
EasyChair Preprint
№ 4389

OpenFaceR: Developing an R Package for the
Convenient Analysis of OpenFace Facial
Information.

Davide Cannata, Sam Redfern and Denis O’Hora

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 13, 2020

OpenFaceR: Developing an R Package for the convenient

analysis of OpenFace facial information.

Davide Cannata1[0000-0003-2254-2639], Sam Redfern1[0000-0002-4856-3756], and Denis

O’Hora1[0000-0003-3776-6782]

1 National University of Galway, Ireland

d.cannata1@nuigalway.ie

Abstract. OpenFace is an open source tool designed to extract the most com-

monly used facial information from videos including facial points, head pose,

gaze and Facial Action Units. OpenFaceR is a tool designed to help social scien-

tists, and other researchers from less technical disciplines, who are interested in

facial nonverbal behaviors (FNVBs), to easily use output from OpenFace 2.0.

The output from OpenFace is one csv file for each video, with information on

each feature for each frame of the analyzed video provided in rows. OpenFaceR

constitutes a set of methods to convert information in this format into relevant

summary statistics. In this paper, we focus on the set of methods in OpenFaceR

to extract information from a series of videos and transform the output files into

a single dataset in which each row reports the summary values of a feature for

one video.

Keywords: OpenFace, R, Nonverbal Behaviors, Face, Computer Vision.

1 Introduction

Humans are social animals, capable of complex and variable behaviour. The face is a

central element of human sociality[1], since it provides rich information for immediate

social judgments through static cues (e.g. biometrics, skin colour, feminine/masculine

features, regional traits etc..) and dynamic cues (e.g. smiles, blinks, gaze, emotion ex-

pression etc…). The latter, also called Facial Nonverbal Behaviors (FNVBs), have been

widely studied in many fields such as display of emotions [2], lie detection [3], inter-

personal relations [4], and personality recognition [5]. Research on FNVBs can be

further divided into two streams which require different techniques of data collection

and data analysis. The first one is concerned with how facial expressions change in time

within subjects (e.g. studies on mimicry or on emotional reactions [6]) and therefore

require FNVBs data per each temporal unit. The second stream is concerned about how

FNVBs differ between individuals (e.g. nonverbal expression of personality [7]) or

within the same individuals in different conditions (e.g. being ingenuous vs being de-

ceitful [3]). In this second case, that is the focus of this paper, the analysis is performed

on summary measures of FNVBs, such as their frequency.

 FNVBs are traditionally annotated manually, through one of the many existing

scales (ex: Riverside Q-Sort [8]; Münster Behavior coding system [9]). One of the most

2

popular is the Facial Actions Coding System (FACS) by Paul Ekman [10], which anal-

yses the smallest independent movements of the facial muscles, called Action Units

(AUs). The FACS provides with a detailed and objective approach to the classification

of FNVBs, but manual annotation of AUs is a demanding job which requires consider-

able amount of time of well-trained observers.[11]. Recently, progresses in computer

vision has allowed the development of software for automatic analysis and recognition

of facial static and dynamic characteristics [12]. Amongst those OpenFace, an open-

source software developed at Cambridge University by Baltrusaitis and colleagues [13],

is one of the most used in the social sciences, with 753 citations by August 16, 2020.

OpenFaceR, the GitHub repository presented in this paper, includes a set of R functions

intended to facilitate the use of OpenFace 2.0 for social scientists.

2 OpenFace

The major goal of OpenFace is to provide a comprehensive, open source and free tool

for describing facial behaviors [13]. OpenFace estimates the status of four different

types of feature: facial landmarks; head pose; eye gaze; and facial expressions. The x,

y and z position of 67 facial landmarks are identified using a Convolutional Experts

Constrained Local Model [14]. Based on these values, head pose is estimated through

the orthographic projection of an internal 3D representation of the facial landmarks

[13]. To estimate the direction of eye gaze, OpenFace first uses a Constrained Local

Neural Field to detect eyelids, pupils and iris. Then, an eyeball model and head pose

information are incorporated in a complex process to estimate gaze direction [15]. Fi-

nally, OpenFace makes use of a linear kernel Support Vector approach to describe18

AUs [16] (e.g., movement of the lip corner puller, the muscle we use to smile). For each

AU it estimates its intensity (e.g. a number between 0 and 1 describing how much the

lip corner puller is contracted) and its presence (e.g,, if the movement of the lip corner

puller is large enough for being observed as a smile). OpenFace 2.0 has been tested

through two different datasets achieving state of the art performance, despite compara-

tively low computational demands [13]. The software can be run though the command

prompt to analyse a single video or multiple videos stored in a folder. The output, for

each video, is a Comma Separated Values (CSV) file including XX values for each

frame:

- frame number

- timestamp

- confidence (how accurate the analysis of the frame is likely to be) and success

(whether confidence is high enough)

- x, y and z coordinates of the gaze for each eye

- z and y polar coordinates of the gaze angle

- 56 by 2 (x and y) 2D eye landmark positions

- 56 by 3 (x, y and z) 3D eye landmark positions

- x, y and z coordinates of the head position

- Roll, pitch and yaw of the head

3

- 68 by 3 (x, y and z) facial landmarks positions

- 18 by 2 (presence and intensity) AUs

3 Fitting OpenFace data to social scientists’ needs

The output from OpenFace is rich and detailed, but, for just this reason, it is not ideal

for data analysis by most social scientists. When OpenFace processes a video (usually

depicting one person’s participation), a long CSV document is produced, in which each

row reports the 538 values noted previously for each frame. OpenFace typically anal-

yses videos at a 30Hz frame rate, so the standard output is a csv with a number of rows

equal to 30 times the duration of the video in seconds. Such data are perfectly suitable

for time series analysis [17] but many social scientists are not trained in such techniques

and wish to test hypotheses concerning summary statistics (e.g. frequency or mean and

standard deviation) of FNVBs per each person (in a between-subjects design) or per

each person in each condition (in a within-subjects design).

To provide data more suitable for the needs of social scientists, we employed the

‘tidy’ framework proposed by Hadley Wickham for easier data analysis and visualiza-

tion [18]. Datasets are defined as tidy if each row corresponds to an observation, each

column corresponds to a variable and each type of observational unit forms a table [18].

The challenge for social scientists using OpenFace, therefore, is how to transform

frame-level output into a tidy dataset with output per person or condition. Figure 1

shows an example in which 60 second videos of three people have been analysed with

OpenFace to annotate true smiles and blinks. The left of the figure represents the Open-

Face output with one person per dataset, one frame per row and with each column rep-

resenting the absence or presence of a facial action unit. On the right, there is a tidy

dataset in which each row represents a person and each column is a summary of the

person FNVBs, in this case the frequency of true smiles and blinks.

Fig. 1 Conceptual example of transformation from OpenFace output (on the left) to a tidy dataset

(on the right) in which each row correspond to a person. AU_6 (cheek raiser) and AU_12 (lip

corner puller) in combination signal a true smile. AU-45 represents a blink.

4

The main goal of OpenFaceR is to provide a set of tools and a workflow for the

creation of such tidy datasets for social scientists.

4 OpenFaceR workflow

OpenFaceR assists social scientists through a workflow that leads from the analysis of

videos to the consolidation of a tidy dataset with one person per row. Its functions make

extensive use of the tidyverse package [19]. The tidyverse is a collection of packages

aimed to “facilitate a conversation between a human and a computer about data” [19,

pag.1]. It includes methods for data manipulation, data importing, data tidying, data

manipulation and data visualisation. Notably, OpenFaceR uses and extends the func-

tions “mutate”,” filter”, “select” and “summarise” from dplyr and makes extensive use

of the pipe sign “%>%” from magrittr. Also, OpenFaceR import and returns datasets

as tibbles[20], a tidyverse equivalent to R base dataframes offering better performance

and visualisation methods.

The OpenFaceR workflow is designed to accomplish to the transformation from raw

video material to a tidy dataset. To start the workflow, the user needs the following:

video files of each person (or each person in each condition), the OpenFace software

package, R [21] (we also recommend RStudio [22]), and OpenFaceR. It is easiest if the

videos correspond to the unit of analysis. For example, in a within participants design,

it is easiest if each condition is captured in a separate video file. However, it is possible

to extract sections of videos by filtering which is described later. OpenFace is imple-

mented in python [23] and pyTorch [24]. Detailed instructions for Linux and MacOS

X installation are provided at https://cmusatyalab.github.io/openface/setup/. Instruc-

tions for the installation of the executable file for windows are provided here:

https://github.com/TadasBaltrusaitis/OpenFace/wiki/Windows-Installation. R can be

downloaded from the CRAN repository (https://cran.r-project.org/). At present, the

OpenFaceR toolkit can be downloaded from GitHub at https://github.com/davidecan-

natanuig/, but installation using the devtools R package will be implemented in the near

future. OpenFaceR requires the following R packages to be installed: tidyverse [19] and

pracma [25] .Fig. 2, below, shows the six steps of the process, which are extensively

discussed in the next paragraphs.

5

Fig. 2 OpenFaceR workflow and an operative example

To facilitate readers’ comprehension of this six-step process, we employ an example

of a simple psychological experiment investigating the effects of positive and negative

memories on facial behaviours. In our example, the researcher has collected videos of

50 students telling one story about a personal success and one story about a personal

failure in front a camera. The hypothesis is that students will smile more frequently and

will display more intense facial activity in the success story condition.

4.1 Videos to CSVs using OpenFace

Prior to using the utility functions in OpenFaceR, users must process their videos using

OpenFace. To help users produce the appropriate syntax for these commands in Win-

dows, OpenFaceR provides the function get_commands() that outputs the commands

and parameters for executing OpenFace on a single video or on a set of videos contained

in a folder. After the user runs get_commands(), the user can copy and paste the output

of get_commands() at the command line to initiate the analysis or analyses. In the ex-

ample described above, the input_dir is the folder containing the 100 video files record-

ing the students telling their stories. The output_dir will hold the 100 csvs produced by

OpenFace. The duration of this process is dependent on the user’s computer hardware,

specifically the GPU, CPU and storage medium (e.g. SSD drive).

4.2 CSVs to faces objects

From Step 2, the remaining steps are completed in the R environment. The function

read_faces_csv() allows the user to import all the csv files contained in a folder into an

object of class “faces”. Faces is a new bespoken C3 class that inherits from lists, and

6

in fact is a list of tibbles, with each tibble representing the output from one video. In

our example, read_faces_csv will import the 100 csv files saved in the output_dir from

the previous step and produce a faces object containing 100 tibbles. The time for the

machine to perform this operation, although depending by the local machine specifica-

tions, can be significant.

4.3 Filtering

It is often necessary to filter out certain faces or conditions due to errors in the extraction

of data, low confidence and so on. The verb filter_faces() allows the user to filter all

the tibbles of a faces object, with a grammar that echoes the dplyr filter method. A

typical filter is set up for “success”, the variable indicating whether the extraction of

data was reliably done for each frame of the video. It is also possible to standardize the

extraction parameters of the videos by filtering. For example, to standardize the dura-

tion of videos that will be analyzed, one can filter the timestamps, restricting them to

minimum and maximum values. In our example, the researcher wants to standardize

the length of videos as time might also influence the production of smiles and face

activity. They can therefore use filter_face(timestamp < 180) to take only the first 3

minutes of each video. The result can be stored in a new filtered faces object or by using

the pipe %>% sign, steps 3 to 6 can be conducted in a series and outputted in a tidy

dataframe.

4.4 Features engineering

OpenFaceR provides two verbs to manipulate the variables of each video and engineer-

ing new features. mutate_faces() echoes dplyr::mutate(). The function trans-

form_faces() meets the need of using transformation functions that take as input a preset

selection of variables, as opposed to the mutate method which is designed for working

with user specified variables. The two verbs are accompanied by a growing number of

functions specifically designed for analyzing faces. In our example the researcher uses

mutate_faces(smile = ifelse(AU06_c + AU12_c) == 2, 1, 0) to calculate when the ex-

perimental subjects are displaying the two AUs characterizing smiles. Furthermore they

will use the function transform_faces(“mei”, mei) for calculating the corrected average

motion of the face region[25], a measure of facial activity.

4.5 Selection of features

We have implemented the verb select_faces() to select which features are eventually

summarised, echoing the select() method from dplyr. As frame, timestamp and success

are critical meta-variables, select_faces() always returns those in the output. In our ex-

ample the researcher will use select_faces(smile, mei) to select the two variables they

intend to summarise.

7

4.6 Tidy dataset consolidation

The function tidy_face() is designed to transform a preprocessed faces object into a tidy

dataset with one person per row and all the most common statistics. Fig. 3 summarizes

the function’s architecture. Here, the arrows represent the logical steps, while the boxes

represent the methods used, including the inputs they take from the main function. First,

tidy_face() merges all the tibbles of the faces object into one single tibble through the

merge_faces() method. Second, it calculates the length of each video. Third, it classifies

the variables into continuous (e.g. distance of the face from the camera) and discrete

(events, such as blinks and smiles). Fourth, if the events parameter is set as true (default)

all the discrete variables are summarized. Events can be summarized by simply count-

ing them (“count”), or as events per second (“eps”), events per minute (“epm”) or

events ratio (“ratio”, the number of frames in which the event happen divided the total

number of frames). Fifth, if the continuous parameter is set as True (default) all the

continuous variables are summarized with a choice of methods including mean, me-

dian, standard deviation, minimum and maximum. Finally, all the summarized varia-

bles are merged into a tidy dataset.

Fig. 3 Tidy_face architecture

In our example, calling tidy_faces(events_sum = “epm”, median = TRUE) will re-

turn one data frame with 100 rows (one per video) with columns for video ID, video

duration, mean, standard deviation and median of facial activity and the number of

smiles per minutes. The researchers can then test their hypotheses by running t-tests, a

repeated measures MANOVA or other statistical approaches available in R or other

packages.

8

5 Conclusions

In this paper we have outlined and explained the goal of OpenFaceR and outlined the

main characteristics of the workflow from raw video data to a dataset that can be used

for typical statistical analysis in social sciences. OpenFaceR is still at its infancy and

new functions are been built, providing the most common methods of summarizing

FNVBs. The final goal of this enterprise is to compile an R package to publish on

CRAN. Questions, feedback, collaborations, and ideas are welcome.

References

1. Jack, R. E. & Schyns, P. G. Toward a Social Psychophysics of Face Communication. (2017).

doi:10.1146/annurev-psych-010416-044242

2. Hall, J. A., Gunnery, S. D. & Andrzejewski, S. A. Nonverbal emotion displays , communi-

cation modality , and the judgment of personality. J. Res. Pers. 45, 77–83 (2011).

3. Cohen, D., Beattie, G. & Shovelton, H. Nonverbal indicators of deception: How iconic ges-

tures reveal thoughts that cannot be suppressed. Semiotica 2010, 133–174 (2010).

4. Grahe, J. E. & Bernieri, F. J. The importance of nonverbal cues in judging rapport. J. Non-

verbal Behav. 23, 253–269 (1999).

5. Breil, S. M., Osterholz, S., Nestler, S. & Back, M. D. Contributions of Nonverbal Cues to

the Accurate Judgment of Personality Traits. in The Oxford handbook of accurate personal-

ity judgment. (eds. Letzring, T. D. & Spain, J.) 1–54 (Oxford University Press, 2019).

6. Arnold, A. J. & Winkielman, P. The Mimicry Among Us: Intra- and Inter-Personal Mecha-

nisms of Spontaneous Mimicry. J. Nonverbal Behav. 44, 195–212 (2020).

7. Back, M. D. & Nestler, S. Accuracy of Judging Personality. in The Social Psychology of

Perceiving Others Accurately (eds. Hall, J. A., Schmid Mast, M. & West, T. V) 98–124

(Cambridge University Press, 2016).

8. Funder, D. C., Furr, R. M. & Colvin, C. R. The Riverside Behavioral Q-sort: A Tool for the

Description of Social Behavior. J. Pers. 68, 451–489 (2000).

9. Grünberg, M., Mattern, J., Geukes, K., Küfner, A. C. P. & Back, M. D. Assessing Group

Interactions in Personality Psychology. in The Cambridge Handbook of Group Interaction

Analysis 53, 602–611 (Cambridge University Press, 2019).

10. Ekman, P. & Friesen, W. V. Facial action coding system: A technique for the measurement

of facial movement. (Consulting Psychologist Press, 1978).

11. Furr, R. M. & Funder, D. C. Behavioral observation. in Handbook of research methods in

personality psychology (eds. Robins, R. W., Fraley, C. & Krueger, R. F.) 273–291 (Guilford

Press, 2009).

12. Cannata, D., Simon, B., Lepri, B., Back, M. D. & O’Hora, D. (In press) Toward an Integra-

tive Approach to Nonverbal Personality Detection.

13. Baltrušaitis, T., Zadeh, A., Lim, Y. C. & Morency, L. P. OpenFace 2.0: Facial Behavior

Analysis Toolkit. in 2018 13th IEEE International Conference on Automatic Face & Gesture

Recognition (FG 2018) 59–66 (2018).

14. Zadeh, A., Lim, Y. C., Baltrušaitis, T. & Morency, L. P. Convolutional experts constrained

local model for 3D facial landmark detection. Proc. - 2017 IEEE Int. Conf. Comput. Vis.

Work. ICCVW 2017 2018-Janua, 2519–2528 (2017).

9

15. Wood, E. et al. Rendering of Eyes for Eye-Shape Registration and Gaze Estimation Erroll.

in Proceedings of the IEEE International Conference on Computer Vision 3756–3764

(2015).

16. Baltrušaitis, T., Mahmoud, M. & Robinson, P. Cross-dataset learning and person-specific

normalisation for automatic Action Unit detection. in 2015 11th IEEE International Confer-

ence and Workshops on Automatic Face and Gesture Recognition (FG) 1–6 (2015).

17. Paxton, A., & Dale, R. (2013). Frame-differencing methods for measuring bodily synchrony

in conversation. Behav. Res. Meth., 45(2), 329-343.Wickham, H. Tiday Data. J. Stat. Softw.

59, 1–23 (2014).

18. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

19. Müller, K. & Wickham, H. tibble: Simple Data Frames. (2019).

20. Team, R. C. R: A Language and Environment for Statistical Computing. (2019).

21. RStudio Team. RStudio: Integrated Development Environment for R. (2020).

22. Van Rossum, G. & Drake, F. L. Python 3 Reference Manual. (CreateSpace, 2009).

23. Pazske, A. et al. Automatic differentiation in PyTorch. in 31st Conference on Neural Infor-

mation Processing Systems (NIPS 2017) (2017).

24. Brochers, H. W. pracma: Practical numerical math functions. (2017). R package 2.0.7.

25. Ramseyer, F. T. Motion energy analysis (MEA): A primer on the assessment of motion from

video. J. Couns. Psychol. 67, 536–549 (2020).

