change in the standard 

deviation of independent and predictor variables. Thus, in this 

work MLR, a multivariate statistical method is used instead 

of a bivariate method. 

Moreover, many of these landslide susceptibility maps 

have been studied using MLR models, and the results have 

been validated using the under-the-curve (AUC)-ROC 

(Receiver operating characteristic) curve [7;8]. Also, several 

landslide susceptibility mapping techniques are used with and 

without considering NDVI as a causative factor for landslide 

susceptibility mapping [9;10]. Therefore, the objective of this 

study is to understand how NDVI impacts in multiple linear 

regression (MLR) statistical landslide model for preparing 

landslide susceptibility maps in tropical climates and areas 

with substantial vegetation. 

Figure 1: The study area map is drawn on hill-shade showing 

the presence of thrusts and the landslide points like Kotrupi 

landslide in this area. 

 



II. STUDY AREA 

In this study, the Joginder Nagar area of Mandi district 

Himachal Pradesh is selected to assess the effect of NDVI on 

the MLR model for LSM of this area. Numerous landslides 

have occurred in the Joginder Nagar area in the past and 

present due to heavy rain, earthquakes, and road construction 

[14].  

The Kotrupi landslide, whose run-off zone is enclosed by 

a red circle (figure 1), is the catastrophic landslide that 

occurred on August 13, 2017, in the Joginder Nagar area [15] 

that passes by near the Main Boundary Thrust (MBT) as 

shown on the Hill-shade map (figure 1). The yearly average 

rainfall in the Joginder-Nagar varies greatly from place to 

place, ranging from 700 mm to more than 2000 mm at 

Joginder Nagar [14,16]. The most common rock types in and 

around the Joginder-Nagar include sandstone, red and purple 

shale, mudstones, and dolomite of the Siwalik group, as well 

as dolomite of the Shali formation [14,17]. The area is 

situated in a thrust contact between the Siwaliks and the Shali 

group of rocks [17,18]. These rocks are weak, and when they 

are subjected to thrust displacement, they are prone to 

landslides [16;17;18;19].  

III. DATA AND SOFTWARE USED 

In this work we used Landsat 8 OLI ETM+ dataset of 
November 15, 2015, to calculate the NDVI (Normalized 
difference vegetation index) of the study area. We used 
ASTER-DEM with a spatial resolution of 30 meters to 
determine the elevation, slope, aspect, curvature stream 
network, and SPI (stream power index) map. Additionally, 
data about lithology, lineament, and geomorphology were 
obtained from the Bhukosh portal and were modified based on 
the fieldwork. Moreover, the initial landslide inventory was 
obtained from GSI and was updated based on a field visit and 
high-resolution data from Google Earth and Planet images. 
Landslide susceptibility maps (LSMs) were created and 
analyzed using ArcMap 10.5, ENVI 5.3, and R-studio 4.2.0.  

IV. METHODOLOGY 

The landslide data (164 locations) was divided into 

training (108 locations i.e. 70%) and testing (56 locations i.e. 

30%) for carrying out the analysis. We took 10 causative 

factors namely aspect, curvature, distance to road, distance to 

stream, distance to lineament, elevation, slope, SPI, 

geomorphology, and lithology that were considered time-

independent as these factors do not change a lot within a year. 

Then we took the NDVI data which is a time-dependent 

parameter to assess its effect on LSM. In this study, the 

Landsat 8 OLI image is first radiometrically and 

atmospherically corrected using the FLAASH setting, and 

then the NDVI is determined [11]. The flowchart showing the 

method used is shown in figure 2. 

4.1 Thematic Layer preparation  

The thematic (or causative) layers are first systematically 

classified and normalized using the natural break 

classification approach to develop landslide susceptibility 

maps (LSMs). The aspect was generated using DEM data, 

which was then divided into 10 classes using the natural break 

classification method: flat, north, northeast, east, southeast, 

south, southwest, west, northwest, and north (figure 3a). 

Curvature, which is also the surface profile, is a significant 

factor in landslide causation [12]. Convex, planar, and 

concave curvature are the three different types of curvature. 

In this study, ArcMap 10.5 curvature tool used DEM data to 

determine the curvature of the study area. The distance to the 

road map was taken to emphasize the impact of road 

proximity on landslides in the study area. The road network 

was buffered into intervals of 200m, 200-400m, 400-800m, 

800-1600m, 1600-3200m, 3200-6400m, and >6400m using 

ArcMap 10.5 multiple ring buffer tool (figure 3c). The 

multiple-ring buffer method was used to divide buffers into 

six distinct categories to measure how much the streams 

affected the slopes. As a result, the DEM is used first to 

delineate the stream network, which was buffered to <200m, 

200-400m, 400-800m, 800-1600m, 1600-3200m, and 

>3200m using the multiple ring buffer method to determine 

the distance to a stream of the study area (figure 3d). The 

lineaments mapped were buffered to obtain distances to the 

Figure 2: Flowchart of the procedure used for this study. 

Figure 3: The maps of some causative factors used in this 

study. 

 



lineament map of <200m, 200-400m, 400-800m, 800-1600m, 

1600-3200m, 3200-6400m, and >6400m (figure 3e). The 

elevation map was divided into 4 classes using the natural 

break classification method: <1000 meters, 1000-1500 

meters, 1500-2000 meters, and >2000 meters. In this study, 

the slope was calculated using DEM and further divided into 

6 classes using the natural break classification method: <10°, 

10°–20°, 30°–40°, 40°–50°, and >50°. The stream power 

index (SPI), which measures the stream capacity for erosion 

also affects the occurrence of landslides. The SPI is 

calculated as SPI = AS tan(β), where AS is the area of a 

particular catchment and β is the local slope gradient 

expressed in degrees [12]. Four categories were created from 

the SPI map of the study area: <-4.5, -4.5 to -0.2, -0.2 to 2.2, 

and >2.2. In the study area, there are 12 lithological and 

geomorphological formations. The Normalized Difference 

Vegetation Index (NDVI) is frequently used to calculate the 

amount of vegetation present in any region [11;13]. The value 

of NDVI varies from -1 to 1, and we classified NDVI into 

five groups i.e. waterbodies (NDVI: -1 to 0), barren land 

(NDVI: -0.1 to 0.1), grassland (NDVI: 0.1-0.4), sparse 

vegetation (NDVI: 0.4-0.7), and dense vegetation (NDVI: 

>0.7) as shown in figure 3f. 

4.2 Multiple linear regression (MLR) 

The mathematical expression for the multiple linear 

regression, which was used in this study, shows how the 

susceptibility of landslides increases as the independent 

variables and predictors standard deviation changes [14]. The 

MLR value for each factor class derived is taken into 

consideration as the input for additional regression analysis 

[6]. An equal number of non-landslide points were obtained 

randomly [6]. Non-landslide points were counted as 0 for 

analysis purposes while landslide points were counted as 1 

[6;14]. Additionally, R studio 4.2.0 software was used to 

carry out the regression analysis. The following mathematical 

equation was used to get the LSI [6;14]. 

LSI = β0 + β1𝑥1 + β2𝑥2 + β3𝑥3 + β4𝑥4 + … … . +βn𝑥𝑛 (1)  

where β0 is the intercept while β1, β2, etc is the coefficient 

value of each factor class, and x1, x2 is the causative factor. 

 

4.3 Accuracy Assessment 

We used the area under the curve (AUC)-ROC (Receiver 

operating characteristic) to assess the accuracy of the LSM 

prepared. If the AUC value is more than 0.90, then the LSM 

map is considered to be highly accurate, and less accurate if 

the AUC value is 0.5 or lower [15;16]. Also, AUC values 

above 0.7 are generally regarded as satisfactory in many 

landslide studies.  

V. RESULTS AND DISCUSSION 

5.1 Landslide susceptibility maps without NDVI layer 

The landslide susceptibility maps (LSMs) were prepared 

using 11 causative factors (some causative factors are shown 

in figure 3) and 108 training landslide points based on MLR 

models. The predicted LSMs were divided into five classes 

by the natural break classification method: very low, low, 

medium, high, and very high. The MLR model was used to 

determine the coefficient and intercept values for each layer, 

which were then used to prepare the LSI.  

Figure 4: LSM maps prepared using MLR model (a) with and 

(b) without NDVI as causative factors. (c) The AUC-ROC 

curves for both are shown. 

 

As a result, the following mathematical expression is used to 

calculate the LSI (3). 

𝑍 =  −0.1788 + 0.1069 ∗ 𝐴𝑠𝑝 + (−0.0059) ∗ 𝐶𝑢𝑟 +

0.0357 ∗ 𝐷𝑡𝑙 + 0.454 ∗ 𝐷𝑡𝑟 + 0.242 ∗ 𝐷𝑡𝑠 + 0.242 ∗

𝐸𝑙𝑒 + (−0.0718) ∗ 𝐺𝑒𝑜 + 0.1443 ∗ 𝐿𝑖𝑡ℎ + 0.4112 ∗ 𝑆𝑙 +

(−0.2077) ∗ 𝑆𝑃𝐼    (2) 



The LSM obtained using the MLR model ranges from very 

low (-0.21 to -0.19), low (019 to 0.35), medium (0.35 to 

0.51), high (0.51-0.71), and very high (0.71-1.36) as shown 

in figure 4a. Where high and very high susceptibility areas 

made up 20% of the total area. The 56 landslide testing points 

were used for calculating the AUC-ROC curves. Hence, the 

accuracy of the landslide susceptibility map (LSM) was 

obtained to be 86% while using the MLR model when NDVI 

is not used as shown in figure 4c. 

5.2 Landslide susceptibility maps with NDVI layer 

The results showed that upon the inclusion of NDVI as a 

causative factor class the distribution of the landslide-

susceptible classes changed significantly (figure 4b). In the 

case of LSI obtained using MLR methods the high and very 

high landslide-susceptible zones consisted of only 23% of the 

study area (figure 5B). However, after taking NDVI as a 

causative factor 21% of the areas consisted of high and very 

high susceptible zones. The LSM obtained using the MLR 

model ranges from very low (-0.18 to -0.24), low (024 to 

0.40), medium (0.40 to 0.57), high (0.57 to 0.79), and very 

high (0.79-1.56) as shown in figure 4. The accuracy of the 

landslide susceptibility map (LSM) was obtained to be 92% 

while using the MLR model when NDVI is used (figure 4c). 

 

5.3 Comparison 

The findings showed that distances closer to the road had 

a higher likelihood of having landslides than those farther 

away from it. Furthermore, the LSMs demonstrate that 

locations with sparse and thick vegetation were less 

susceptible to landslides, but areas that were classified as 

barren land were more vulnerable to landslides when the 

NDVI layer is used as a causative factor. The fact that 

vegetated areas are less prone to landslides implies that the 

trees have an efficient soil-holding capacity that can prevent 

landslides. Additionally, the AUC-ROC curve illustrates how 

accuracy suddenly increases when we use NDVI as one of the 

causative factors in the preparation of LSMs. So, without 

NDVI as a causative factor, the AUC values for LSM 

obtained using MLR was 86%, which increased to 92% when 

the NDVI layer is considered. This clearly shows the effect 

of NDVI in the preparation of LSM using MLR statistical 

landslide model. But the choice of time for taking NDVI data 

needs to be explored more. 

VI. CONCLUSION 

In this study, the relative importance of classes and 

individual causative factors, the weightage and percentage of 

pixels in a class to the total pixels were extracted by 

integrating 11 causative factors, including aspect, curvature, 

distance to road, distance to stream, distance to lineament, 

elevation, slope, SPI, geomorphology, lithology, with/ 

without NDVI maps. The LSM is prepared using the 

statistical landslide multiple linear regression (MLR) model 

for the Joginder Nagar area. Only 20% of the study area was 

comprised of the high and very high landslide risk zones 

when LSM is prepared using the MLR model without NDVI. 

But after using NDVI as a causative factor, 23% of the area 

falls under high and very high susceptible zones. The AUC 

of the LSM improved significantly from 86% when NDVI 

was not considered to 92% when NDVI was considered a 

causative factor.  
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