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Abstract

Grönwall’s function G is defined for all natural numbers n > 1
by G(n) = σ(n)

n·log logn where σ(n) is the sum of the divisors of n and
log is the natural logarithm. We require the properties of extremely
abundant numbers, that is to say left to right maxima of n 7→ G(n). We
also use the colossally abundant and hyper abundant numbers. There
are several statements equivalent to the famous Riemann hypothesis.
It is known that the Riemann hypothesis is true if and only if there
exist infinitely many extremely abundant numbers. In this note, using
this criterion on hyper abundant numbers, we prove that the Riemann
hypothesis is true.
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1 Introduction

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,

where d | n means the integer d divides n. In 1997, Ramanujan’s old notes
were published where it was defined the generalized highly composite num-
bers, which include the superabundant and colossally abundant numbers [6].
A natural number n is called superabundant precisely when, for all natural
numbers m < n

σ(m)

m
<

σ(n)

n
.

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).
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Every colossally abundant number is superabundant [1]. Let us call hyper
abundant an integer n for which there exists u > 0 such that

σ(n)

n · (log n)u
≥ σ(m)

m · (logm)u
for (m > 1),

where log is the natural logarithm. Every hyper abundant number is colos-
sally abundant [5, pp. 255]. In 1913, Grönwall studied the function G(n) =

σ(n)
n·log logn for all natural numbers n > 1, [3]. We have the Grönwall’s Theo-
rem:

Proposition 1.1.
lim sup
n→∞

G(n) = eγ

where γ ≈ 0.57721 is the Euler-Mascheroni constant [3].

Next, we have the Robin’s Theorem:

Proposition 1.2. The Riemann hypothesis is true if and only if G(n) < eγ

for every natural number n > 5040 [7, Theorem 1 pp. 188].

There are champion numbers (i.e. left to right maxima) of the function
n 7→ G(n):

G(m) < G(n)

for all natural numbers 10080 ≤ m < n. A positive integer n is extremely
abundant if either n = 10080, or n > 10080 is a champion number of the
function n 7→ G(n). In 1859, Bernhard Riemann proposed his hypothesis [2].
Several analogues of the Riemann hypothesis have already been proved [2].

Proposition 1.3. The Riemann hypothesis is true if and only if there exist
infinitely many extremely abundant numbers [4, Theorem 7 pp. 6].

Many authors expect (or at least hope) that it is true. However, there
are some implications in case of the Riemann hypothesis might be false.

Proposition 1.4. If the Riemann hypothesis is false then, for colossally
abundant numbers N we have

G(N) = eγ ·
(
1 + Ω±((logN)−b)

)
for some 0 < b < 1 [7, Proposition pp. 204].

This is our main theorem

Theorem 1.5. The Riemann hypothesis is true.
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2 Central Lemma

Lemma 2.1. For two real numbers y > x > e:

y

x
>

log y

log x
.

Proof. We have y = x+ ε for ε > 0. We obtain that

log y

log x
=

log(x+ ε)

log x

=
log

(
x · (1 + ε

x)
)

log x

=
log x+ log(1 + ε

x)

log x

= 1 +
log(1 + ε

x)

log x

and

y

x
=

x+ ε

x

= 1 +
ε

x
.

We need to show that (
1 +

log(1 + ε
x)

log x

)
<

(
1 +

ε

x

)
which is equivalent to (

1 +
ε

x · log x

)
<

(
1 +

ε

x

)
using the well-known inequality log(1 + x) ≤ x for x > 0. For x > e, we
have

ε

x
>

ε

x · log x
.

In conclusion, the inequality

y

x
>

log y

log x

holds on condition that y > x > e.
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3 Main Insight

Lemma 3.1. Every large enough hyper abundant number n is defined over
a parameter 1 > u ⪆ 0.

Proof. Every large enough hyper abundant number n is defined over a pa-
rameter u > 0 as follows,

σ(n)

n · (log n)u
≥ σ(m)

m · (logm)u
for (m > 1).

Then, we would have

σ(n)

n · (log n)u
≥ σ(n′)

n′ · (log n′)u
for (n > n′ > e).

Thus, (
log n′

log n

)u

≥
σ(n′)
n′

σ(n)
n

.

By Proposition 1.1, we know there exists some n′ ≤ 5040 such that

σ(n′)
n′

σ(n)
n

≥ log logn′

log log n

for large enough hyper abundant number n. Hence, we would obtain that(
log n′

log n

)u

≥ log logn′

log log n
.

Moreover, we know that(
log logn′

log log n

)u

>

(
log n′

log n

)u

since n > n′ > e by Lemma 2.1. However, this implies that(
log log n′

log logn

)u

>
log log n′

log logn
.

which immediately forces the parameter u to be necessarily lesser than 1.
Now, we will show that u ⪆ 0. Consider there is pair (n, n′) of two con-
secutive hyper abundant numbers such that n < n′ and they are defined
over the parameters u and u′, respectively. By definition of hyper abundant
numbers, we have

σ(n)

n · (log n)u
≥ σ(n′)

n′ · (log n′)u
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and
σ(n′)

n′ · (log n′)u′ ≥
σ(n)

n · (log n)u′ .

That would mean (
log n′

log n

)u

≥
σ(n′)
n′

σ(n)
n

≥
(
log n′

log n

)u′

and therefore, we obtain that u > u′ which implies that u decreases as n
increases where this means that u tends to 0 as n goes to infinity and thus,
u ⪆ 0.

4 Proof of Theorem 1.5

Proof. Suppose that the Riemann hypothesis is false. Thus, there are not
infinitely many extremely abundant numbers by Proposition 1.3. Then for
Propositions 1.2 and 1.4 we infer that the maximum

M = max{G(n) : n > 5040}

exists and that M > eγ . Besides, there is only a finite set of natural num-
bers n > 5040 such that G(n) = M by Proposition 1.1 and the properties
of limit superior. Certainly, suppose there would be an infinite increasing
subsequence of natural numbers ni > 5040 such that eγ < M = G(ni). By
definition of limit superior, for any positive real number ε, only a finite num-
ber of elements of the sequence G(n) are greater than eγ + ε over all natural
numbers n > 1 which is a contradiction with the fact that G(ni) = M and
eγ + ε < M for all i. Since the set of natural numbers n > 5040 such that
G(n) = M is finite, then there must exist a maximum number N in this set.

We consider a large enough colossally abundant number N ′ such that
N < N ′. Let’s assume thatN ′ is a hyper abundant number with a parameter
u > 0. This is possible since every hyper abundant number is colossally
abundant [5, pp. 255]. Under our assumption, we have

σ(N)

N · (log logN)
>

σ(N ′)

N ′ · (log logN ′)

which is
σ(N)

N · (logN)u′ >
σ(N ′)

N ′ · (log logN ′)

where
log logN = (logN)u

′
.

We know the parameter 1 > u ⪆ 0 tends to be smaller as long as N ′ become
into a larger hyper abundant number by Lemma 3.1. In this way, we obtain
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that u′ ≫ u where ≫ means “much greater than”. Consequently,

σ(N)

N · (logN)u
>

σ(N)

N · (logN)u′ >
σ(N ′)

N ′ · (log logN ′)
.

By definition of hyper abundant numbers, we have

σ(N ′)

N ′ · (logN ′)u
≥ σ(N)

N · (logN)u
.

So,
σ(N ′)

N ′ · (logN ′)u
≥ σ(N)

N · (logN)u
>

σ(N ′)

N ′ · (log logN ′)

and therefore,
log logN ′ > (logN ′)u.

Note also that, for all u > 0 [5, pp. 254]:

lim
n→∞

σ(n)

n · (log n)u
= 0.

We have the following result when N ′ ranges over the set of large enough
hyper abundant numbers:

0 ≈ σ(N ′)

N ′ · (logN ′)u
>

σ(N ′)

N ′ · (log logN ′)
≈ eγ

when the Riemann hypothesis is false by Proposition 1.4. However, we know
that

0 ⪆ eγ

is trivially false and thus, we obtain a contradiction just assuming that the
Riemann hypothesis is false. By reductio ad absurdum, we deduce that the
Riemann hypothesis is indeed true.

5 Conclusions

Practical uses of the Riemann hypothesis include many propositions that are
known to be true under the Riemann hypothesis and some that can be shown
to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothe-
sis is closely related to various mathematical topics such as the distribution
of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the
Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hy-
pothesis could spur considerable advances in many mathematical areas, such
as number theory and pure mathematics in general.
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